1
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
2
|
Repetowski P, Warszyńska M, Kostecka A, Pucelik B, Barzowska A, Emami A, İşci Ü, Dumoulin F, Dąbrowski JM. Synthesis, Photo-Characterizations, and Pre-Clinical Studies on Advanced Cellular and Animal Models of Zinc(II) and Platinum(II) Sulfonyl-Substituted Phthalocyanines for Enhanced Vascular-Targeted Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48937-48954. [PMID: 39241197 PMCID: PMC11420872 DOI: 10.1021/acsami.4c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/08/2024]
Abstract
Two phthalocyanine derivatives tetra-peripherally substituted with tert-butylsulfonyl groups and coordinating either zinc(II) or platinum(II) ions have been synthesized and subsequently investigated in terms of their optical and photochemical properties, as well as biological activity in cellular, tissue-engineered, and animal models. Our research has revealed that both synthesized phthalocyanines are effective generators of reactive oxygen species (ROS). PtSO2tBu demonstrated an outstanding ability to generate singlet oxygen (ΦΔ = 0.87-0.99), while ZnSO2tBu in addition to 1O2 (ΦΔ = 0.45-0.48) generated efficiently other ROS, in particular ·OH. Considering future biomedical applications, the affinity of the tested phthalocyanines for biological membranes (partition coefficient; log Pow) and their primary interaction with serum albumin were also determined. To facilitate their biological administration, a water-dispersible formulation of these phthalocyanines was developed using Pluronic triblock copolymers to prevent self-aggregation and improve their delivery to cancer cells and tissues. The results showed a significant increase in cellular uptake and phototoxicity when phthalocyanines were incorporated into the customizable polymeric micelles. Moreover, the improved distribution in the body and photodynamic efficacy of the encapsulated phthalocyanines were investigated in hiPSC-delivered organoids and BALB/c mice bearing CT26 tumors. Both photosensitizers exhibit strong antitumor activity. Notably, vascular-targeted photodynamic therapy (V-PDT) led to complete tumor eradication in 84% of ZnSO2tBu and 100% of PtSO2tBu-treated mice, and no recurrence has so far been observed for up to five months after treatment. In the case of PtSO2tBu, the effect was significantly stronger, offering a wider range of light doses suitable for achieving effective PDT.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Marta Warszyńska
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Anna Kostecka
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
| | - Barbara Pucelik
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Agata Barzowska
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Atefeh Emami
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | - Ümit İşci
- Faculty
of Technology, Department of Metallurgical & Materials Engineering, Marmara University, Istanbul 34722, Türkiye
| | - Fabienne Dumoulin
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | | |
Collapse
|
3
|
Odahara Y, Momotake A, Syokaku Y, Yamamoto Y. Catalytic and Selective Red Light-Triggered Photodegradation of a G-Quadruplex DNA by a Zinc (II) Phthalocyanine. Chembiochem 2024; 25:e202400197. [PMID: 38940417 DOI: 10.1002/cbic.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Water-soluble phthalocyanine (Pc) derivatives have been regarded as potential G-quadruplex (G4) nucleic acid-targeting ligands for anticancer therapy and have been extensively studied as effective photosensitizers for photodynamic therapy (PDT). Understanding how photosensitizers interact with nucleic acids and the subsequent photolytic reactions is essential for deciphering the initial steps of PDT, thereby aiding in the development of new photosensitizing agents. In this study, we found that red-light irradiation of a mixture of a Zn(II) Pc derivative and an all-parallel G4 DNA leads to catalytic and selective photodegradation of the DNA by reactive oxygen species (ROS) generated from the Zn(II) Pc derivative bound to DNA through a reaction mechanism similar to that of an enzyme reaction. This finding provides a novel insight into the molecular design of a photosensitizer to enhance its PDT efficacy.
Collapse
Affiliation(s)
- Yusuke Odahara
- Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yuri Syokaku
- Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Kazemi KS, Kazemi P, Mivehchi H, Nasiri K, Eshagh Hoseini SS, Nejati ST, Pour Bahrami P, Golestani S, Nabi Afjadi M. Photodynamic Therapy: A Novel Approach for Head and Neck Cancer Treatment with Focusing on Oral Cavity. Biol Proced Online 2024; 26:25. [PMID: 39154015 PMCID: PMC11330087 DOI: 10.1186/s12575-024-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Oral cancers, specifically oral squamous cell carcinoma (OSCC), pose a significant global health challenge, with high incidence and mortality rates. Conventional treatments such as surgery, radiotherapy, and chemotherapy have limited effectiveness and can result in adverse reactions. However, as an alternative, photodynamic therapy (PDT) has emerged as a promising option for treating oral cancers. PDT involves using photosensitizing agents in conjunction with specific light to target and destroy cancer cells selectively. The photosensitizers accumulate in the cancer cells and generate reactive oxygen species (ROS) upon exposure to the activating light, leading to cellular damage and ultimately cell death. PDT offers several advantages, including its non-invasive nature, absence of known long-term side effects when administered correctly, and cost-effectiveness. It can be employed as a primary treatment for early-stage oral cancers or in combination with other therapies for more advanced cases. Nonetheless, it is important to note that PDT is most effective for superficial or localized cancers and may not be suitable for larger or deeply infiltrating tumors. Light sensitivity and temporary side effects may occur but can be managed with appropriate care. Ongoing research endeavors aim to expand the applications of PDT and develop novel photosensitizers to further enhance its efficacy in oral cancer treatment. This review aims to evaluate the effectiveness of PDT in treating oral cancers by analyzing a combination of preclinical and clinical studies.
