1
|
Yu K, Li Z, Shi W, Zhao Z, Yang L. Causal impact of statins on susceptibility to osteoarthritis: insights from a two-sample Mendelian randomization analysis. Int J Clin Pharm 2024; 46:1208-1214. [PMID: 38990459 DOI: 10.1007/s11096-024-01754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Osteoarthritis is a widely prevalent cause of pain and disability among older adults. It is an incurable condition, and most treatments are aimed at alleviating symptoms. AIM This study aimed to investigate the impact of statins on osteoarthritis by using a two-sample Mendelian randomization approach, using genetic variants associated with statin use as instrumental variables. METHOD Information on single nucleotide polymorphisms associated with statin medication was obtained from the FinnGen study, and data on osteoarthritis were sourced from the UK Biobank. The inverse variance weighted method was used as the primary analytical approach for the Mendelian randomization analysis. Sensitivity analyses were conducted to evaluate horizontal pleiotropy and heterogeneity. To examine the genetic relationship between statins and osteoarthritis, linkage disequilibrium score regression-based estimates were used. RESULTS Mendelian randomization analysis indicated a positive effect of statin use on the treatment of osteoarthritis (odds ratio 0.951, 95% confidence interval 0.914-0.99, p < 0.05). This conclusion was supported by various Mendelian randomization methods. Sensitivity analyses revealed no significant directional pleiotropy or influential single nucleotide polymorphisms that could compromise the overall causal inference. Linkage disequilibrium score regression-based estimates suggested a modest genetic correlation between statin use and osteoarthritis (Rg = 0.098, Se = 0.034, p < 0.05), thus reinforcing the robustness of the Mendelian randomization analysis. CONCLUSION Statins reduce the risk of osteoarthritis, aligning with the results of observational studies. Further research is essential to validate these results and explore the underlying mechanisms in detail.
Collapse
Affiliation(s)
- Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Ziming Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Weizhong Shi
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Li Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.
| |
Collapse
|
2
|
Li J, Liu X, Jiang H, Yang M. Interleukin-4-Loaded Gelatin Methacryloyl Hydrogel Promotes Subcutaneous Chondrogenesis of Engineered Auricular Cartilage in a Rabbit Model. J Biomed Mater Res B Appl Biomater 2024; 112:e35473. [PMID: 39198004 DOI: 10.1002/jbm.b.35473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/13/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
Tissue engineering technology offers a promising solution for ear reconstruction; however, it faces the challenge of foreign body reaction and neocartilage malformation. This study investigates the impact of interleukin-4 (IL-4), an anti-inflammatory factor, on cartilage regeneration of hydrogel encapsulating autologous auricular chondrocytes in a rabbit subcutaneous environment. Initially, we assessed the influence of IL-4 on chondrocyte proliferation and determined the appropriate concentration using the CCK-8 test in vitro. Subsequently, we loaded IL-4 into gelatin methacryloyl (GelMA) hydrogel containing chondrocytes and measured its release profile through ELISA. The constructs were then implanted autologously into rabbits' subcutis, and after 3, 7, 14, and 28 days, cartilage matrix formation was evaluated by histological examinations, and gene expression levels were detected by qRT-PCR. Results demonstrated that IL-4 promotes chondrocyte proliferation in vitro, and maximum release from constructs occurred during the first week. In the rabbit subcutaneous implantation model, IL-4-loaded constructs (20 ng/mL) maintained a superior chondrocytic phenotype compared to controls with increased expression of anti-inflammatory factors. These findings highlight IL-4 as a potential strategy for promoting chondrogenesis in a subcutaneous environment and improving ear reconstruction.
Collapse
Affiliation(s)
- Jinqiao Li
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Liu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haiyue Jiang
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mingyong Yang
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
3
|
Edderkaoui B. Chemokines in Cartilage Regeneration and Degradation: New Insights. Int J Mol Sci 2023; 25:381. [PMID: 38203552 PMCID: PMC10779035 DOI: 10.3390/ijms25010381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Cartilage plays a crucial role in the human body by forming long bones during development and growth to bear loads on joints and intervertebral discs. However, the increasing prevalence of cartilage degenerative disorders is a growing public health concern, especially due to the poor innate regenerative capacity of cartilage. Chondrocytes are a source of several inflammatory mediators that play vital roles in the pathogenesis of cartilage disorders. Among these mediators, chemokines have been explored as potential contributors to cartilage degeneration and regeneration. Our review focuses on the progress made during the last ten years in identifying the regulators and roles of chemokines and their receptors in different mechanisms related to chondrocytes and cartilage. Recent findings have demonstrated that chemokines influence cartilage both positively and negatively. Their induction and involvement in either process depends on the local molecular environment and is both site- and time-dependent. One of the challenges in defining the role of chemokines in cartilage pathology or regeneration is the apparent redundancy in the interaction of chemokines with their receptors. Hence, it is crucial to determine, for each situation, whether targeting specific chemokines or their receptors will help in developing effective therapeutic strategies for cartilage repair.
Collapse
Affiliation(s)
- Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare Systems, Loma Linda, CA 92357, USA;
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
4
|
Mariadoss AVA, Wang CZ. Exploring the Cellular and Molecular Mechanism of Discoidin Domain Receptors (DDR1 and DDR2) in Bone Formation, Regeneration, and Its Associated Disease Conditions. Int J Mol Sci 2023; 24:14895. [PMID: 37834343 PMCID: PMC10573612 DOI: 10.3390/ijms241914895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The tyrosine kinase family receptor of discoidin domain receptors (DDR1 and DDR2) is known to be activated by extracellular matrix collagen catalytic binding protein receptors. They play a remarkable role in cell proliferation, differentiation, migration, and cell survival. DDR1 of the DDR family regulates matrix-metalloproteinase, which causes extracellular matrix (ECM) remodeling and reconstruction during unbalanced homeostasis. Collagenous-rich DDR1 triggers the ECM of cartilage to regenerate the cartilage tissue in osteoarthritis (OA) and temporomandibular disorder (TMD). Moreover, DDR2 is prominently present in the fibroblasts, smooth muscle cells, myofibroblasts, and chondrocytes. It is crucial in generating and breaking collagen vital cellular activities like proliferation, differentiation, and adhesion mechanisms. However, the deficiency of DDR1 rather than DDR2 was detrimental in cases of OA and TMDs. DDR1 stimulated the ECM cartilage and improved bone regeneration. Based on the above information, we made an effort to outline the advancement of the utmost promising DDR1 and DDR2 regulation in bone and cartilage, also summarizing their structural, biological activity, and selectivity.
Collapse
Affiliation(s)
| | - Chau-Zen Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
5
|
Chen X, Wang Z, Deng R, Yan H, Liu X, Kang R. Intervertebral disc degeneration and inflammatory microenvironment: expression, pathology, and therapeutic strategies. Inflamm Res 2023; 72:1811-1828. [PMID: 37665342 DOI: 10.1007/s00011-023-01784-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP), posing a significant socioeconomic burden. Recent studies highlight the crucial role of inflammatory microenvironment in IDD progression. METHOD A keyword-based search was performed using the PubMed database for published articles. RESULTS AND CONCLUSIONS Dysregulated expression of inflammatory cytokines disrupts intervertebral disc (IVD) homeostasis, causing atrophy, fibrosis, and phenotypic changes in nucleus pulposus cells. Modulating the inflammatory microenvironment and restoring cytokine balance hold promise for IVD repair and regeneration. This comprehensive review systematically examines the expression regulation, pathological effects, therapeutic strategies, and future challenges associated with the inflammatory microenvironment and relevant cytokines in IDD. Key inflammatory cytokines, including interleukins (IL), tumor necrosis factor-alpha (TNF-α), and chemokines, exhibit significant pathological effects in IDD. Furthermore, major therapeutic modalities such as chemical antagonists, biologics, plant extracts, and gene transcription therapies are introduced to control and ameliorate the inflammatory microenvironment. These approaches provide valuable insights for identifying potential targets in future anti-inflammatory treatments for IDD.
Collapse
Affiliation(s)
- Xin Chen
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Zihan Wang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Rongrong Deng
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Hongjie Yan
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Xin Liu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| | - Ran Kang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Yang Q, Zhao Y, Li N, Wu JL, Huang X, Zhang M, Bian X, Zhu YZ. Identification of polyunsaturated fatty acids as potential biomarkers of osteoarthritis after sodium hyaluronate and mesenchymal stem cell treatment through metabolomics. Front Pharmacol 2023; 14:1224239. [PMID: 37649888 PMCID: PMC10462907 DOI: 10.3389/fphar.2023.1224239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction: Osteoarthritis (OA) is a prevalent joint disorder worldwide. Sodium hyaluronate (SH) and mesenchymal stem cells (MSCs) are promising therapeutic strategies for OA. Previous studies showed they could improve knee function and clinical symptoms of OA. However, the mechanism of the therapeutic effects on the improvement of OA has not been clearly explained. Methods: In our study, we used a technique called 5-(diisopropylamino)amylamine derivatization liquid chromatography coupled with mass spectrometry to find the metabolites in OA synovial fluid under different treatments. Results and Discussion: After looking into the metabolomics, we discovered that SH and MSC treatment led to the downregulation of ω-6 polyunsaturated fatty acids (PUFAs) and the upregulation of ω-3 PUFAs. Significantly, the contents of 5(S)-HETE, PGA2, PGB2, and PGJ2 were lower in the MSC group than in the SH group after quantification using 5-(diisopropylamino)amylamine derivatization-UHPLC-QQQ-MS. This is the first report on the relationship of 11(S)-HETE, PGA2, PGB2, PGF2β, 11β-PGF2α, and DK-PGE2 with OA. Moreover, the correlation analysis of metabolites and inflammation factors showed the positive association of ω-6 PUFAs with pro-inflammation cytokines, and of ω-3 PUFAs with anti-inflammation cytokines. Our results indicated the therapeutic effect of SH and MSCs in patients with OA. In addition, this reliable metabolic approach could uncover novel biomarkers to treat OA.
Collapse
Affiliation(s)
- Qinyan Yang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Liver Transplant Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiran Zhao
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Jian-Lin Wu
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xiaolun Huang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Liver Transplant Center and HBP Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Zhang
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xiqing Bian
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yi-Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
- State Key Laboratory for Quality Research of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
7
|
Panichi V, Bissoli I, D'Adamo S, Flamigni F, Cetrullo S, Borzì RM. NOTCH1: A Novel Player in the Molecular Crosstalk Underlying Articular Chondrocyte Protection by Oleuropein and Hydroxytyrosol. Int J Mol Sci 2023; 24:ijms24065830. [PMID: 36982904 PMCID: PMC10058228 DOI: 10.3390/ijms24065830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, but no effective and safe disease-modifying treatment is available. Risk factors such as age, sex, genetics, injuries and obesity can concur to the onset of the disease, variably triggering the loss of maturational arrest of chondrocytes further sustained by oxidative stress, inflammation and catabolism. Different types of nutraceuticals have been studied for their anti-oxidative and anti-inflammatory properties. Olive-derived polyphenols draw particular interest due to their ability to dampen the activation of pivotal signaling pathways in OA. Our study aims to investigate the effects of oleuropein (OE) and hydroxytyrosol (HT) in in vitro OA models and elucidate their possible effects on NOTCH1, a novel therapeutic target for OA. Chondrocytes were cultured and exposed to lipopolysaccharide (LPS). Detailed analysis was carried out about the OE/HT mitigating effects on the release of ROS (DCHF-DA), the increased gene expression of catabolic and inflammatory markers (real time RT-PCR), the release of MMP-13 (ELISA and Western blot) and the activation of underlying signaling pathways (Western blot). Our findings show that HT/OE efficiently attenuates LPS-induced effects by firstly reducing the activation of JNK and of the NOTCH1 pathway downstream. In conclusion, our study provides molecular bases supporting the dietary supplementation of olive-derived polyphenols to revert/delay the progression of OA.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Laboratorio di Patologia delle Infezioni Associate all'Impianto, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Irene Bissoli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Stefania D'Adamo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40138 Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
8
|
Segarra-Queralt M, Piella G, Noailly J. Network-based modelling of mechano-inflammatory chondrocyte regulation in early osteoarthritis. Front Bioeng Biotechnol 2023; 11:1006066. [PMID: 36815875 PMCID: PMC9936426 DOI: 10.3389/fbioe.2023.1006066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by articular cartilage degradation, inflammation and pain. An extensive range of in vivo and in vitro studies evidences that mechanical loads induce changes in chondrocyte gene expression, through a process known as mechanotransduction. It involves cascades of complex molecular interactions that convert physical signals into cellular response(s) that favor either chondroprotection or cartilage destruction. Systematic representations of those interactions can positively inform early strategies for OA management, and dynamic modelling allows semi-quantitative representations of the steady states of complex biological system according to imposed initial conditions. Yet, mechanotransduction is rarely integrated. Hence, a novel mechano-sensitive network-based model is proposed, in the form of a continuous dynamical system: an interactome of a set of 118 nodes, i.e., mechano-sensitive cellular receptors, second messengers, transcription factors and proteins, related among each other through a specific topology of 358 directed edges is developed. Results show that under physio-osmotic initial conditions, an anabolic state is reached, whereas initial perturbations caused by pro-inflammatory and injurious mechanical loads leads to a catabolic profile of node expression. More specifically, healthy chondrocyte markers (Sox9 and CITED2) are fully expressed under physio-osmotic conditions, and reduced under inflammation, or injurious loadings. In contrast, NF-κB and Runx2, characteristic of an osteoarthritic chondrocyte, become activated under inflammation or excessive loading regimes. A literature-based evaluation shows that the model can replicate 94% of the experiments tested. Sensitivity analysis based on a factorial design of a treatment shows that inflammation has the strongest influence on chondrocyte metabolism, along with a significant deleterious effect of static compressive loads. At the same time, anti-inflammatory therapies appear as the most promising ones, though the restoration of structural protein production seems to remain a major challenge even in beneficial mechanical environments. The newly developed mechano-sensitive network model for chondrocyte activity reveals a unique potential to reflect load-induced chondroprotection or articular cartilage degradation in different mechano-chemical-environments.
Collapse
|
9
|
Shnayder NA, Ashhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Vaiman EE, Petrova MM, Nasyrova RF. Cytokine Imbalance as a Biomarker of Intervertebral Disk Degeneration. Int J Mol Sci 2023; 24:ijms24032360. [PMID: 36768679 PMCID: PMC9917299 DOI: 10.3390/ijms24032360] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The intervertebral disk degeneration (IDD) and its associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. IDD progresses with age, leading to spondylosis, spondylarthrosis, intervertebral disk herniation, and spinal stenosis. The purpose of this review is an attempt to summarize the data characterizing the patterns of production of pro-inflammatory and anti-inflammatory cytokines in IDD and to appreciate the prognostic value of cytokine imbalance as its biomarker. This narrative review demonstrates that the problem of evaluating the contribution of pro-inflammatory and anti-inflammatory cytokines to the maintenance or alteration of cytokine balance may be a new key to unlocking the mystery of IDD development and new therapeutic strategies for the treatment of IDD in the setting of acute and chronic inflammation. The presented data support the hypothesis that cytokine imbalance is one of the most important biomarkers of IDD.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Zaitun A. Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | | | - Elena E. Vaiman
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0220-7813 (N.A.S. & R.F.N.)
| |
Collapse
|
10
|
Li Z, Yang H, Hai Y, Cheng Y. Regulatory Effect of Inflammatory Mediators in Intervertebral Disc Degeneration. Mediators Inflamm 2023; 2023:6210885. [PMID: 37101594 PMCID: PMC10125773 DOI: 10.1155/2023/6210885] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 03/18/2023] [Indexed: 04/28/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major contributor to back, neck, and radicular pain. It is related to changes in tissue structure and function, including the breakdown of the extracellular matrix (ECM), aging, apoptosis of the nucleus pulposus, and biomechanical tissue impairment. Recently, an increasing number of studies have demonstrated that inflammatory mediators play a crucial role in IDD, and they are being explored as potential treatment targets for IDD and associated disorders. For example, interleukins (IL), tumour necrosis factor-α (TNF-α), chemokines, and inflammasomes have all been linked to the pathophysiology of IDD. These inflammatory mediators are found in high concentrations in intervertebral disc (IVD) tissues and cells and are associated with the severity of LBP and IDD. It is feasible to reduce the production of these proinflammatory mediators and develop a novel therapy for IDD, which will be a hotspot of future research. In this review, the effects of inflammatory mediators in IDD were described.
Collapse
Affiliation(s)
- Zhangfu Li
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Honghao Yang
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunzhong Cheng
- Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
11
|
Temporal Release and Denature of Several Mediators in Pure Platelet-Rich Plasma and Temperature-Induced Platelet Lysates Derived from a Similar Bovine Platelet Concentrate. Vet Med Int 2022; 2022:2609508. [PMID: 36193256 PMCID: PMC9525800 DOI: 10.1155/2022/2609508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
There is scarce information about bovine platelet-rich plasma/platelet-rich gel (PRP/PRG) and related hemocomponents (HCs), such as platelet lysates (PLs), including growth factor (GF) and cytokine concentrations, and how the stability of these biomolecules could be affected by time and temperature. This study aimed to evaluate the release and stability of transforming growth factor beta 1 (TGF-β1), interleukin 4 (IL-4), and tumor necrosis factor alpha (TNF-α) contained in bovine pure PRP (P-PRP) and temperature-induced PL (TIPL) coming from a similar platelet concentrate (PC) at 4 and 37°C at 3 and 96 h. Platelet concentrates (PCs) presented a 1.7-fold concentration of platelets (PLTs) with negligible counts of white blood cells (WBCs) when compared to the counts for these cells in whole blood. TGF-β1 concentrations were significantly lowest in plasma followed by TIPL, chemical-induced PL (CIPL), and P-PRP. IL-4 and TNF-α concentrations did not differ between HCs. TGF-β1 concentrations were negatively affected in P-PRPs stored at 4°C at 3 and 96 h, whereas those from P-PRP maintained at 37°C presented similar concentrations to TIPL stored at both temperatures over time. IL-4 and TNF-α concentrations were not affected by time or temperature in any of the HCs evaluated. Pure PRGs released additional quantities of GF and cytokines over time when compared with HCs stored over 96 h at 4 and 37°C. The method, either chemical or physical, used for platelet activation or damage produces a different GF and cytokine release pattern, which makes to each evaluated HCs different despite they come from a similar bovine PC. P-PRP activated with calcium gluconate and maintained at 37°C, which polymerizes in P-PRG, showed the best GF and cytokine release/denature profile compared with the rest of the HCs evaluated.
Collapse
|
12
|
Saberianpour S, Abolbashari S, Modaghegh MHS, Karimian MS, Eid AH, Sathyapalan T, Sahebkar A. Therapeutic effects of statins on osteoarthritis: A review. J Cell Biochem 2022; 123:1285-1297. [PMID: 35894149 DOI: 10.1002/jcb.30309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 11/11/2022]
Abstract
Osteoarthritis (OA) is a progressive joint disease. The etiology of OA is considered to be multifactorial. Currently, there is no definitive treatment for OA, and the existing treatments are not very effective. Hypercholesterolemia is considered a novel risk factor for the development of OA. Statins act as a competitive inhibitor of the β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase and are widely used to manage hypercholesterolemia. Inhibition of HMG-CoA reductase results in reduced synthesis of a metabolite named mevalonate, thereby reducing cholesterol biosynthesis in subsequent steps. By this mechanism, statins such as atorvastatin and simvastatin could potentially have a preventive impact on joint cartilage experiencing osteoarthritic deterioration by reducing serum cholesterol levels. Atorvastatin can protect cartilage degradation following interleukin-1β-stimulation. Atorvastatin stimulates the STAT1-caspase-3 signaling pathway that was shown to be responsible for its anti-inflammatory effects on the knee joint. Simvastatin had chondroprotective effects on OA in vitro by reducing matrix metalloproteinases expression patterns. In this study, we tried to review the therapeutic effects of statins on OA.
Collapse
Affiliation(s)
- Shirin Saberianpour
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Abolbashari
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad H S Modaghegh
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam S Karimian
- International UNESCO center for Health Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Assirelli E, Caravaggi P, Mazzotti A, Ursini F, Leardini A, Belvedere C, Neri S. Location-Dependent Human Osteoarthritis Cartilage Response to Realistic Cyclic Loading: Ex-Vivo Analysis on Different Knee Compartments. Front Bioeng Biotechnol 2022; 10:862254. [PMID: 35782520 PMCID: PMC9240619 DOI: 10.3389/fbioe.2022.862254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Osteoarthritis (OA) is a multifactorial musculoskeletal disorder affecting mostly weight-bearing joints. Chondrocyte response to load is modulated by inflammatory mediators and factors involved in extracellular cartilage matrix (ECM) maintenance, but regulatory mechanisms are not fully clarified yet. By using a recently proposed experimental model combining biomechanical data with cartilage molecular information, basally and following ex-vivo load application, we aimed at improving the understanding of human cartilage response to cyclic mechanical compressive stimuli by including cartilage original anatomical position and OA degree as independent factors. Methods: 19 mono-compartmental Knee OA patients undergoing total knee replacement were recruited. Cartilage explants from four different femoral condyles zones and with different degeneration levels were collected. The response of cartilage samples, pooled according to OA score and anatomical position was tested ex-vivo in a bioreactor. Mechanical stimulation was obtained via a 3-MPa 1-Hz sinusoidal compressive load for 45-min to replicate average knee loading during normal walking. Samples were analysed for chondrocyte gene expression and ECM factor release. Results: Non parametric univariate and multivariate (generalized linear mixed model) analysis was performed to evaluate the effect of compression and IL-1β stimulation in relationship to the anatomical position, local disease severity and clinical parameters with a level of significance set at 0.05. We observed an anti-inflammatory effect of compression inducing a significant downmodulation of IL-6 and IL-8 levels correlated to the anatomical regions, but not to OA score. Moreover, ADAMTS5, PIICP, COMP and CS were upregulated by compression, whereas COL-2CAV was downmodulated, all in relationship to the anatomical position and to the OA degree. Conclusion: While unconfined compression testing may not be fully representative of the in-vivo biomechanical situation, this study demonstrates the importance to consider the original cartilage anatomical position for a reliable biomolecular analysis of knee OA metabolism following mechanical stimulation.