Collapse
Affiliation(s)
- Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | | | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Homma S, Momotake A, Ikeue T, Yamamoto Y. A Photochemical Study of Photo-Induced Electron Transfer from DNAs to a Cationic Phthalocyanine Derivative. J Fluoresc 2023; 33:2431-2439. [PMID: 37093333 DOI: 10.1007/s10895-023-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Water-soluble cationic gallium(III)-Pc complex (GaPc) is capable of photogenerating ROSs but does not exhibit photocytotoxicity in vivo. GaPc binds selectively, through a π-π stacking interaction, to the 5'-terminal G-quartet of a G-quadruplex DNA. The photo-excited state of GaPc of the complex is effectively quenched through electron transfer (ET) from the ground state of DNA guanine (G) bases to the photo-excited state of GaPc (ET(G-GaPc)). Hence the loss of the photocytotoxicity of GaPc in vivo is most likely to be due to the effective quenching of its photo-excited state through ET(G-GaPc). In this study, we investigated the photochemical properties of GaPc in the presence of duplex DNAs formed from a series of sequences to elucidate the nature of ET(G-GaPc). We found that ET(G-GaPc) is allowed in electrostatic complexes between GaPc and G-containing duplex DNAs and that the rate of ET(G-GaPc) (kET(G-GaPc)) can be reasonably interpreted in terms of the distance between Pc moiety of GaPc and DNA G base in the complex. We also found that the quantum yields of singlet oxygen (1O2) generation (ΦΔs) determined for the GaPc-duplex DNA complexes were similar to the value reported for free GaPc (Fujishiro R, Sonoyama H, Ide Y, et al (2019) J Inorg Biochem 192:7-16), indicating that ET(G-GaPc) in the complex is rather limited. These results clearly demonstrated that photocytotoxicity of GaPc is crucially affected by ET(G-GaPc). Thus elucidation of interaction of a photosensitizer with biomolecules, i.e., an initial process in PDT, would be helpful to understand its subsequent photochemical processes.
Collapse
Affiliation(s)
- Shiori Homma
- Department of Chemistry, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tsukuba, 305-8571, Japan
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Takahisa Ikeue
- Department of Materials Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba, 305-8571, Japan.
| |
Collapse
|
6
|
Öncül GA, Öztürk ÖF, Pişkin M. Spectroscopic and photophysicochemical properties of zinc(II) phthalocyanine substituted with benzenesulfonamide units containing schiff base. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, compounds (E)-4-((5-bromo-2-hydroxy-3-methoxybenzylidene)amino)-N-(pyridin-2-yl)benzenesul-fonamide 1, (E)-4-((5-bromo-2-(3,4-dicyanophenoxy)-3-methoxybenzylidene)amino)-N-(pyridin-2-yl)benzenesulfonamide 2 and, complex 2(3),9(10),16(17),23(24)-tetra-[(E)-4-((5-bromo-3-methoxy-2-(λ 1-oxidanyl)benzylidene)amino)-N-(pyridine-2-yl)benzenesulfonamide]phthalocyaninato zinc(II) 3 were synthesized for the first time. Their structures (1 –3) were characterized by spectroscopic methods such as FTIR, 1H NMR,13C NMR, UV–vis, MALDI-TOF mass spectra and elemental analysis. The spectroscopic, aggregation, photophysical and photochemical properties of zinc(II) phthalocyanine 3 in dimethyl sulfoxide were investigated and the effects on the above-mentioned properties were reported as a result of the presence of benzenesulfonamide derivatives containing different bioactive groups, in their peripheral positions. In addition, its above-mentioned properties were also reported by comparing different species with those of their substituted and/or unsubstituted counterparts. The zinc(II) phthalocyanine 3 can be a potential photosensitizer candidate in photodynamic therapy, which is an effective alternative therapy in cancer treatment, due to its good solubility in commonly known solvents and monomeric species, as well as its adequate and favorable fluorescence, singlet oxygen production and photostability.
Collapse
Affiliation(s)
- Gülen Atiye Öncül
- Department of Chemistry, Çanakkale Onsekiz Mart University, Faculty of Arts & Sciences, Çanakkale, Turkey
| | - Ömer Faruk Öztürk
- Department of Chemistry, Çanakkale Onsekiz Mart University, Faculty of Arts & Sciences, Çanakkale, Turkey
| | - Mehmet Pişkin
- Department of Food Technology, Çanakkale Onsekiz Mart University, Vocational School of Technical Sciences, Çanakkale, Turkey
| |
Collapse
|
7
|
Yalazan H, Barut B, Yıldırım S, Yalçın CÖ, Kantekin H. Axially disubstituted silicon (IV) phthalocyanines containing different isoxazolyl groups: Design, syntheses, binding and in vitro phototoxic activities against SH-SY5Y cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Chota A, George BP, Abrahamse H. Dicoma anomala Enhances Phthalocyanine Mediated Photodynamic Therapy in MCF-7 Breast Cancer Cells. Front Pharmacol 2022; 13:892490. [PMID: 35559263 PMCID: PMC9086192 DOI: 10.3389/fphar.2022.892490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 01/20/2023] Open
Abstract
Breast cancer is one of the most common types of cancer in women, and it is regarded as the second leading cause of cancer-related deaths worldwide. The present study investigated phytochemical profiling, in vitro anticancer effects of Dicoma anomala methanol root extract and its enhancing effects in phthalocyanine mediated PDT on MCF-7 (ATCC® HTB-22™) breast cancer cells. Ultra-high performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry (UHPLC-qTOF-MS2) was used to identify the secondary metabolites in the crude extract. The 50% inhibitory concentration (IC50) of the two experimental models was established from dose response studies 24 h post-treatment with D. anomala methanol root extract (25, 50, and 100 μg/ml) and ZnPcS4 (5, 10, 20, 40, and 60 μM) mediated PDT. The inverted microscope was used to analyze morphological changes, trypan blue exclusion assay for viability, and Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) for cell death mechanisms. Immunofluorescence analysis was used to investigate the qualitative expression of the Bax, p53, and caspase 3 apoptotic proteins. Experiments were performed 4 times (n = 4) and SPSS version 27 software was used to analyze statistical significances. D. anomala methanol root extract induced cell death in MCF-7 cells by decreasing cell viability. The combination of D. anomala methanol root extract and ZnPcS4 mediated PDT led to a significant increase in apoptotic activities, expression of Bax, and p53 with significant decrease in cell viability. These findings pinpoint the possibility of D. anomala methanol root extract of being employed as a natural antiproliferative agent in the treatment of various cancers.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
9
|
Kovanova MA, Kuz’mina IA, Postnov AS, Derbeneva PD, Vashurin AS. Solvation of Cobalt Tetrasulfophthalocyanine in Water–Acetonitrile Solvents. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
11
|
Thankarajan E, Walunj D, Bazylevich A, Prasad C, Hesin A, Patsenker L, Gellerman G. A novel, dual action chimera comprising DNA methylating agent and near-IR xanthene-cyanine photosensitizer for combined anticancer therapy. Photodiagnosis Photodyn Ther 2022; 37:102722. [PMID: 35032703 DOI: 10.1016/j.pdpdt.2022.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
A facile synthesis, biological evaluation and photodynamic properties of novel activatable anticancer molecular hybrids (chimeras) Ch and I-Ch are described. The chimeras consist of DNA methylating methyl triazene moiety and fluorogenic xanthene-cyanine (XCy) or iodinated xanthene-cyanine (I-XCy) photosensitizer. These two anticancer core structures are bound by means of a self-immolative 4-aminobenzyl alcohol linker. The hydrolytic cleavage of the carbamate protecting group promotes activation of both DNA methylating monomethyl triazene and phototoxic xanthene-cyanine dye providing, in addition, a near-IR emission signal for detection of the drug activation events. Preliminary antiproliferative assay demonstrates that the developed chimeras exhibit higher antitumor activity in the breast cancer cell line upon near-IR light irradiation compared to their structural constituents, xanthene-cyanine photosensitizer and monomethyl triazene substance.