Collapse
Affiliation(s)
- Elisa Assirelli
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Caravaggi
- Laboratory of Movement Analysis and Functional Evaluation of Prosthesis, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Antonio Mazzotti
- I Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesco Ursini
- Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Science, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Bologna, Italy
| | - Alberto Leardini
- Laboratory of Movement Analysis and Functional Evaluation of Prosthesis, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudio Belvedere
- Laboratory of Movement Analysis and Functional Evaluation of Prosthesis, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Simona Neri
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
14
|
van Helvoort E, van der Heijden E, van Roon J, Eijkelkamp N, Mastbergen S. The Role of Interleukin-4 and Interleukin-10 in Osteoarthritic Joint Disease: A Systematic Narrative Review. Cartilage 2022; 13:19476035221098167. [PMID: 35549461 PMCID: PMC9251827 DOI: 10.1177/19476035221098167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE A fusion protein of interleukin-4 and interleukin-10 (IL4-10 FP) was developed as a disease-modifying osteoarthritis drug (DMOAD), and chondroprotection, anti-inflammation, and analgesia have been suggested. To better understand the mechanisms behind its potential as DMOAD, this systematic narrative review aims to assess the potential of IL-4, IL-10 and the combination of IL-4 and IL-10 for the treatment of osteoarthritis. It describes the chondroprotective, anti-inflammatory, and analgesic effects of IL-4, IL-10, and IL4-10 FP. DESIGN PubMed and Embase were searched for publications that were published from 1990 until May 21, 2021 (moment of search). Key search terms were: Osteoarthritis, Interleukin-4, and Interleukin-10. This yielded 2,479 hits, of which 43 were included in this review. RESULTS IL-4 and IL-10 showed mainly protective effects on osteoarthritic cartilage in vitro and in vivo, as did IL4-10 FP. Both cytokines showed anti-inflammatory effects, but also proinflammatory effects. Only in vitro IL4-10 FP showed purely anti-inflammatory effects, indicating that proinflammatory effects of one cytokine can be counteracted by the other when given as a combination. Only a few studies investigated the analgesic effects of IL-4, IL-10 or IL4-10 FP. In vitro, IL-4 and IL4-10 FP were able to decrease pain mediators. In vivo, IL-4, IL-10, and IL4-10 FP were able to reduce pain. CONCLUSIONS In conclusion, this review describes overlapping, but also different modes of action for the DMOAD effects of IL-4 and IL-10, giving an explanation for the synergistic effects found when applied as combination, as is the case for IL4-10 FP.
Collapse
Affiliation(s)
- E.M. van Helvoort
- Department of Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands,E.M. van Helvoort, Department of
Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht University, Postbus
85500, Internal Mail No. G02.232, 3508 GA Utrecht, The Netherlands.
| | - E. van der Heijden
- Department of Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - J.A.G. van Roon
- Department of Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands,Center of Translational Immunology, UMC
Utrecht, Utrecht University, Utrecht, The Netherlands
| | - N. Eijkelkamp
- Center of Translational Immunology, UMC
Utrecht, Utrecht University, Utrecht, The Netherlands
| | - S.C. Mastbergen
- Department of Rheumatology &
Clinical Immunology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Regulatory network-based model to simulate the biochemical regulation of chondrocytes in healthy and osteoarthritic environments. Sci Rep 2022; 12:3856. [PMID: 35264634 PMCID: PMC8907219 DOI: 10.1038/s41598-022-07776-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
In osteoarthritis (OA), chondrocyte metabolism dysregulation increases relative catabolic activity, which leads to cartilage degradation. To enable the semiquantitative interpretation of the intricate mechanisms of OA progression, we propose a network-based model at the chondrocyte level that incorporates the complex ways in which inflammatory factors affect structural protein and protease expression and nociceptive signals. Understanding such interactions will leverage the identification of new potential therapeutic targets that could improve current pharmacological treatments. Our computational model arises from a combination of knowledge-based and data-driven approaches that includes in-depth analyses of evidence reported in the specialized literature and targeted network enrichment. We achieved a mechanistic network of molecular interactions that represent both biosynthetic, inflammatory and degradative chondrocyte activity. The network is calibrated against experimental data through a genetic algorithm, and 81% of the responses tested have a normalized root squared error lower than 0.15. The model captures chondrocyte-reported behaviors with 95% accuracy, and it correctly predicts the main outcomes of OA treatment based on blood-derived biologics. The proposed methodology allows us to model an optimal regulatory network that controls chondrocyte metabolism based on measurable soluble molecules. Further research should target the incorporation of mechanical signals.
Collapse
|
16
|
Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, Wei F, Tian G, Ning C, Li H, Gao C, Fu L, Jiang S, Chen M, Sui X, Liu S, Chen Z, Guo Q. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022; 140:23-42. [PMID: 34896634 DOI: 10.1016/j.actbio.2021.12.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
The ability of articular cartilage to repair itself is limited because it lacks blood vessels, nerves, and lymph tissue. Once damaged, it can lead to joint swelling and pain, accelerating the progression of osteoarthritis. To date, complete regeneration of hyaline cartilage exhibiting mechanical properties remains an elusive goal, despite the many available technologies. The inflammatory milieu created by cartilage damage is critical for chondrocyte death and hypertrophy, extracellular matrix breakdown, ectopic bone formation, and progression of cartilage injury to osteoarthritis. In the inflammatory microenvironment, mesenchymal stem cells (MSCs) undergo aberrant differentiation, and chondrocytes begin to convert or dedifferentiate into cells with a fibroblast phenotype, thereby resulting in fibrocartilage with poor mechanical qualities. All these factors suggest that inflammatory problems may be a major stumbling block to cartilage repair. To produce a milieu conducive to cartilage repair, multi-dimensional management of the joint inflammatory microenvironment in place and time is required. Therefore, this calls for elucidation of the immune microenvironment of cartilage repair after injury. This review provides a brief overview of: (1) the pathogenesis of cartilage injury; (2) immune cells in cartilage injury and repair; (3) effects of inflammatory cytokines on cartilage repair; (4) clinical strategies for treating cartilage defects; and (5) strategies for targeted immunoregulation in cartilage repair. STATEMENT OF SIGNIFICANCE: Immune response is increasingly considered the key factor affecting cartilage repair. It has both negative and positive regulatory effects on the process of regeneration and repair. Proinflammatory factors are secreted in large numbers, and necrotic cartilage is removed. During the repair period, immune cells can secrete anti-inflammatory factors and chondrogenic cytokines, which can inhibit inflammation and promote cartilage repair. However, inflammatory factors persist, which accelerate the degradation of the cartilage matrix. Furthermore, in an inflammatory microenvironment, MSCs undergo abnormal differentiation, and chondrocytes begin to transform or dedifferentiate into fibroblast-like cells, forming fibrocartilage with poor mechanical properties. Consequently, cartilage regeneration requires multi-dimensional regulation of the joint inflammatory microenvironment in space and time to make it conducive to cartilage regeneration.
Collapse
|
17
|
Zhou Q, Ren Q, Jiao L, Huang J, Yi J, Chen J, Lai J, Ji G, Zheng T. The potential roles of JAK/STAT signaling in the progression of osteoarthritis. Front Endocrinol (Lausanne) 2022; 13:1069057. [PMID: 36506076 PMCID: PMC9729341 DOI: 10.3389/fendo.2022.1069057] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is an age-related chronic progressive degenerative disease that induces persistent pain and disabilities. The development of OA is a complex process, and the risk factors are various, including aging, genetics, trauma and altered biomechanics. Inflammation and immunity play an important role in the pathogenesis of OA. JAK/STAT pathway is one of the most prominent intracellular signaling pathways, regulating cell proliferation, differentiation, and apoptosis. Inflammatory factors can act as the initiators of JAK/STAT pathway, which is implicated in the pathophysiological activity of chondrocyte. In this article, we provide a review on the importance of JAK/STAT pathway in the pathological development of OA. Potentially, JAK/STAT pathway becomes a therapeutic target for managing OA.
Collapse
Affiliation(s)
- Qingluo Zhou
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jun Yi
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| | - Tiansheng Zheng
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Guanglin Ji, ; Tiansheng Zheng,
| |
Collapse
|
18
|
Khella CM, Horvath JM, Asgarian R, Rolauffs B, Hart ML. Anti-Inflammatory Therapeutic Approaches to Prevent or Delay Post-Traumatic Osteoarthritis (PTOA) of the Knee Joint with a Focus on Sustained Delivery Approaches. Int J Mol Sci 2021; 22:8005. [PMID: 34360771 PMCID: PMC8347094 DOI: 10.3390/ijms22158005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation plays a central role in the pathogenesis of knee PTOA after knee trauma. While a comprehensive therapy capable of preventing or delaying post-traumatic osteoarthritis (PTOA) progression after knee joint injury does not yet clinically exist, current literature suggests that certain aspects of early post-traumatic pathology of the knee joint may be prevented or delayed by anti-inflammatory therapeutic interventions. We discuss multifaceted therapeutic approaches that may be capable of effectively reducing the continuous cycle of inflammation and concomitant processes that lead to cartilage degradation as well as those that can simultaneously promote intrinsic repair processes. Within this context, we focus on early disease prevention, the optimal timeframe of treatment and possible long-lasting sustained delivery local modes of treatments that could prevent knee joint-associated PTOA symptoms. Specifically, we identify anti-inflammatory candidates that are not only anti-inflammatory but also anti-degenerative, anti-apoptotic and pro-regenerative.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs—University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (J.M.H.); (R.A.); (B.R.)
| |
Collapse
|
19
|
Bartolotti I, Roseti L, Petretta M, Grigolo B, Desando G. A Roadmap of In Vitro Models in Osteoarthritis: A Focus on Their Biological Relevance in Regenerative Medicine. J Clin Med 2021; 10:1920. [PMID: 33925222 PMCID: PMC8124812 DOI: 10.3390/jcm10091920] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a multifaceted musculoskeletal disorder, with a high prevalence worldwide. Articular cartilage and synovial membrane are among the main biological targets in the OA microenvironment. Gaining more knowledge on the accuracy of preclinical in vitro OA models could open innovative avenues in regenerative medicine to bridge major gaps, especially in translation from animals to humans. Our methodological approach entailed searches on Scopus, the Web of Science Core Collection, and EMBASE databases to select the most relevant preclinical in vitro models for studying OA. Predicting the biological response of regenerative strategies requires developing relevant preclinical models able to mimic the OA milieu influencing tissue responses and organ complexity. In this light, standard 2D culture models lack critical properties beyond cell biology, while animal models suffer from several limitations due to species differences. In the literature, most of the in vitro models only recapitulate a tissue compartment, by providing fragmented results. Biotechnological advances may enable scientists to generate new in vitro models that combine easy manipulation and organ complexity. Here, we review the state-of-the-art of preclinical in vitro models in OA and outline how the different preclinical systems (inflammatory/biomechanical/microfluidic models) may be valid tools in regenerative medicine, describing their pros and cons. We then discuss the prospects of specific and combinatorial models to predict biological responses following regenerative approaches focusing on mesenchymal stromal cells (MSCs)-based therapies to reduce animal testing.
Collapse
Affiliation(s)
- Isabella Bartolotti
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
| | - Livia Roseti
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
| | - Mauro Petretta
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
- RegenHu Company, Z.I Du Vivier 22, 1690 Villaz-St-Pierre, Switzerland
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
| | - Giovanna Desando
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; (I.B.); (M.P.); (B.G.)
| |
Collapse
|
20
|
Enhancing the chondrogenic potential of chondrogenic progenitor cells by deleting RAB5C. iScience 2021; 24:102464. [PMID: 34013174 PMCID: PMC8113995 DOI: 10.1016/j.isci.2021.102464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease that affects a large proportion of the elderly population. Chondrogenic progenitor cells (CPCs) reside in late-stage OA cartilage tissue, producing a fibrocartilaginous extracellular matrix; these cells can be manipulated in vitro to deposit proteins of healthy articular cartilage. CPCs are under the control of SOX9 and RUNX2. In our earlier studies, we showed that a knockdown of RUNX2 enhanced the chondrogenic potential of CPCs. Here we demonstrate that CPCs carrying a knockout of RAB5C, a protein involved in endosomal trafficking, exhibited elevated expression of multiple chondrogenic markers, including the SOX trio, and increased COL2 deposition, whereas no changes in COL1 deposition were observed. We report RAB5C as an attractive target for future therapeutic approaches designed to increase the COL2 content in the diseased joint.
Collapse
|
21
|
Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. J Cell Biochem 2021; 122:696-715. [PMID: 33529442 PMCID: PMC8603934 DOI: 10.1002/jcb.29896] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can bind to the target sites in the 3’‐untranslated region of messenger RNA to regulate posttranscriptional gene expression. Increasing evidence has identified the miR‐29 family, consisting of miR‐29a, miR‐29b‐1, miR‐29b‐2, and miR‐29c, as key regulators of a number of biological processes. Moreover, their abnormal expression contributes to the etiology of numerous diseases. In the current review, we aimed to summarize the differential expression patterns and functional roles of the miR‐29 family in the etiology of diseases including osteoarthritis, osteoporosis, cardiorenal, and immune disease. Furthermore, we highlight the therapeutic potential of targeting members of miR‐29 family in these diseases. We present miR‐29s as promoters of osteoblast differentiation and apoptosis but suppressors of chondrogenic and osteoclast differentiation, fibrosis, and T cell differentiation, with clear avenues for therapeutic manipulation. Further research will be crucial to identify the precise mechanism of miR‐29 family in these diseases and their full potential in therapeutics.
Collapse
Affiliation(s)
- Masahiro Horita
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Louise A Stephen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| |
Collapse
|
22
|
Small Extracellular Vesicles from adipose derived stromal cells significantly attenuate in vitro the NF-κB dependent inflammatory/catabolic environment of osteoarthritis. Sci Rep 2021; 11:1053. [PMID: 33441764 PMCID: PMC7806716 DOI: 10.1038/s41598-020-80032-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
The therapeutic ability of Mesenchymal Stem/Stromal Cells to address osteoarthritis (OA) is mainly related to the secretion of biologically active factors, which can be found within their secreted Extracellular Vesicles including small Extracellular Vesicles (sEV). Aim of this study was to investigate the effects of sEV from adipose derived stromal cells (ADSC) on both chondrocytes and synoviocytes, in order to gain insights into the mechanisms modulating the inflammatory/catabolic OA environment. sEV, obtained by a combined precipitation and size exclusion chromatography method, were quantified and characterized, and administered to chondrocytes and synoviocytes stimulated with IL-1β. Cellular uptake of sEV was evaluated from 1 to 12 h. Gene expression and protein release of cytokines/chemokines, catabolic and inflammatory molecules were analyzed at 4 and 15 h, when p65 nuclear translocation was investigated to study NF-κB pathway. This study underlined the potential of ADSC derived sEV to affect gene expression and protein release of both chondrocytes and synoviocytes, counteracting IL-1β induced inflammatory effects, and provided insights into their mechanisms of action. sEV uptake was faster in synoviocytes, where it also elicited stronger effects, especially in terms of cytokine and chemokine modulation. The inflammatory/catabolic environment mediated by NF-κB pathway was significantly attenuated by sEV, which hold promise as new therapeutic strategy to address OA.
Collapse
|
23
|
Yang CY, Chanalaris A, Bonelli S, McClurg O, Hiles GL, Cates AL, Zarebska JM, Vincent TL, Day ML, Müller SA, Lichtenthaler SF, Nagase H, Scilabra SD, Troeberg L. Interleukin 13 (IL-13)-regulated expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging cartilage. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100128. [PMID: 33381768 PMCID: PMC7762825 DOI: 10.1016/j.ocarto.2020.100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Objective The adamalysin metalloproteinase 15 (ADAM15) has been shown to protect against development of osteoarthritis in mice. Here, we have investigated factors that control ADAM15 levels in cartilage. Design Secretomes from wild-type and Adam15−/− chondrocytes were compared by label-free quantitative mass spectrometry. mRNA was isolated from murine knee joints, either with or without surgical induction of osteoarthritis on male C57BL/6 mice, and the expression of Adam15 and other related genes quantified by RT-qPCR. ADAM15 in human normal and osteoarthritic cartilage was investigated similarly and by fluorescent immunohistochemistry. Cultured HTB94 chondrosarcoma cells were treated with various anabolic and catabolic stimuli, and ADAM15 mRNA and protein levels evaluated. Results There were no significant differences in the secretomes of chondrocytes from WT and Adam15−/− cartilage. Expression of ADAM15 was not altered in either human or murine osteoarthritic cartilage relative to disease-free controls. However, expression of ADAM15 was markedly reduced upon aging in both species, to the extent that expression in joints of 18-month-old mice was 45-fold lower than in that 4.5-month-old animals. IL-13 increased expression of ADAM15 in HTB94 cells by 2.5-fold, while modulators of senescence and autophagy pathways had no effect. Expression of Il13 in the joint was reduced with aging, suggesting this cytokine may control ADAM15 levels in the joint. Conclusion Expression of the chondroprotective metalloproteinase ADAM15 is reduced in aging human and murine joints, possibly due to a concomitant reduction in IL-13 expression. We thus propose IL-13 as a novel factor contributing to increased osteoarthritis risk upon aging.
Collapse
Affiliation(s)
- C Y Yang
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - A Chanalaris
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - S Bonelli
- Fondazione Ri.MED - ISMETT, Department of Research, Via Ernesto Tricomi 5, 90145, Palermo, Italy
| | - O McClurg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, United Kingdom
| | - G Lorenzatti Hiles
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - A L Cates
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - J Miotla Zarebska
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - T L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - M L Day
- Division of Urologic Oncology, Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - S A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - S F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - H Nagase
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom
| | - S D Scilabra
- Fondazione Ri.MED - ISMETT, Department of Research, Via Ernesto Tricomi 5, 90145, Palermo, Italy.,German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - L Troeberg
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, United Kingdom.,Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, United Kingdom
| |
Collapse
|
24
|
Yi P, Xu X, Qiu B, Li H. Impact of chitosan membrane culture on the expression of pro- and anti-inflammatory cytokines in mesenchymal stem cells. Exp Ther Med 2020; 20:3695-3702. [PMID: 32855721 PMCID: PMC7444355 DOI: 10.3892/etm.2020.9108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 07/17/2020] [Indexed: 11/29/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory joint condition caused by various inflammatory cytokines. The pro-inflammatory cytokines controlling OA include interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6 and IL-18. The anti-inflammatory cytokines include IL-4, IL-10, IL-13, leukemia inhibitory factor (LIF), glycoprotein 130 (IL6ST), TNF-α-stimulated gene 6 and transforming growth factor (TGF)-β1. Mesenchymal stem cells (MSCs) serve an anti-inflammatory role in the treatment of OA by secreting various cytokines. Previous studies demonstrated that the anti-inflammatory ability of MSCs decreased rapidly in a traditional plate culture. Maintaining the anti-inflammatory properties of MSCs in vitro remains challenging. Therefore, it is necessary to develop a more stable and efficient method to culture MSCs in vitro. Chitosan is a deacetylated derivative of chitin and is the second most abundant natural polysaccharide worldwide. The present study demonstrated that that MSCs cultured on chitosan membranes (CM) spontaneously formed multicellular spheroids. Compared with the control group without CM, the formation of multicellular spheres in the CM enhanced the anti-inflammatory properties of MSCs. Expression levels of pro- and anti-inflammatory genes mRNA and their proteins in MSCs were detected by reverse transcription-quantitative PCR, western blot analysis and immunofluorescence assay. Protein and mRNA expression levels of pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and IL-18 were significantly decreased in CM-cultured MSCs compared with the control group (P<0.05). Furthermore, mRNA and protein expression levels of anti-inflammatory cytokines TGF-β1 in CM-cultured MSCs were significantly increased compared with the control group (P<0.01). These results indicated that the formation of multicellular spheroids by CM-cultured MSCs aided in maintaining anti-inflammatory effects.
Collapse
Affiliation(s)
- Peng Yi
- Department of Orthopedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiongfeng Xu
- Department of Orthopedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Qiu
- Department of Orthopedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huajie Li
- Department of Orthopedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
25
|
Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. Cells 2020; 9:cells9051232. [PMID: 32429348 PMCID: PMC7291002 DOI: 10.3390/cells9051232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a disease associated to age or conditions that precipitate aging of articular cartilage, a post-mitotic tissue that remains functional until the failure of major homeostatic mechanisms. OA severely impacts the national health system costs and patients' quality of life because of pain and disability. It is a whole-joint disease sustained by inflammatory and oxidative signaling pathways and marked epigenetic changes responsible for catabolism of the cartilage extracellular matrix. OA usually progresses until its severity requires joint arthroplasty. To delay this progression and to improve symptoms, a wide range of naturally derived compounds have been proposed and are summarized in this review. Preclinical in vitro and in vivo studies have provided proof of principle that many of these nutraceuticals are able to exert pleiotropic and synergistic effects and effectively counteract OA pathogenesis by exerting both anti-inflammatory and antioxidant activities and by tuning major OA-related signaling pathways. The latter are the basis for the nutrigenomic role played by some of these compounds, given the marked changes in the transcriptome, miRNome, and methylome. Ongoing and future clinical trials will hopefully confirm the disease-modifying ability of these bioactive molecules in OA patients.
Collapse
|
26
|
The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediators Inflamm 2020; 2020:8293921. [PMID: 32189997 PMCID: PMC7072120 DOI: 10.1155/2020/8293921] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
A joint is the point of connection between two bones in our body. Inflammation of the joint leads to several diseases, including osteoarthritis, which is the concern of this review. Osteoarthritis is a common chronic debilitating joint disease mainly affecting the elderly. Several studies showed that inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. This stimulates the release of early-stage inflammatory cytokines like interleukin-1 beta (IL-1β), which in turn induces the activation of signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), and mitogen-activated protein kinase (MAPK). These events, in turn, generate more inflammatory molecules. Subsequently, collagenase like matrix metalloproteinases-13 (MMP-13) will degrade the extracellular matrix. As a result, anatomical and physiological functions of the joint are altered. This review is aimed at summarizing the previous studies highlighting the involvement of inflammation in the pathogenesis of osteoarthritis.
Collapse
|
27
|
Song SY, Hong J, Go S, Lim S, Sohn HS, Kang M, Jung G, Yoon J, Kang ML, Im G, Kim B. Interleukin-4 Gene Transfection and Spheroid Formation Potentiate Therapeutic Efficacy of Mesenchymal Stem Cells for Osteoarthritis. Adv Healthc Mater 2020; 9:e1901612. [PMID: 31977158 DOI: 10.1002/adhm.201901612] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a painful intractable disease that significantly affects patients' quality of life. However, current therapies, such as pain killers and joint replacement surgery, do not lead to cartilage protection. Mesenchymal stem cells (MSCs) have been proposed as an alternative strategy for OA therapy because MSCs can secrete chondroprotective and anti-inflammatory factors. However, interleukin-4 (IL-4), a potent anti-inflammatory cytokine, is barely produced by MSCs, and MSC therapy suffers from rapid MSC death following intra-articular implantation. MSCs in spheroids survive better than naïve MSCs in vitro and in vivo. IL-4-transfected MSCs in spheroids (IL-4 MSC spheroid) show increased chondroprotective and anti-inflammatory effects in an OA chondrocyte model in vitro. Following intra-articular implantation in OA rats, IL-4 MSC spheroids show better cartilage protection and pain relief than naïve MSCs. Thus, IL-4 MSC spheroid may potentiate the therapeutic efficacy of MSCs for OA.