Collapse
Affiliation(s)
- Ebaston Thankarajan
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Dipak Walunj
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Chandrashekhar Prasad
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Arkadi Hesin
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel, 40700, Israel.
| |
Collapse
|
12
|
Vargas-Zúñiga GI, Kim HS, Li M, Sessler JL, Kim JS. Pyrrole-based photosensitizers for photodynamic therapy — a Thomas Dougherty award paper. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that uses light to treat malignant or benign diseases. A photosensitizer, light, and oxygen are the three main components needed to generate a cytotoxic effect. Pyrrole-based photosensitizers have been widely used for PDT. Many of the photosensitizers within this class are macrocyclic. This is particularly true for systems that have received regulatory approval or been the subject of clinical trials. However, in recent years, a number of boron dipyrromethanes (BODIPY) have been studied as photosensitizers. Herein, we review examples of some of the most relevant pyrrole-based photosensitizers.
Collapse
Affiliation(s)
- Gabriela I. Vargas-Zúñiga
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-A5300, Austin, TX 78712-1224, USA
| | - Hyeong Seok Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-A5300, Austin, TX 78712-1224, USA
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
13
|
Magadla A, Babu B, Mack J, Nyokong T. Positively charged styryl pyridine substituted Zn(II) phthalocyanines for photodynamic therapy and photoantimicrobial chemotherapy: effect of the number of charges. Dalton Trans 2021; 50:9129-9136. [PMID: 34115081 DOI: 10.1039/d1dt01047f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic Zn phthalocyanine complexes were synthesized using Knoevenagel reaction starting from a Zn(ii) tetrakis(2-formylphenoxy)phthalocyanine (1) to form Zn(ii) tetrakis(1-butyl-4-(4-(tetraphenoxy)styryl)pyridin-1-ium) phthalocyanine (2) and Zn(ii) tetrakis(4-(4-(tetraphenoxy)styryl)-1-(4-(triphenylphosphonio)butyl)pyridin-1-ium)phthalocyanine (3). The photophysicochemical behaviours of the Pc complexes were assessed. The cationic complexes display high water-solubility and gave moderate singlet oxygen quantum yield in water. The cationic Pcs demonstrate good cellular uptake and photodynamic activity against MCF-7 cells with IC50 values of 8.2 and 4.9 μM for 2 and 3, respectively. The cationic Pcs also demonstrate high photoantimicrobial activity against Escherichia coli with log reductions of 5.3 and 6.0 for 2 and 3, respectively.
Collapse
Affiliation(s)
- Aviwe Magadla
- Institute for Nanotechnology Innovation. Department of Chemistry, Rhodes University, Makhanda, South Africa.
| | - Balaji Babu
- Institute for Nanotechnology Innovation. Department of Chemistry, Rhodes University, Makhanda, South Africa.