Collapse
Affiliation(s)
- Seuk Young Song
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for BioengineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Seukhyeong Go
- Interdisciplinary Program for BioengineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for BioengineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Gun‐Jae Jung
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Jeong‐Kee Yoon
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| | - Mi Lan Kang
- Department of Orthopaedic SurgeryDongguk University Ilsan Hospital 27 Dongguk‐ro, Ilsandong‐gu Goyang‐si Gyeonggi‐do 10326 Republic of Korea
| | - Gun‐il Im
- Department of Orthopaedic SurgeryDongguk University Ilsan Hospital 27 Dongguk‐ro, Ilsandong‐gu Goyang‐si Gyeonggi‐do 10326 Republic of Korea
| | - Byung‐Soo Kim
- School of Chemical and Biological EngineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Interdisciplinary Program for BioengineeringSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
- Institute of Chemical Processes, Institute of Engineering ResearchSeoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
28
|
Kedong H, Wang D, Sagaram M, An HS, Chee A. Anti-inflammatory effects of interleukin-4 on intervertebral disc cells. Spine J 2020; 20:60-68. [PMID: 31265894 DOI: 10.1016/j.spinee.2019.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Inflammation has been associated with a number of pathological conditions including intervertebral disc (IVD) degeneration, increased risks of low back pain and other spinal diseases. Downregulating disc inflammation may be a strategy to reduce degeneration and more importantly back pain. Interleukin (IL)-4 was first discovered as a T-cell secreted factor that enhanced the proliferation of anti-IgM stimulated B cells and is now known as a cytokine that can stimulate cell proliferation and differentiation, tissue regeneration and neurological functions. IL-4 has been shown to be effective in inhibiting inflammatory pathways in chondrocytes. Immunohistochemical studies have shown that disc tissues are immunopositive for IL-4 receptor α (IL-4Rα) and IL-4. Yet, the roles of IL-4 and IL-4R in disc biology remain unknown. PURPOSE The purpose of this study is to understand the roles of IL-4 and IL-4Rα in IVDs and to determine if IL-4 can function to inhibit inflammation in IVD cells. STUDY DESIGN/SETTING In vitro experiment. METHODS Deidentified patient IVD tissues were collected after surgery under the Orthopedic Information, Tissue and Implant Repository (ORA L00011021). IVD cells were isolated and cultured in monolayer. IL-4R protein expression was analyzed using immunocytochemistry. To test if the IL-4R was responsive to its ligand, signal transducer and activator of transcription 6 (STAT6) phosphorylation was analyzed on cell lysates of IVD cells treated with recombinant human IL-4 for 30 minutes using enzyme linked immunosorbent assay kit. Gene expression analysis of IL-4 up- and downregulated genes were analyzed using real-time RT-PCR. Anti-inflammatory effects of IL-4 were determined by cotreating disc cells with lipopolysaccharide (LPS) and IL-4 and measuring gene expression and protein release of inflammatory markers, IL-6 and IL-8. The significance of differences among means of data on gene expression and protein analyses were analyzed by one-way analysis of variance or student t test. Differences were considered significant when the p value was below 0.05. RESULTS Immunocytochemistry staining for IL-4Rα in primary IVD cells (n=8) showed the majority of immunopositive staining was intracellular. After IVD cells (n=3-7) were treated with different concentrations of recombinant human IL-4 (0.1-100 ng/mL) for 30 minutes, phospho-STAT6 levels significantly increased by two- to four-fold at all concentrations tested compared with untreated cells. Gene expression of IL-4Rα and IL-6 increased significantly in cells undergoing IL-4 treatment for 24 hours compared with control treated IVD cells (n=5-10). LPS stimulated inflammatory gene expression of interferon (IFN)β, IL-12, IL-6, and IL-8 were downregulated significantly in the presence of IL-4 (n=7). Lastly, protein release of IL-6 and IL-8 were reduced significantly in cells treated with IL-4 and LPS compared with those treated with LPS alone (n=7). CONCLUSIONS This study was the first to explore the function of IL-4 and IL-4R in IVD cells. Immunocytochemistry studies confirmed that the majority of cells isolated from patient IVDs expressed IL-4Rα at the protein level. Also, IVD cells can respond to IL-4 by up-regulating IL-4Rα and IL-6 genes and inhibiting inflammatory genes and proteins induced by LPS. Further studies to test the anti-inflammatory effects of IL-4 in the IVD would be needed in animal models. CLINICAL RELEVANCE Biological therapies which include intradiscal delivery of cells, anti-inflammatories or growth factors are being investigated to treat disc degeneration and back pain in animal models and in the clinic. Based on our findings that IL-4 has anti-inflammatory effects on IVD cells, the results of this study suggest including recombinant IL-4 delivery into the intervertebral disc may be a beneficial therapeutic strategy to treat patients with back pain by reducing disc inflammation.
Collapse
Affiliation(s)
- Hou Kedong
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison Street, Suite 300, Chicago, IL 60612, USA; Department of Orthopedics, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | - Degui Wang
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison Street, Suite 300, Chicago, IL 60612, USA; Department of Orthopedics, Longgang District People's Hospital, Shenzhen, Guangdong, China
| | - Manasa Sagaram
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison Street, Suite 300, Chicago, IL 60612, USA; Arizona College of Osteopathic Medicine, Glendale, AZ, USA
| | - Howard S An
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison Street, Suite 300, Chicago, IL 60612, USA.
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison Street, Suite 300, Chicago, IL 60612, USA
| |
Collapse
|
29
|
Zhang S, Hu B, Liu W, Wang P, Lv X, Chen S, Liu H, Shao Z. Articular cartilage regeneration: The role of endogenous mesenchymal stem/progenitor cell recruitment and migration. Semin Arthritis Rheum 2019; 50:198-208. [PMID: 31767195 DOI: 10.1016/j.semarthrit.2019.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/04/2019] [Accepted: 11/01/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Trauma- or osteoarthritis-related cartilage damage resulted in functional decline of joints and heavy burden of public health. Recently, the reparative role of mesenchymal stem/progenitor cells (MSCs) in articular cartilage (AC) reconstruction is drawing more and more attention. OBJECTIVE To provide a review on (1) the locations and categories of joint-resident MSCs, (2) the regulation of chondrogenic capacities of MSCs, (3) the migratory approaches of MSCs to diseased AC and regulatory mechanisms. METHODS PubMed and Web of Science were searched for English-language articles related to MSC recruitment and migration for AC repair until June 2019. The presence of various MSCs in or around joints, the potential approaches to diseased AC` and the regenerative capacities of MSCs were reviewed. RESULTS Various intra- and peri-articular MSCs, with inherent migratory potentials, are present in multiple stem cell niches in or around joints. The recruitment and migration of joint-resident MSCs play crucial roles in endogenous AC repair. Multiple recruiting signals, such as chemokines, growth factors, etc., emerge during the development of AC diseases and participate in the regulation of MSC mobilization. Motivated MSCs could migrate into cartilage lesions and then exert multiple reparative potentials, including extracellular matrix (ECM) reconstruction and microenvironment modulation. CONCLUSION In general, AC repair based on endogenous MSC recruitment and migration is a feasible strategy, and a promising research field. Furthermore, endogenous AC repair mediated by native MSCs would provide new opportunities to efficient preventative or therapeutic options for AC diseases.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| | - Hongjian Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
30
|
Polyamine supplementation reduces DNA damage in adipose stem cells cultured in 3-D. Sci Rep 2019; 9:14269. [PMID: 31582764 PMCID: PMC6776621 DOI: 10.1038/s41598-019-50543-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023] Open
Abstract
According to previous research, natural polyamines exert a role in regulating cell committment and differentiation from stemness during skeletal development. In order to assess whether distinct polyamine patterns are associated with different skeletal cell types, primary cultures of stem cells, chondrocytes or osteoblasts were dedicated for HPLC analysis of intracellular polyamines. Spermine (SPM) and Spermidine (SPD) levels were higher in adipose derived stem cells (ASC) compared to mature skeletal cells, i.e. chondrocytes and osteoblasts, confirming the connection of polyamine content with stemness. To establish whether polyamines can protect ASC against oxidative DNA damage in a 3-D differentiation model, the level of γH2AX was measured by western blot, and found to correlate with age and BMI of patients. Addition of either polyamine to ASC was able to hinder DNA damage in the low micromolecular range, with marked reduction of γH2AX level at 10 µM SPM and 5 µM SPD. Molecular analysis of the mechanisms that might underlie the protective effect of polyamine supplementation evidences a possible involvement of autophagy. Altogether, these results support the idea that polyamines are able to manage both stem cell differentiation and cell oxidative damage, and therefore represent appealing tools for regenerative and cell based applications.
Collapse
|
31
|
Dolzani P, Assirelli E, Pulsatelli L, Meliconi R, Mariani E, Neri S. Ex vivo physiological compression of human osteoarthritis cartilage modulates cellular and matrix components. PLoS One 2019; 14:e0222947. [PMID: 31550275 PMCID: PMC6759151 DOI: 10.1371/journal.pone.0222947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023] Open
Abstract
Mechanical stimulation appears to play a key role in cartilage homeostasis maintenance, but it can also contribute to osteoarthritis (OA) pathogenesis. Accumulating evidence suggests that cartilage loading in the physiological range contributes to tissue integrity maintenance, whereas excessive or reduced loading have catabolic effects. However, how mechanical stimuli can regulate joint homeostasis is still not completely elucidated and few data are available on human cartilage. We aimed at investigating human OA cartilage response to ex vivo loading at physiological intensity. Cartilage explants from ten OA patients were subjected to ex vivo controlled compression, then recovered and used for gene and protein expression analysis of cartilage homeostasis markers. Compressed samples were compared to uncompressed ones in presence or without interleukin 1β (IL-1β) or interleukin 4 (IL-4). Cartilage explants compressed in combination with IL-4 treatment showed the best histological scores. Mechanical stimulation was able to significantly modify the expression of collagen type II (collagen 2), aggrecan, SOX9 transcription factor, cartilage oligomeric matrix protein (COMP), collagen degradation marker C2C and vascular endothelial growth factor (VEGF). Conversely, ADAMTS4 metallopeptidase, interleukin 4 receptor alpha (IL4Rα), chondroitin sulfate 846 epitope (CS846), procollagen type 2 C-propeptide (CPII) and glycosaminoglycans (GAG) appeared not modulated. Our data suggest that physiological compression of OA human cartilage modulates the inflammatory milieu by differently affecting the expression of components and homeostasis regulators of the cartilage extracellular matrix.
Collapse
Affiliation(s)
- Paolo Dolzani
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Assirelli
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lia Pulsatelli
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Riccardo Meliconi
- Unità di Medicina e Reumatologia, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Erminia Mariani
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Simona Neri
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- * E-mail:
| |
Collapse
|
32
|
The N-Acetyl Phenylalanine Glucosamine Derivative Attenuates the Inflammatory/Catabolic Environment in a Chondrocyte-Synoviocyte Co-Culture System. Sci Rep 2019; 9:13603. [PMID: 31537813 PMCID: PMC6753094 DOI: 10.1038/s41598-019-49188-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA), the most prevalent degenerative joint disease, still lacks a true disease-modifying therapy. The involvement of the NF-κB pathway and its upstream activating kinases in OA pathogenesis has been recognized for many years. The ability of the N-acetyl phenylalanine glucosamine derivative (NAPA) to increase anabolism and reduce catabolism via inhibition of IKKα kinase has been previously observed in vitro and in vivo. The present study aims to confirm the chondroprotective effects of NAPA in an in vitro model of joint OA established with primary cells, respecting both the crosstalk between chondrocytes and synoviocytes and their phenotypes. This model satisfactorily reproduces some features of the previously investigated DMM model, such as the prominent induction of ADAMTS-5 upon inflammatory stimulation. Both gene and protein expression analysis indicated the ability of NAPA to counteract key cartilage catabolic enzymes (ADAMTS-5) and effectors (MCP-1). Molecular analysis showed the ability of NAPA to reduce IKKα nuclear translocation and H3Ser10 phosphorylation, thus inhibiting IKKα transactivation of NF-κB signalling, a pivotal step in the NF-κB-dependent gene expression of some of its targets. In conclusion, our data confirm that NAPA could truly act as a disease-modifying drug in OA.