| | - John Mack
- Institute for Nanotechnology Innovation. Department of Chemistry, Rhodes University, Makhanda, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation. Department of Chemistry, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
14
|
Dias LM, Sharifi F, de Keijzer MJ, Mesquita B, Desclos E, Kochan JA, de Klerk DJ, Ernst D, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Cavaco JEB, Tedesco AC, Huang X, Pan W, Ding B, Krawczyk PM, Heger M. Attritional evaluation of lipophilic and hydrophilic metallated phthalocyanines for oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112146. [PMID: 33601256 DOI: 10.1016/j.jphotobiol.2021.112146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Oncological photodynamic therapy (PDT) relies on photosensitizers (PSs) to photo-oxidatively destroy tumor cells. Currently approved PSs yield satisfactory results in superficial and easy-to-access tumors but are less suited for solid cancers in internal organs such as the biliary system and the pancreas. For these malignancies, second-generation PSs such as metallated phthalocyanines are more appropriate. Presently it is not known which of the commonly employed metallated phtahlocyanines, namely aluminum phthalocyanine (AlPC) and zinc phthalocyanine (ZnPC) as well as their tetrasulfonated derivatives AlPCS4 and ZnPCS4, is most cytotoxic to tumor cells. This study therefore employed an attritional approach to ascertain the best metallated phthalocyanine for oncological PDT in a head-to-head comparative analysis and standardized experimental design. METHODS ZnPC and AlPC were encapsulated in PEGylated liposomes. Analyses were performed in cultured A431 cells as a template for tumor cells with a dysfunctional P53 tumor suppressor gene and EGFR overexpression. First, dark toxicity was assessed as a function of PS concentration using the WST-1 and sulforhodamine B assay. Second, time-dependent uptake and intracellular distribution were determined by flow cytometry and confocal microscopy, respectively, using the intrinsic fluorescence of the PSs. Third, the LC50 values were established for each PS at 671 nm and a radiant exposure of 15 J/cm2 following 1-h PS exposure. Finally, the mode of cell death as a function of post-PDT time and cell cycle arrest at 24 h after PDT were analyzed. RESULTS In the absence of illumination, AlPC and ZnPC were not toxic to cells up to a 1.5-μM PS concentration and exposure for up to 72 h. Dark toxicity was noted for AlPCS4 at 5 μM and ZnPCS4 at 2.5 μM. Uptake of all PSs was observed as early as 1 min after PS addition to cells and increased in amplitude during a 2-h incubation period. After 60 min, the entire non-nuclear space of the cell was photosensitized, with PS accumulation in multiple subcellular structures, especially in case of AlPC and AlPCS4. PDT of cells photosensitized with ZnPC, AlPC, and AlPCS4 yielded LC50 values of 0.13 μM, 0.04 μM, and 0.81 μM, respectively, 24 h post-PDT (based on sulforhodamine B assay). ZnPCS4 did not induce notable phototoxicity, which was echoed in the mode of cell death and cell cycle arrest data. At 4 h post-PDT, the mode of cell death comprised mainly apoptosis for ZnPC and AlPC, the extent of which was gradually exacerbated in AlPC-photosensitized cells during 8 h. ZnPC-treated cells seemed to recover at 8 h post-PDT compared to 4 h post-PDT, which had been observed before in another cell line. AlPCS4 induced considerable necrosis in addition to apoptosis, whereby most of the cell death had already manifested at 2 h after PDT. During the course of 8 h, necrotic cell death transitioned into mainly late apoptotic cell death. Cell death signaling coincided with a reduction in cells in the G0/G1 phase (ZnPC, AlPC, AlPCS4) and cell cycle arrest in the S-phase (ZnPC, AlPC, AlPCS4) and G2 phase (ZnPC and AlPC). Cell cycle arrest was most profound in cells that had been photosensitized with AlPC and subjected to PDT. CONCLUSIONS Liposomal AlPC is the most potent PS for oncological PDT, whereas ZnPCS4 was photodynamically inert in A431 cells. AlPC did not induce dark toxicity at PS concentrations of up to 1.5 μM, i.e., > 37 times the LC50 value, which is favorable in terms of clinical phototoxicity issues. AlPC photosensitized multiple intracellular loci, which was associated with extensive, irreversible cell death signaling that is expected to benefit treatment efficacy and possibly immunological long-term tumor control, granted that sufficient AlPC will reach the tumor in vivo. Given the differential pharmacokinetics, intracellular distribution, and cell death dynamics, liposomal AlPC may be combined with AlPCS4 in a PS cocktail to further improve PDT efficacy.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Mark J de Keijzer
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Barbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Daniel J de Klerk
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Daniël Ernst
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Lianne R de Haan
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Campus Samambaia, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil; Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Albert C van Wijk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - José E B Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Xuan Huang
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Baoyue Ding
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
15
|
Özdemir M, Artuç GÖ, Akkurt B, Yalçın B, Salan Ü, Durmuş M, Bulut M. Synthesis, characterization, photophysics, and photochemistry of peripherally substituted tetrakis(quinolinylethylenephenoxy)-substituted zinc( ii) phthalocyanines. NEW J CHEM 2021. [DOI: 10.1039/d1nj00854d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinoline substituted zinc phthalocyanine derivatives were synthesized and characterized, and their photophysical and photochemical properties were investigated.
Collapse
Affiliation(s)
- Mücahit Özdemir
- Marmara University
- Department of Chemistry
- 34722 Istanbul
- Turkey
| | - Gamze Özgül Artuç
- Istanbul Yeni Yuzyil University
- Department of Pharmacy
- 34010 Istanbul
- Turkey
| | - Barbaros Akkurt
- Istanbul Technical University
- Department of Chemistry
- 34467 Istanbul
- Turkey
| | - Bahattin Yalçın
- Marmara University
- Department of Chemistry
- 34722 Istanbul
- Turkey
| | - Ümit Salan
- Marmara University
- Department of Chemistry
- 34722 Istanbul
- Turkey
| | - Mahmut Durmuş
- Gebze Technical University
- Department of Chemistry
- 41400 Kocaeli
- Turkey
| | - Mustafa Bulut
- Marmara University
- Department of Chemistry
- 34722 Istanbul
- Turkey
| |
Collapse
|
16
|
Uchiyama M, Momotake A, Ikeue T, Yamamoto Y. Photogeneration of Reactive Oxygen Species from Water-Soluble Phthalocyanine Derivatives Bound to a G-Quadruplex DNA. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mami Uchiyama
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahisa Ikeue
- Department of Materials Chemistry, Graduate School of Natural Science and Technology, Shimane University,1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Tsukuba Research Centre for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
17
|
Active targeted ligand-aza-BODIPY conjugate for near-infrared photodynamic therapy in melanoma. Int J Pharm 2020; 579:119189. [DOI: 10.1016/j.ijpharm.2020.119189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 02/28/2020] [Indexed: 01/02/2023]
|
18
|
Lo PC, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev 2019; 49:1041-1056. [PMID: 31845688 DOI: 10.1039/c9cs00129h] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phthalocyanines exhibit superior photoproperties that make them a surely attractive class of photosensitisers for photodynamic therapy of cancer. Several derivatives are at various phases of clinical trials, and efforts have been put continuously to improve their photodynamic efficacy. To this end, various strategies have been applied to develop advanced phthalocyanines with optimised photoproperties, dual therapeutic actions, tumour-targeting properties and/or specific activation at tumour sites. The advantageous properties and potential of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer are highlighted in this tutorial review.