Collapse
|
33
|
Suzuki Y, Hasegawa M, Matsui Y, Unno H, Iino T, Yoshida T, Sudo A. Intra-articular injection of rebamipide prevents articular cartilage degeneration in murine post-traumatic osteoarthritis models. Mod Rheumatol 2019; 30:765-772. [PMID: 31339809 DOI: 10.1080/14397595.2019.1641912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Rebamipide is a protective drug used for gastric mucosal injuries, and it also exerts protective effects for a variety of other tissues. In this study, murine post-traumatic (PT) osteoarthritis (OA) models in vivo and human OA chondrocytes in vitro were used to examine the effects of rebamipide on articular cartilage degeneration.Methods: Male BALB/c mice were used. The knee ligaments were transected in both knees. Mice were injected with rebamipide into the knee joint every week. Human chondrocytes were stimulated with IL-1β, then treated with or without rebamipide. The levels of mRNA expression of COL2A, IL-1β, TNFα, NF-κB, MMP3, MMP13, ADAMTS5, TIMP3, FGF2, and TGFβ were estimated using real-time PCR.Results: Histological scores were significantly better in the rebamipide 1 mg/mL and 10 mg/mL groups than in the control group. Rebamipide up-regulated the mRNA expressions of COL2A, TIMP3, TGFβ, and FGF2 in chondrocytes and down-regulated IL-1β, TNFα, NF-κB, MMP3, MMP13, and ADAMTS5.Conclusion: Intra-articular injection of rebamipide prevents articular cartilage degeneration for 6 weeks in murine models of OA in vivo. Rebamipide down-regulates inflammatory cytokines and catabolic factors and up-regulates anabolic factors in human chondrocytes in vitro. Rebamipide could be an important treatment for prevention of articular cartilage degeneration.
Collapse
Affiliation(s)
- Yoshiaki Suzuki
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Masahiro Hasegawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Yuriyo Matsui
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Hironori Unno
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Toshimichi Yoshida
- Department of Pathology & Matrix Biology, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu City, Japan
| |
Collapse
|
34
|
He Z, Leong DJ, Xu L, Hardin JA, Majeska RJ, Schaffler MB, Thi MM, Yang L, Goldring MB, Cobelli NJ, Sun HB. CITED2 mediates the cross-talk between mechanical loading and IL-4 to promote chondroprotection. Ann N Y Acad Sci 2019; 1442:128-137. [PMID: 30891766 PMCID: PMC6956611 DOI: 10.1111/nyas.14021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/04/2018] [Accepted: 01/16/2019] [Indexed: 01/28/2023]
Abstract
Osteoarthritis (OA) pathogenesis is mediated largely through the actions of proteolytic enzymes such as matrix metalloproteinase (MMP) 13. The transcriptional regulator CITED2, which suppresses the expression of MMP13 in chondrocytes, is induced by interleukin (IL)-4 in T cells and macrophages, and by moderate mechanical loading in chondrocytes. We tested the hypothesis that CITED2 mediates cross-talk between IL-4 signaling and mechanical loading-induced pathways that result in chondroprotection, at least in part, by downregulating MMP13. IL-4 induced CITED2 gene expression in human chondrocytes in a dose- and time-dependent manner through JAK/STAT signaling. Mechanical loading combined with IL-4 resulted in additive effects on inducing CITED2 expression and downregulating of MMP13 in human chondrocytes in vitro. In vivo, IL-4 gene knockout (KO) mice exhibited reduced basal levels of CITED2 expression in chondrocytes. While moderate treadmill running induced CITED2 expression and reduced MMP13 expression in wild-type mice, these effects were blunted (for CITED2) or abolished (for MMP13) in chondrocytes of IL-4 gene KO mice. Moreover, intra-articular injections of mouse recombinant IL-4 combined with regular cage activity mitigated post-traumatic OA to a greater degree compared to immobilized mice treated with IL-4 alone. These data suggest that using moderate loading to enhance IL-4 may be a potential therapeutic strategy for chondroprotection in OA.
Collapse
Affiliation(s)
- Zhiyong He
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Daniel J. Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Lin Xu
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - John A. Hardin
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Robert J. Majeska
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Mitchell B. Schaffler
- Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Mia M. Thi
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Liu Yang
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington
| | - Mary B. Goldring
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, and Weill Cornell Medical College, New York, New York
| | - Neil J. Cobelli
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Hui B. Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
35
|
Expression of ADAMTS2 and ADAMTS5 in the salivary gland of rats after radioiodine therapy. Nucl Med Commun 2018; 39:110-117. [PMID: 29194287 DOI: 10.1097/mnm.0000000000000781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the presence of ADAMTS2 and ADAMTS5 in the salivary gland (SG) of rats after high-dose radioiodine therapy. METHODS A total of 36 male Wistar albino rats were used for this study. Thirty-six male rats were divided randomly into six groups: control and five radioactive iodine (RAI) treatment groups of six rats each. All animals were killed. The evaluation of biodistribution and histopathological studies were carried out on the SGs removed. Real-time PCR and immunohistochemical analysis were carried out to determine mRNA and protein expression levels of ADAMTS genes. Differences between the groups were evaluated statistically. RESULTS In RAI-treated groups, ADAMTS2 and ADAMTS5 gene expression was observed to increase, whereas there was no mRNA or protein expression in the control group. There were statistically significant increases in the mRNA expression of ADAMTS2 (all RAI-administered groups in parathyroid gland and at 4, 24, and 48 h in submandibular gland) and ADAMTS5 (all RAI-administered groups, except on the 30th day in the parathyroid gland and all RAI groups in submandibular gland). Through immunohistochemical analysis, the staining pattern in the extracellular source was also observed in the overexpressed ADAMTS2 and ADAMTS5 groups. Nuclear coarsening and partial focal subnuclei vacuolization were determined in all RAI-administered groups with histopathological examinations. CONCLUSION An increase in the mRNA expression levels of ADAMTS2 and ADAMTS5 genes was detected in the RAI-administered groups. These results suggested that ADAMTS2 and ADAMTS5 genes might play a role in radiation exposure and radioiodine-induced SG changes.
Collapse
|
36
|
Steen-Louws C, Popov-Celeketic J, Mastbergen SC, Coeleveld K, Hack CE, Eijkelkamp N, Tryfonidou M, Spruijt S, van Roon JAG, Lafeber FPJG. IL4-10 fusion protein has chondroprotective, anti-inflammatory and potentially analgesic effects in the treatment of osteoarthritis. Osteoarthritis Cartilage 2018; 26:1127-1135. [PMID: 29775732 DOI: 10.1016/j.joca.2018.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Effective disease-modifying drugs for osteoarthritis (DMOAD) should preferably have chondroprotective, anti-inflammatory, and analgesic activity combined in a single molecule. We developed a fusion protein of IL4 and IL10 (IL4-10 FP), in which the biological activity of both cytokines is preserved. The present study evaluates the chondroprotective, anti-inflammatory, and analgesic activity of IL4-10 FP in in vitro and in vivo models of osteoarthritis. METHODS Human osteoarthritic cartilage tissue and synovial tissue were cultured with IL4-10 FP. Cartilage proteoglycan turnover and release of pro-inflammatory, catabolic, and pain mediators by cartilage and synovial tissue were measured. The analgesic effect of intra-articularly injected IL4-10 FP was evaluated in a canine model of osteoarthritis by force-plate analysis. RESULTS IL4-10 FP increased synthesis (P = 0.018) and decreased release (P = 0.018) of proteoglycans by osteoarthritic cartilage. Release of pro-inflammatory IL6 and IL8 by cartilage and synovial tissue was reduced in the presence of IL4-10 FP (all P < 0.05). The release of MMP3 by osteoarthritic cartilage and synovial tissue was decreased (P = 0.018 and 0.028) whereas TIMP1 production was not significantly changed. Furthermore, IL4-10 FP protected cartilage against destructive properties of synovial tissue mediators shown by the increased cartilage proteoglycan synthesis (P = 0.0235) and reduced proteoglycan release (P = 0.0163). Finally, intra-articular injection of IL4-10 FP improved the deficient joint loading in dogs with experimentally induced osteoarthritis. CONCLUSION The results of current preliminary study suggest that IL4-10 FP has DMOAD potentials since it shows chondroprotective and anti-inflammatory effects in vitro, as well as potentially analgesic effect in a canine in vivo model of osteoarthritis.
Collapse
Affiliation(s)
- C Steen-Louws
- Laboratory of Translational Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - J Popov-Celeketic
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - S C Mastbergen
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - K Coeleveld
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - C E Hack
- Laboratory of Translational Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - N Eijkelkamp
- Laboratory of Translational Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands; Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - M Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University Utrecht, The Netherlands.
| | - S Spruijt
- St. Maartens Hospital, The Netherlands.
| | - J A G van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| | - F P J G Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, University Utrecht, The Netherlands.
| |
Collapse
|
37
|
Dong C, Fu T, Ji J, Li Z, Gu Z. The role of interleukin-4 in rheumatic diseases. Clin Exp Pharmacol Physiol 2018; 45:747-754. [PMID: 29655253 DOI: 10.1111/1440-1681.12946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
Rheumatism is a group of diseases, most of which are autoimmune diseases, that violate joints, bones, muscles, blood vessels and related soft tissue. As is well known, cytokines play a role in the pathogenesis of several rheumatic diseases, such as rheumatoid arthritis, spondyloarthritides, and systemic lupus erythematosus. Recently, the role of interleukin-4 (IL-4), which may participate in the mechanism of rheumatism, have been discovered. It is reported that IL-4 takes part in the regulation of T cell activation, differentiation, proliferation, and survival of different T cell types. IL-4 also has an immunomodulatory effect on B cells, mast cells, macrophages, and many cell types. A review of the literature on functions of IL-4 in rheumatic diseases is presented.
Collapse
Affiliation(s)
- Chen Dong
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhenyu Li
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
38
|
Liang Y, Chen S, Yang Y, Lan C, Zhang G, Ji Z, Lin H. Vasoactive intestinal peptide alleviates osteoarthritis effectively via inhibiting NF-κB signaling pathway. J Biomed Sci 2018. [PMID: 29540226 PMCID: PMC5851098 DOI: 10.1186/s12929-018-0410-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To investigate the treatment effect of vasoactive intestinal peptide (VIP) on osteoarthritis (OA) and the relative mechanism. METHOD The OA model on the SD rat knee was established using the modified Hulth method, and the recombinant pcDNA3.1+/VIP plasmid was constructed. One month after the plasmids VIP were injected intra-articularly into the right knee joint of OA and sham-operated rats, the pathological changes of the OA knee joint were observed by Hematoxylin-eosin (HE) and Safranin O/fast green staining. The levels of VIP and serum inflammatory cytokines (TNF-α, IL-2 and IL-4) were measured by ELISA kits. Meanwhile, synoviocytes isolated from OA rat and sham-operated rat were cultured in vitro, and transfected with the VIP plasmid. The proliferation of synoviocytes was determined using BrdU kits. The protein expressions of TNF-α, IL-2, CollagenII, osteoprotegerin (OPG), matrix-degrading enzymes (MMP-13, ADAMTS-5), and the related protein of NF-κB signaling pathway (phosphorylated p65, phosphorylated IκBα) were evaluated by western blot. RESULTS The VIP plasmid could effectively improve the pathological state of the OA rats knee joint, significantly decrease the levels of serum TNF-α and IL-2, and clearly increase the levels of VIP and serum IL-4. At the same time, after the OA synoviocytes were treated with the VIP plasmid, the proliferation ability of OA synoviocytes was reduced, the protein expressions of Collagen II and OPG were remarkably up-regulated, and the protein expressions of TNF-α, IL-2, MMP-13 and ADAMTS-5 were significantly down-regulated. In addition, the p-p65 expression decreased and p-IκBα expression increased. CONCLUSION Osteoarthritis was effectively treated by VIP via inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yaozhong Liang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shu Chen
- Department of gynaecology and obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chunhai Lan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
39
|
Emerging Players at the Intersection of Chondrocyte Loss of Maturational Arrest, Oxidative Stress, Senescence and Low-Grade Inflammation in Osteoarthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3075293. [PMID: 29599894 PMCID: PMC5828476 DOI: 10.1155/2018/3075293] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023]
Abstract
The prevalence of Osteoarthritis (OA) is increasing because of the progressive aging and unhealthy lifestyle. These risk factors trigger OA by removing constraints that keep the tightly regulated low turnover of the extracellular matrix (ECM) of articular cartilage, the correct chondrocyte phenotype, and the functionality of major homeostatic mechanisms, such as mitophagy, that allows for the clearance of dysfunctional mitochondria, preventing increased production of reactive oxygen species, oxidative stress, and senescence. After OA onset, the presence of ECM degradation products is perceived as a “danger” signal by the chondrocytes and the synovial macrophages that release alarmins with autocrine/paracrine effects on the same cells. Alarmins trigger innate immunity in the joint, with important systemic crosstalks that explain the beneficial effects of dietary interventions and improved lifestyle. Alarmins also boost low-grade inflammation: the release of inflammatory molecules and chemokines sustained by continuous triggering of NF-κB within an altered cellular setting that allows its higher transcriptional activity. Chemokines exert pleiotropic functions in OA, including the recruitment of inflammatory cells and the induction of ECM remodeling. Some chemokines have been successfully targeted to attenuate structural damage or pain in OA animal models. This represents a promising strategy for the future management of human OA.
Collapse
|
40
|
Xing D, Gao H, Liu Z, Zhao Y, Gong M. Baicalin Inhibits Inflammatory Responses to Interleukin-1β Stimulation in Human Chondrocytes. J Interferon Cytokine Res 2017; 37:398-405. [PMID: 28829242 DOI: 10.1089/jir.2017.0030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Deguo Xing
- Departments of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Hongwei Gao
- Departments of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Zhonghao Liu
- Departments of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Yangyang Zhao
- Departments of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Mingzhi Gong
- Departments of Trauma and Orthopedics, The Second Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
41
|
SOCS1 Regulates Apoptosis and Inflammation by Inhibiting IL-4 Signaling in IL-1 β-Stimulated Human Osteoarthritic Chondrocytes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4601959. [PMID: 28373981 PMCID: PMC5360958 DOI: 10.1155/2017/4601959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
Recently, Suppressor of Cytokine Signaling 1 (SOCS1) was identified as a potential therapeutic target for osteoarthritis (OA) treatment. However, the mechanisms and signaling pathways of SOCS1 in the regulation of OA development are unclear. The purpose of the current study was to investigate whether interleukin- (IL-) 4 was involved in regulatory mechanism of SOCS1 in human osteoarthritic chondrocytes. First, IL-1β was used to stimulate human osteoarthritic chondrocytes isolated from the articular cartilage of OA patients undergoing total knee replacement. The protein and mRNA expression levels of SOCS1 were upregulated in IL-1β-stimulated human osteoarthritic chondrocytes compared with control cells. The knockdown of SOCS1 increased cell viability and inhibited cell apoptosis. It was also found that IL-4 expression was increased by SOCS1 silencing. Additionally, knockdown of IL-4 reduced cell viability and increased cell apoptosis of osteoarthritic chondrocytes transfected with SOCS1 siRNA. Moreover, the decreased expression of inflammatory factors induced by SOCS1 was enhanced by IL-4 knockdown. In conclusion, IL-4 signaling plays a crucial role in the regulatory functions of SOCS1 in apoptosis and inflammation in human osteoarthritic chondrocytes. These findings provide a potential therapeutic target for the clinical treatment of OA.
Collapse
|
42
|
Raines AL, Shih MS, Chua L, Su CW, Tseng SCG, O'Connell J. Efficacy of Particulate Amniotic Membrane and Umbilical Cord Tissues in Attenuating Cartilage Destruction in an Osteoarthritis Model. Tissue Eng Part A 2016; 23:12-19. [PMID: 27707109 DOI: 10.1089/ten.tea.2016.0088] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disease, and to date, no disease-modifying OA drug exists. Amniotic membrane and umbilical cord products have been used clinically in several diseases due to their anti-inflammatory and antiscarring properties. In the present study, we sought to evaluate whether a particulate amniotic membrane and umbilical cord (AM/UC) matrix could aid in attenuating disease progression. Lewis rats underwent medial meniscus transection (MMT) to induce OA. Two weeks after surgery, animals received intra-articular injections (50 μL) of either 50 or 100 μg/μL particulate AM/UC or saline control and were subsequently euthanized 1 or 4 weeks later. Cartilage degeneration was assessed using both histological scoring methods and equilibrium partitioning of an ionic contrast agent-microcomputed tomography (EPIC-μCT). EPIC-μCT analysis demonstrated that overall cartilage destruction was attenuated, with a significant increase in both cartilage thickness and volume as well as a significant decrease in total lesion area in animals injected with either dose of particulate AM/UC at 1 week, but only a high dose at 4 weeks postinjection. Osteoarthritis Research Society International (OARSI) histology scores of tibial sections corroborated EPIC-μCT results. Overall joint destruction was attenuated in animals injected with either dose of AM/UC tissue compared with saline-injected control animals at 1 week postinjection. Only high-dose AM/UC-injected animals continued to show less overall joint destruction by 4 weeks postinjection. Intra-articular injection of particulate AM/UC tissue attenuates cartilage degradation in a rat MMT model of OA, suggesting that it may be able to slow joint destruction in patients with OA.
Collapse
|
43
|
Ning Y, Wang X, Wang S, Guo X. Comparative analysis of signaling pathways in peripheral blood from patients with Kashin-Beck disease and osteoarthritis. Exp Ther Med 2016; 12:4077-4084. [PMID: 28101186 DOI: 10.3892/etm.2016.3879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/12/2016] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the early diagnostic biomarkers of Kashin-Beck disease (KBD), and to compare the common signaling pathways of peripheral mononuclear cells between patients with KBD and those with osteoarthritis (OA). A total of 20 and 12 peripheral blood samples were separately collected from KBD patients and normal control subjects, respectively, in an endemic area according to the diagnosis criteria. Total RNAs were extracted and gene expression levels were determined using an Agilent whole genome expression microarrays. The gene expression data of OA were obtained from GEO published database. Significant different pathways between KBD and OA were analyzed using Ingenuity Pathway Analysis software. A total of 82 differentially expressed genes, 51 significant different signaling pathways and five significant biological functions were identified in KBD patient samples, while 89, 50 and five significantly different genes, pathways and functions were identified in OA. Nine common significant pathways and five common differentially expressed genes were identified between the KBD and OA. Nine common significant pathways and five common differentially expressed genes were found between the two diseases. The present results suggest that there are similarities in vascular microcirculation, immunoreactions and cell apoptosis between KBD and OA, which may contribute to the early diagnosis and pathogenetic study of KBD.
Collapse
Affiliation(s)
- Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xi Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sen Wang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
44
|
Yang J, Lu Y, Guo A. Platelet-rich plasma protects rat chondrocytes from interleukin-1β-induced apoptosis. Mol Med Rep 2016; 14:4075-4082. [PMID: 27665780 PMCID: PMC5101884 DOI: 10.3892/mmr.2016.5767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/26/2016] [Indexed: 01/21/2023] Open
Abstract
Interleukin (IL)-1β-induced chondrocyte apoptosis is associated with the pathogenesis of arthritis. Platelet‑rich plasma (PRP), which is derived from the patient's own blood and contains numerous growth factors, has the potential for arthritis treatment. Therefore, the present study aimed to determine the effects of PRP on chondrocyte apoptosis, under IL‑1β‑induced pathological conditions. Chondrocytes isolated from the knee joint of Sprague Dawley rats were used in the present study. Cell viability was determined using the Cell Counting kit‑8 assay, cell apoptosis was evaluated by flow cytometry, and the expression of apoptosis‑, anabolism‑ and catabolism-associated genes were detected by quantitative polymerase chain reaction; protein expression was detected by western blot analysis. The results demonstrated that 10% PRP in the culture medium increased chondrocyte proliferation, whereas IL‑1β induced cell apoptosis. Treatment with PRP significantly attenuated cell apoptosis in IL‑1β‑treated chondrocytes, and altered apoptosis‑associated expression at the gene and protein level. Furthermore, treatment with PRP significantly reduced matrix metalloproteinase production and promoted anabolism of cartilage extracellular matrix under IL‑1β treatment. The present study demonstrated the protective effects of PRP on chondrocyte apoptosis and extracellular matrix anabolism, and provided scientific evidence to support the potential use of PRP as a promising therapeutic strategy for the treatment of arthritis.
Collapse
Affiliation(s)
- Jinjiang Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ying Lu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
45
|
Mabey T, Honsawek S, Tanavalee A, Yuktanandana P, Wilairatana V, Poovorawan Y. Plasma and synovial fluid inflammatory cytokine profiles in primary knee osteoarthritis. Biomarkers 2016; 21:639-44. [PMID: 27122451 DOI: 10.3109/1354750x.2016.1171907] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objective of this study is to compare inflammatory cytokine levels in primary knee osteoarthritis (OA) patients and healthy controls. METHODS A total of 32 knee OA patients and 14 healthy controls were enrolled. A multiplex immunoassay was utilized for 10 cytokines in plasma and synovial fluid. RESULTS Plasma IL-2, IL-4, and IL-6 concentrations were significantly greater in knee OA patients than controls. Moreover, both plasma IL-4 and IL-6 were positively correlated with the radiographic severity of knee OA. CONCLUSIONS Plasma IL-4 and IL-6 may serve as biomarkers reflecting the severity of OA.
Collapse
Affiliation(s)
- Thomas Mabey
- a Department of Biochemistry, Faculty of Medicine , Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Sittisak Honsawek
- a Department of Biochemistry, Faculty of Medicine , Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand ;,b Vinai Parkpian Orthopaedic Research Center, Department of Orthopaedics, Faculty of Medicine , Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Aree Tanavalee
- b Vinai Parkpian Orthopaedic Research Center, Department of Orthopaedics, Faculty of Medicine , Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Pongsak Yuktanandana
- b Vinai Parkpian Orthopaedic Research Center, Department of Orthopaedics, Faculty of Medicine , Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Vajara Wilairatana
- b Vinai Parkpian Orthopaedic Research Center, Department of Orthopaedics, Faculty of Medicine , Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Yong Poovorawan
- c Department of Pediatrics Faculty of Medicine, Center of Excellence in Clinical Virology , Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| |
Collapse
|
46
|
Scotti C, Gobbi A, Karnatzikos G, Martin I, Shimomura K, Lane JG, Peretti GM, Nakamura N. Cartilage Repair in the Inflamed Joint: Considerations for Biological Augmentation Toward Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:149-59. [PMID: 26467024 DOI: 10.1089/ten.teb.2015.0297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cartilage repair/regeneration procedures (e.g., microfracture, autologous chondrocyte implantation [ACI]) typically result in a satisfactory outcome in selected patients. However, the vast majority of patients with chronic symptoms and, in general, a more diseased joint, do not benefit from these surgical techniques. The aims of this work were to (1) review factors negatively influencing the joint environment; (2) review current adjuvant therapies that can be used to improve results of cartilage repair/regeneration procedures in patients with more diseased joints, (3) outline future lines of research and promising experimental approaches. Chronicity of symptoms and advancing patient age appear to be the most relevant factors negatively affecting clinical outcome of cartilage repair/regeneration. Preliminary experience with hyaluronic acid, platelet-rich plasma, and mesenchymal stem cell has been positive but there is no strong evidence supporting the use of these products and this requires further assessment with high-quality, prospective clinical trials. The use of a Tissue Therapy strategy, based on more mature engineered tissues, holds promise to tackle limitations of standard ACI procedures. Current research has highlighted the need for more targeted therapies, and (1) induction of tolerance with granulocyte colony-stimulating factor (G-CSF) or by preventing IL-6 downregulation; (2) combined IL-4 and IL-10 local release; and (3) selective activation of the prostaglandin E2 (PGE2) signaling appear to be the most promising innovative strategies. For older patients and for those with chronic symptoms, adjuvant therapies are needed in combination with microfracture and ACI.