Collapse
Affiliation(s)
- Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
19
|
Olek M, Kasperski J, Skaba D, Wiench R, Cieślar G, Kawczyk-Krupka A. Photodynamic therapy for the treatment of oral squamous carcinoma—Clinical implications resulting from in vitro research. Photodiagnosis Photodyn Ther 2019; 27:255-267. [DOI: 10.1016/j.pdpdt.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
|
20
|
Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int J Biochem Cell Biol 2019; 114:105575. [PMID: 31362060 DOI: 10.1016/j.biocel.2019.105575] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a highly specific and clinically approved method for cancer treatment in which a nontoxic drug known as photosensitizer (PS) is administered to a patient. After selective tumor irradiation, an almost complete eradication of the tumor can be reached as a consequence of reactive oxygen species (ROS) generation, which not only damage tumor cells, but also lead to tumor-associated vasculature occlusion and the induction of an immune response. Despite exhaustive investigation and encouraging results, zinc(II) phthalocyanines (ZnPcs) have not been approved as PSs for clinical use yet. This review presents an overview on the physicochemical properties of ZnPcs and biological results obtained both in vitro and in more complex models, such as 3D cell cultures, chicken chorioallantoic membranes and tumor-bearing mice. Cell death pathways induced after PDT treatment with ZnPcs are discussed in each case. Finally, combined therapeutic strategies including ZnPcs and the currently available clinical trials are mentioned.
Collapse
|
21
|
Velazquez FN, Miretti M, Baumgartner MT, Caputto BL, Tempesti TC, Prucca CG. Effectiveness of ZnPc and of an amine derivative to inactivate Glioblastoma cells by Photodynamic Therapy: an in vitro comparative study. Sci Rep 2019; 9:3010. [PMID: 30816179 PMCID: PMC6395748 DOI: 10.1038/s41598-019-39390-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 01/17/2019] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme is considered to be one of the most aggressive types of tumors of the central nervous system, with a poor prognosis and short survival periods of ~ one year. The current protocol for glioblastoma treatment includes the surgical excision of the primary tumor followed by radio and chemotherapy. Photodynamic therapy (PDT) is considered a promising strategy for the treatment of several types of tumors. Phthalocyanines (Pcs) are good photosensitizers (PSs) for PDT because they induce cell death in several cellular models. ZnPc (Zn(II)phthalocyanine) is a well-known Pc, extensively tested in different cells and tumor models, but its evaluation on a glioblastoma model has been poorly studied. Herein, we compare the capacity of ZnPc and one of its derivatives, Zn(II)tetraminephthalocyanine (TAZnPc), to photoinactivate glioblastoma cells (T98G, MO59, LN229 and U87-MG) in culture. We measured the cellular uptake, the toxicity in the dark and the subcellular localization of the different Pcs, as well as the clonogenic capacity of surviving cells after PDT. The mechanism of cell death induced after PDT was determined by measuring caspase 3 activation, DNA fragmentation, phosphatidylserine externalization, mitochondrial morphological changes and loss of mitochondrial membrane potential as well as lysosomal membrane integrity. Overall, ZnPc and TAZnPc present good properties to be used as PSs with photoinactivation capacity on glioblastoma cells.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- CIQUIBIC (CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Miretti
- INFIQC (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria T Baumgartner
- INFIQC (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz L Caputto
- CIQUIBIC (CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Tomas C Tempesti
- INFIQC (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - César G Prucca
- CIQUIBIC (CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
22
|
Breitenbach BB, Steiert E, Konhäuser M, Vogt LM, Wang Y, Parekh SH, Wich PR. Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy. SOFT MATTER 2019; 15:1423-1434. [PMID: 30662988 DOI: 10.1039/c8sm02204f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The NIR absorbing photosensitizer phthalocyanine zinc (PC(Zn)) was stabilized in aqueous media as water-dispersible nanoparticles with a reduction- and pH-responsive full polysaccharide block copolymer. A cellular uptake and also photo switchable intracellular activity of the cargo upon irradiation at wavelengths in the near infrared region were shown. The block copolymer was synthesized by applying a copper-free click strategy based on a thiol exchange reaction, creating an amphiphilic double-stimuli-responsive mixed disulfide. The dual-sensitive polysaccharide micelles represent a non-toxic and biodegradable green macrosurfactant for the delivery of phthalocyanine zinc. By encapsulation into micellar nanoparticles, the bioavailability of PC(Zn) increased significantly, enabling smart photodynamic therapy for future applications in cancer-related diseases.
Collapse
Affiliation(s)
- Benjamin B Breitenbach
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Tarhouni M, Durand D, Önal E, Aggad D, İşci Ü, Ekineker G, Brégier F, Jamoussi B, Sol V, Gary-Bobo M, Dumoulin F. Triphenylphosphonium-substituted phthalocyanine: Design, synthetic strategy, photoproperties and photodynamic activity. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In line with current efforts to direct PDT photosensitizers to specific organelles such as mitochondria, a triphenylphosphonium-tetrasubstituted Zn phthalocyanine was designed, taking into account synthetic constraints. Triphenylphosphonium moieties were successfully introduced on alkyl bromide substituents on a pre-formed phthalocyanine. Photophysical and photochemical measurements showed that the photoproperties of the Zn phthalocyanine core were not affected by the triphenylphosphonium groups. Biological investigations demonstrated the dark innocuousness of the phthalocyanine up to 1 [Formula: see text]M, a concentration that exhibited a powerful phototoxicity. Cell death was confirmed to be photodynamically induced thanks to reactive oxygen species detection experiments. Nonetheless, the triphenylphosphonium moieties did not promote the accumulation of the phthalocyanine in mitochondria as significantly as expected.