Collapse
Affiliation(s)
| | - Alberto Gobbi
- 2 Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation , Gobbi Onlus, Milan, Italy
| | - Georgios Karnatzikos
- 2 Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation , Gobbi Onlus, Milan, Italy
| | - Ivan Martin
- 3 Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel , Basel, Switzerland
| | - Kazunori Shimomura
- 4 Department of Orthopedics, Osaka University Graduate School of Medicine , Osaka, Japan
| | - John G Lane
- 5 COAST Surgery Center, University of California , San Diego, California
| | - Giuseppe Michele Peretti
- 1 IRCCS Istituto Ortopedico Galeazzi , Milan, Italy .,6 Department of Biomedical Sciences for Health, University of Milan , Milan, Italy
| | - Norimasa Nakamura
- 7 Institute for Medical Science in Sports, Osaka Health Science University , Osaka, Japan .,8 Center for Advanced Medical Engineering and Informatics, Osaka University , Osaka, Japan
| |
Collapse
|
47
|
Goto H, Ishihara Y, Kikuchi T, Izawa A, Ozeki N, Okabe E, Kamiya Y, Ozawa Y, Mizutani H, Yamamoto G, Mogi M, Nakata K, Maeda H, Noguchi T, Mitani A. Interleukin-1 Receptor Antagonist Has a Novel Function in the Regulation of Matrix Metalloproteinase-13 Expression. PLoS One 2015; 10:e0140942. [PMID: 26474296 PMCID: PMC4608771 DOI: 10.1371/journal.pone.0140942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022] Open
Abstract
Interleukin-1 receptor antagonist (IL-1Ra) is an IL-1 family member, which binds to IL-1 receptors but does not induce any intracellular signaling. We addressed whether IL-1Ra has a novel function in regulation of the extracellular matrix or adhesion molecules. Polymerase chain reaction array analysis demonstrated a ~5-fold increase in matrix metalloproteinase 13 (MMP-13) mRNA expression of IL-1Ra siRNA-transfected Ca9-22 human oral squamous epithelial carcinoma cells compared with the control. In fact, MMP-13 mRNA and protein expression as well as its activity in IL-1Ra siRNA-transfected Ca9-22 cell lines were significantly higher than those in the control. IL-1Ra siRNA treatment resulted in strong elevation of MMP-13 expression, whereas addition of rhIL-1Ra (40 ng/ml) suppressed MMP-13 expression, suggesting that IL-1Ra had a specific effect on MMP-13 induction. IL-1Ra siRNA could potently suppress IL-1α. No significant difference was found between the MMP-13 mRNA expression of IL-1Ra siRNA-transfected cells and those treated with anti-IL-1α or anti-IL-1β antibodies. These results suggested that continuous supply of IL-1 had no effect on the induction of MMP-13 by IL-1Ra siRNA. Histopathological investigation of MMP-13 in periodontal tissue showed specific localization in the junctional epithelial cells of IL-1Ra knockout (KO) mice. Furthermore, infection with Aggregatibacter actinomycetemcomitans to establish an experimental periodontitis model resulted in predominant localization of MMP-13 along apical junctional epithelial cells. Laminin-5, which is degraded by MMP-13, was found in the internal basal lamina of wild-type mice, whereas the internal basal lamina of IL-1Ra KO mice did not show obvious laminin-5 localization. In particular, laminin-5 localization almost disappeared in the internal basal lamina of IL-1Ra KO mice infected with A. actinomycetemcomitans, suggesting that the suppression of IL-1Ra resulted in strong induction of MMP-13 that degraded laminin-5. In conclusion, IL-1Ra is associated with MMP-13 expression and has a novel function in such regulation without interference of the IL-1 signaling cascade.
Collapse
Affiliation(s)
- Hisashi Goto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yuichi Ishihara
- Department of Operative Dentistry, Endodontology, and Periodontology, School of Dentistry, Matsumoto Dental University, Nagano, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ario Izawa
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Nobuaki Ozeki
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Eijiro Okabe
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yosuke Kamiya
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yusuke Ozawa
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hiroki Mizutani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Genta Yamamoto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Makio Mogi
- Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, Chikusa-ku, Nagoya, Japan
| | - Kazuhiko Nakata
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hatsuhiko Maeda
- Department of Pathology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Japan
| | - Toshihide Noguchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
48
|
Wang CC, Lee CH, Peng YJ, Salter DM, Lee HS. Platelet-Rich Plasma Attenuates 30-kDa Fibronectin Fragment-Induced Chemokine and Matrix Metalloproteinase Expression by Meniscocytes and Articular Chondrocytes. Am J Sports Med 2015; 43:2481-9. [PMID: 26306780 DOI: 10.1177/0363546515597489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Proteolytic fragments of fibronectin have catabolic effects on cartilage and menisci. Platelet-rich plasma (PRP) is increasingly being used to treat a range of joint conditions, but it is unknown whether PRP influences fibronectin fragment (FN-f) procatabolic activity. HYPOTHESES The procatabolic activity of FN-f on meniscocytes and articular chondrocytes is attenuated by cotreatment with PRP. STUDY DESIGN Controlled laboratory study. METHODS Human meniscocytes were treated with FN-f (30 kDa) with or without PRP coincubation, and gene expression was analyzed by complementary DNA microarray analysis. Validation of altered expression of known and novel chemokine and protease genes was undertaken by real-time polymerase chain reaction (RT-PCR) in articular chondrocytes and meniscocytes. Chemokine release was assayed by enzyme-linked immunosorbent assay, and intracellular pathway signaling was evaluated by Western immunoblotting. RESULTS Microarray analysis and RT-PCR showed increased expression of matrix metalloproteinase (MMP)1, MMP2, MMP3, MMP9, MMP13, interleukin (IL)-6, IL-8 (CXCL8), CCL5, CCL20, and CXCL10 chemokines in meniscocytes after treatment with FN-f. Upregulation of these genes was significantly attenuated by PRP. Similar results were seen with articular chondrocytes, although no changes in MMP2 or MMP9 levels were identified. PRP-induced suppression of gene expression was associated with activation of Akt and p44/p42. CONCLUSION PRP treatment attenuates the 30-kDa FN-f-induced expression of a range of proinflammatory chemokines and MMPs, including IL-8, IL-6, CCL20, CCL5, CXCL10, MMP1, MMP3, and MMP13, by both meniscocytes and articular chondrocytes. CLINICAL RELEVANCE These observations provide support for the use and further trials of PRP in management of cartilage and meniscal injuries.
Collapse
Affiliation(s)
- Chih-Chien Wang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan Department of Orthopedics, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Chian-Her Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Donald M Salter
- Osteoarticular Research Group, Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Herng-Sheng Lee
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Ríos DL, López C, Carmona JU. Evaluation of the anti-inflammatory effects of two platelet-rich gel supernatants in an in vitro system of cartilage inflammation. Cytokine 2015; 76:505-513. [PMID: 26185893 DOI: 10.1016/j.cyto.2015.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To study, in normal cartilage explants (CEs) challenged with lipopolysaccharide (LPS), the temporal effects (at 48 and 96h) of leukocyte- and platelet-rich gel (L-PRG) and pure platelet-rich gel (P-PRG) supernatants on the production and degradation of platelet-associated growth factors (GFs) (platelet-derived GF isoform BB [PDGF-BB] and transforming growth factor beta-1 [TGF-β1]), pro-inflammatory (tumour necrosis factor alpha [TNF-α]) and anti-inflammatory cytokines (interleukin 4 [IL-4] and IL-1 receptor antagonist [IL-1ra]). METHODS CEs from six horses were challenged with LPS and cultured for 96h with L-PRG and P-PRG supernatants at concentrations of 25% and 50%, respectively. The CE culture medium was changed every 48h and used for determination, by ELISA, of PDGF-BB, TGF-β1, TNF-α, IL-4 and IL-1ra. RESULTS Both the 25% and 50% PRG supernatants produced a different molecular profile in the culture media, unlike that of the CE challenged with LPS only. 50% L-PRG produced the most sustained release of growth factors and anti-inflammatory cytokines, although it produced the highest TNF-α release. PDGF-BB was significantly correlated with IL-1ra and TNF-α concentrations, whereas TNF-α was correlated with IL-4. CONCLUSIONS 50% L-PRG supernatant produced a more sustained concentration of growth factors and anti-inflammatory cytokines than the other hemoderivatives evaluated. This substance could be evaluated in animal models of arthritis or in patients with arthropathies.
Collapse
Affiliation(s)
- D L Ríos
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia
| | - C López
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia
| | - J U Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia.
| |
Collapse
|
50
|
Sun Z, Luo B, Liu ZH, Samartzis D, Liu Z, Gao B, Huang L, Luo ZJ. Adipose-derived stromal cells protect intervertebral disc cells in compression: implications for stem cell regenerative disc therapy. Int J Biol Sci 2015; 11:133-43. [PMID: 25561896 PMCID: PMC4279089 DOI: 10.7150/ijbs.10598] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023] Open
Abstract
Introduction: Abnormal biomechanics plays a role in intervertebral disc degeneration. Adipose-derived stromal cells (ADSCs) have been implicated in disc integrity; however, their role in the setting of mechanical stimuli upon the disc's nucleus pulposus (NP) remains unknown. As such, the present study aimed to evaluate the influence of ADSCs upon NP cells in compressive load culture. Methods: Human NP cells were cultured in compressive load at 3.0MPa for 48 hours with or without ADSCs co-culture (the ratio was 50:50). We used flow cytometry, live/dead staining and scanning electron microscopy (SEM) to evaluate cell death, and determined the expression of specific apoptotic pathways by characterizing the expression of activated caspases-3, -8 and -9. We further used real-time (RT-) PCR and immunostaining to determine the expression of the extracellular matrix (ECM), mediators of matrix degradation (e.g. MMPs, TIMPs and ADAMTSs), pro-inflammatory factors and NP cell phenotype markers. Results: ADSCs inhibited human NP cell apoptosis via suppression of activated caspase-9 and caspase-3. Furthermore, ADSCs protected NP cells from the degradative effects of compressive load by significantly up-regulating the expression of ECM genes (SOX9, COL2A1 and ACAN), tissue inhibitors of metalloproteinases (TIMPs) genes (TIMP-1 and TIMP-2) and cytokeratin 8 (CK8) protein expression. Alternatively, ADSCs showed protective effect by inhibiting compressive load mediated increase of matrix metalloproteinases (MMPs; MMP-3 and MMP-13), disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs; ADAMTS-1 and 5), and pro-inflammatory factors (IL-1beta, IL-6, TGF-beta1 and TNF-alpha). Conclusions: Our study is the first in vitro study assessing the impact of ADSCs on NP cells in an un-physiological mechanical stimulation culture environment. Our study noted that ADSCs protect compressive load induced NP cell death and degradation by inhibition of activated caspase-9 and -3 activity; regulating ECM and modulator genes, suppressing pro-inflammatory factors and preserving CK8. Consequently, the protective impact of ADSCs found in this study provides an essential understanding and expands our knowledge as to the utility of ADSCs therapy for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Zhen Sun
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| | - Beier Luo
- 2. Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Zhi-Heng Liu
- 3. Department of Orthopedics, Air Force Hospital, Youyi Road 269, Xi'an, China
| | - Dino Samartzis
- 4. Department of Orthopaedics and Traumatology, University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Zhongyang Liu
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| | - Bo Gao
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| | - Liangliang Huang
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| | - Zhuo-Jing Luo
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, West Changle Road, Xi'an, 710032, China
| |
Collapse
|