Collapse
Affiliation(s)
- Mohamed Tarhouni
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
- Faculté Des Sciences de Bizerte, Université de Carthage, UR17ES01 Didactique des Sciences Expérimentales, et de chimie supramoléculaire, 7021 Zarzouna Bizerte, Tunisia
- Laboratoire de Chimie des Substances Naturelles EA 1069 Université de Limoges, Faculté des Sciences, et Techniques, 123 Av. Albert Thomas, 87060 Limoges, France
| | - Denis Durand
- Institut de Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Avenue Charles Flahault, 34093 Montpellier Cedex 05, France
| | - Emel Önal
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Dina Aggad
- Institut de Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Avenue Charles Flahault, 34093 Montpellier Cedex 05, France
| | - Ümit İşci
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Gülçin Ekineker
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Frédérique Brégier
- Laboratoire de Chimie des Substances Naturelles EA 1069 Université de Limoges, Faculté des Sciences, et Techniques, 123 Av. Albert Thomas, 87060 Limoges, France
| | - Bassem Jamoussi
- Université Tunis el Manar, UR17ES01 Didactique des Sciences Expérimentales et de Chimie Supramoléculaire, Tunis, Tunisia
| | - Vincent Sol
- Laboratoire de Chimie des Substances Naturelles EA 1069 Université de Limoges, Faculté des Sciences, et Techniques, 123 Av. Albert Thomas, 87060 Limoges, France
| | - Magali Gary-Bobo
- Institut de Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, Avenue Charles Flahault, 34093 Montpellier Cedex 05, France
| | - Fabienne Dumoulin
- Chemistry Department, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| |
Collapse
|
24
|
Sarı C, Eyüpoğlu FC, Değirmencioğlu İ, Bayrak R. Synthesis of axially disubstituted silicon phthalocyanines and investigation of photodynamic effects on HCT-116 colorectal cancer cell line. Photodiagnosis Photodyn Ther 2018; 23:83-88. [PMID: 29775760 DOI: 10.1016/j.pdpdt.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/14/2018] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy is one of the hot topics in cancer studies. Photosensitizing chemical substrates are stimulated by light having a specific wavelength to cause fatal effect on different kinds of targets. In this study, axially 4-{[(1E)-2-furylmethylene]amino}phenol, 4-{[(1E)-2-thienylmethylene]amino}phenol and 4-{[(1E)-(4-nitro-2-thienyl)methylene]amino}phenol disubstituted silicon phthalocyanines were synthesized as Photosensitizers for photodynamic therapy in cancer treatment. The structural characterizations of these novel compounds were performed by a combination of FT-IR, 1H-NMR, UV-vis and mass. All these newly prepared compounds did not show aggregation at the concentration range of 2 × 10-6-12 × 10-6 M in tetrahydrofurane and also did not show aggregation in different organic solvents at 2 × 10-6 M concentration. Phthalocyanines synthesized in this study were tested on HCT-116 colorectal cancer cells and stimulated by light has wavelength of 680 nm. The toxic effects on cancer cells which are caused by different concentrations of photosensitizing molecules have been examined and compared with the toxic effects on cancer cells that were kept in the dark. It is confirmed that these molecules caused toxic effects on colorectal cancer cells when they were stimulated by light but there was no toxic effect in the dark.
Collapse
Affiliation(s)
- Ceren Sarı
- Karadeniz Technical University, Institute of Health Sciences, Department of Medical Biology, Trabzon, Turkey
| | - Figen Celep Eyüpoğlu
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biology, Trabzon, Turkey.
| | - İsmail Değirmencioğlu
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, Trabzon, Turkey.
| | - Rıza Bayrak
- Sinop University, Vocational School of Health Services, Department of Medical Laboratory Techniques, Sinop, Turkey
| |
Collapse
|
25
|
Mokwena MG, Kruger CA, Ivan MT, Heidi A. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagnosis Photodyn Ther 2018; 22:147-154. [DOI: 10.1016/j.pdpdt.2018.03.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/20/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022]
|
26
|
Grüner MC, Niemann S, Faust A, Strassert CA. Axially Decorated Si IV -phthalocyanines Bearing Mannose- or Ammonium-conjugated Siloxanes: Comparative Bacterial Labeling and Photodynamic Inactivation<sup/>. Photochem Photobiol 2018; 94:890-899. [PMID: 29285780 DOI: 10.1111/php.12881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023]
Abstract
Herein, we present a comparative study about the photoinactivation of Staphylococcus aureus (Gram-positive model) and Escherichia coli (Gram-negative model) employing a neutral and a dicationic axially functionalized SiIV -phthalocyanine. Depending on the charge of the siloxane moiety (neutral monosaccharide or cationic ammonium salt), different interactions with the bacteria were observed, and a differential photoinactivation was facilitated. The intensity of the fluorescence labeling correlated with the photoinactivation of the two types of bacteria: While the neutral species only significantly affected the Gram-positive cells, we observed that the positively charged photosensitizer interacted both with the Gram-positive and with the Gram-negative models. The dicationic photosensitizer labeled both models with a characteristic deep-red fluorescence and photoinactivated both classes of prokaryotes. In general, our study clearly demonstrates that axially ammoniumsiloxane-functionalized Si(IV) phthalocyaninates constitute excellent photosensitizers due to their weak aggregation in aqueous environments. In particular, we also show that charge-based targeting with axial ammonium groups leads toward broad-spectrum SiIV -phthalocyanines for photodynamic inactivation of bacteria.
Collapse
Affiliation(s)
- Malte C Grüner
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Instituto de Física de São Carlos, Universidade de São Paulo (IFSC/USP), São Carlos, Brazil
| | - Silke Niemann
- Institut für Medizinische Mikrobiologie, Universitätsklinikum Münster, Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging, Münster, Germany
| | - Cristian A Strassert
- Physikalisches Institut and Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
27
|
Yu W, Ye M, Zhu J, Wang Y, Liang C, Tang J, Tao H, Shen Y. Zinc phthalocyanine encapsulated in polymer micelles as a potent photosensitizer for the photodynamic therapy of osteosarcoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1099-1110. [PMID: 29462663 DOI: 10.1016/j.nano.2018.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/17/2018] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
Zinc phthalocyanine (ZnPc) is a highly potent second-generation photosensitizer for cancer photodynamic therapy (PDT) with attractive photo-physical and photo-chemical properties. However, poor solubility and strong trend of crystallization prevent it from loading in most of drug delivery systems and hamper its further application. Herein, to overcome this problem, an amphiphilic block copolymer poly(ethylene glycol)-poly[2-(methylacryloyl)ethylnicotinate] (PEG-PMAN) with aromatic nicotinate is used to load ZnPc for their π-π interactions. The formed PEG-PMAN/ZnPc nanoparticle (PPZ) dramatically increases reactive oxygen species production in osteosarcoma cells after light irradiation, causes mitochondrial injury and promotes cell cycle arrest at G2/M, leading to a 100-fold cytotoxicity improvement comparing with free ZnPc. The excellent therapeutic effectiveness and safety of PPZ are also proved by in vivo experiments operating on osteosarcoma model. The finding above indicates that PPZ has promising clinical applications as a next-generation photosensitizer in PDT of osteosarcoma.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Mingzhou Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jian Zhu
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yitian Wang
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chengzhen Liang
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| | - Huimin Tao
- Department of Orthopedics, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Duverger E, Picaud F, Stauffer L, Sonnet P. Simulations of a Graphene Nanoflake as a Nanovector To Improve ZnPc Phototherapy Toxicity: From Vacuum to Cell Membrane. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37554-37562. [PMID: 29023087 DOI: 10.1021/acsami.7b09054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We propose a new approach to improving photodynamic therapy (PDT) by transporting zinc phthalocyanine (ZnPc) in biological systems via a graphene nanoflake, to increase its targeting. Indeed, by means of time-dependent density functional theory simulations, we show that the ZnPc molecule in interaction with a graphene nanoflake preserves its optical properties not only in a vacuum but also in water. Moreover, molecular dynamic simulations demonstrate that the graphene nanoflake/ZnPc association, as a carrier, permits one to stabilize the ZnPc/graphene nanoflake system on the cellular membrane, which was not possible when using ZnPc alone. We finally conclude that the graphene nanoflake is a good candidate to transport and stabilize the ZnPc molecule near the cell membrane for a longer time than the isolated ZnPc molecule. In this way, the choice of the graphene nanoflake as a nanovector paves the way to ZnPc PDT improvement.
Collapse
Affiliation(s)
- Eric Duverger
- FEMTO-ST Institute, Université Bourgogne Franche-Comté, CNRS , 15B avenue des Montboucons, F-25030 Besançon, Cedex, France
| | - Fabien Picaud
- Laboratoire de Nanomédecine Imagerie et Thérapeutique (NIT), EA4662, Université de Bourgogne Franche-Comté, UFR ST & CHU Médecine , 25000 Besançon, France
| | - Louise Stauffer
- Institut de Science des Matériaux de Mulhouse, IS2M, UMR 7361, CNRS, Université de Haute Alsace , 3 bis rue Alfred Werner, 68093 Mulhouse, France
| | - Philippe Sonnet
- Institut de Science des Matériaux de Mulhouse, IS2M, UMR 7361, CNRS, Université de Haute Alsace , 3 bis rue Alfred Werner, 68093 Mulhouse, France
| |
Collapse
|
29
|
Pucelik B, Paczyński R, Dubin G, Pereira MM, Arnaut LG, Dąbrowski JM. Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS One 2017; 12:e0185984. [PMID: 29016698 PMCID: PMC5634595 DOI: 10.1371/journal.pone.0185984] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/24/2017] [Indexed: 01/10/2023] Open
Abstract
The impact of substituents on the photochemical and biological properties of tetraphenylporphyrin-based photosensitizers for photodynamic therapy of cancer (PDT) as well as photodynamic inactivation of microorganisms (PDI) was examined. Spectroscopic and physicochemical properties were related with therapeutic efficacy in PDT of cancer and PDI of microbial cells in vitro. Less polar halogenated, sulfonamide porphyrins were most readily taken up by cells compared to hydrophilic and anionic porphyrins. The uptake and PDT of a hydrophilic porphyrin was significantly enhanced with incorporation in polymeric micelles (Pluronic L121). Photodynamic inactivation studies were performed against Gram-positive (S. aureus, E. faecalis), Gram-negative bacteria (E. coli, P. aeruginosa, S. marcescens) and fungal yeast (C. albicans). We observed a 6 logs reduction of S. aureus after irradiation (10 J/cm2) in the presence of 20 μM of hydrophilic porphyrin, but this was not improved with incorporation in Pluronic L121. A 2–3 logs reduction was obtained for E. coli using similar doses, and a decrease of 3–4 logs was achieved for C. albicans. Rational substitution of tetraphenylporphyrins improves their photodynamic properties and informs on strategies to obtain photosensitizers for efficient PDT and PDI. However, the design of the photosensitizers must be accompanied by the development of tailored drug formulations.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, Poland
| | - Robert Paczyński
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Luis G. Arnaut
- Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, Poland
- * E-mail:
| |
Collapse
|
30
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
31
|
Kiew LV, Cheah HY, Voon SH, Gallon E, Movellan J, Ng KH, Alpugan S, Lee HB, Dumoulin F, Vicent MJ, Chung LY. Near-infrared activatable phthalocyanine-poly-L-glutamic acid conjugate: increased cellular uptake and light–dark toxicity ratio toward an effective photodynamic cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1447-1458. [DOI: 10.1016/j.nano.2017.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/23/2016] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
|
32
|
Topkaya D, Ng S, Bretonnière Y, Lafont D, Chung L, Lee H, Dumoulin F. Design, synthesis and phototoxicity studies of novel iodinated amphiphilic porphyrins. Photodiagnosis Photodyn Ther 2017. [DOI: 10.1016/j.pdpdt.2017.01.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Topkaya D, Ng SY, Bretonnière Y, Lafont D, Chung LY, Lee HB, Dumoulin F. Iodination improves the phototoxicity of an amphiphilic porphyrin. Photodiagnosis Photodyn Ther 2016; 16:12-14. [PMID: 27475243 DOI: 10.1016/j.pdpdt.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Derya Topkaya
- University of Dokuz Eylül, Department of Chemistry, Faculty of Science, 35160, Tınaztepe, Izmir, Turkey.
| | - Shie Yin Ng
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yann Bretonnière
- ENS Lyon, Université de Lyon, Laboratoire de Chimie de l'ENS Lyon, UMR 5182 CNRS-ENS Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Dominique Lafont
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 43 Boulevard du 11 Novembre 1918, F-6922 Villeurbanne, France
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fabienne Dumoulin
- Gebze Technical University, Department of Chemistry, P.O. Box 141, 41400 Gebze, Kocaeli, Turkey.
| |
Collapse
|
34
|
Kuzyniak W, Ermilov EA, Atilla D, Gürek AG, Nitzsche B, Derkow K, Hoffmann B, Steinemann G, Ahsen V, Höpfner M. Tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine for photodynamic cancer therapy. Photodiagnosis Photodyn Ther 2016; 13:148-157. [PMID: 26162500 DOI: 10.1016/j.pdpdt.2015.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/19/2015] [Accepted: 07/02/2015] [Indexed: 12/29/2022]
|
35
|
Topkaya D, Arnoux P, Dumoulin F. Modulation of singlet oxygen generation and amphiphilic properties of trihydroxylated monohalogenated porphyrins. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424615500893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two of the properties important for photodynamic therapy applications are systematically investigated on a trihydroxylated monohalogenated porphyrin core. Singlet oxygen generation can be increased thanks to the heavy atom effect, frequently provided by the introduction of halogen atoms on the photosensitizer. We compare the effect of the presence of the four halogen atoms with the analogous halogen-free porphyrin. Cell uptake is crucial as well for successful photodynamic outcome and is directly related to the amphiphilicity of the molecule. The five derivatives bearing H, F, Cl, Br or I atoms are compared in this regard. The presence of iodine atom induces a sharp difference in singlet oxygen generation compared to all the other derivatives investigated, but increases its lipophilicity, still in the limits suitable for biomedical applications.
Collapse
Affiliation(s)
- Derya Topkaya
- Gebze Technical University, Department of Chemistry, P.O. box 141, 41400 Gebze Kocaeli, Turkey
- University of Dokuz Eylül, Department of Chemistry, Faculty of Science, 35160 Tınaztepe Izmir, Turkey
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Université de Lorraine, LRGP - ENSIC, 1 rue Grandville, 54000 Nancy, France
| | - Fabienne Dumoulin
- Gebze Technical University, Department of Chemistry, P.O. box 141, 41400 Gebze Kocaeli, Turkey
| |
Collapse
|
36
|
Ping JT, Peng HS, Duan WB, You FT, Song M, Wang YQ. Synthesis and optimization of ZnPc-loaded biocompatible nanoparticles for efficient photodynamic therapy. J Mater Chem B 2016; 4:4482-4489. [DOI: 10.1039/c6tb00307a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Topkaya D, Lafont D, Poyer F, Garcia G, Albrieux F, Maillard P, Bretonnière Y, Dumoulin F. Design of an amphiphilic porphyrin exhibiting high in vitro photocytotoxicity. NEW J CHEM 2016. [DOI: 10.1039/c5nj02716k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A promising photosensitiser, which exhibits extremely suitable properties for photodynamic applications is described.
Collapse
Affiliation(s)
- Derya Topkaya
- Gebze Technical University
- Department of Chemistry
- 41400 Gebze Kocaeli
- Turkey
- University of Dokuz Eylül
| | - Dominique Lafont
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- CO2-Glyco
- UMR 5246
- CNRS
- Université Claude Bernard Lyon 1
| | - Florent Poyer
- Institut Curie
- Research Center
- Chemistry
- Modelisation and Imaging for Biology (CMIB) Bât 110-112
- Centre Universitaire
| | - Guillaume Garcia
- Institut Curie
- Research Center
- Chemistry
- Modelisation and Imaging for Biology (CMIB) Bât 110-112
- Centre Universitaire
| | - Florian Albrieux
- Centre Commun de Spectrométrie de Masse UMR 5246
- CNRS-Claude Bernard Lyon 1
- Université de Lyon
- 69622 Villeurbanne Cedex
- France
| | - Philippe Maillard
- Institut Curie
- Research Center
- Chemistry
- Modelisation and Imaging for Biology (CMIB) Bât 110-112
- Centre Universitaire
| | - Yann Bretonnière
- ENS Lyon
- Université de Lyon
- Laboratoire de Chimie de l’ENS Lyon
- UMR 5182 CNRS-ENS Lyon
- 69364 Lyon
| | - Fabienne Dumoulin
- Gebze Technical University
- Department of Chemistry
- 41400 Gebze Kocaeli
- Turkey
| |
Collapse
|
38
|
Jadhao M, Mukherjee S, Joshi R, Kumar H, Ghosh SK. Aggregation–disaggregation pattern of photodynamically active ZnPcS4 and its interaction with DNA alkylating quinone: effect of micellar compactness and central metal ion. RSC Adv 2016. [DOI: 10.1039/c6ra13151d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The graphical abstract shows the aggregation–disaggregation pattern of ZnPcS4 in neutral and different cationic micelles and its enhanced interaction with a DNA alkylating quinone in a TTAB micellar medium.
Collapse
Affiliation(s)
- Manojkumar Jadhao
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Soham Mukherjee
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Ritika Joshi
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Himank Kumar
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Sujit Kumar Ghosh
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| |
Collapse
|
39
|
İşci Ü, Beyreis M, Tortik N, Topal SZ, Glueck M, Ahsen V, Dumoulin F, Kiesslich T, Plaetzer K. Methylsulfonyl Zn phthalocyanine: A polyvalent and powerful hydrophobic photosensitizer with a wide spectrum of photodynamic applications. Photodiagnosis Photodyn Ther 2015; 13:40-47. [PMID: 26529064 DOI: 10.1016/j.pdpdt.2015.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/08/2015] [Accepted: 10/27/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND The biomedical photodynamic principle is based on the light-induced and photosensitizer-mediated killing of unwanted or harmful cells by overproduction of reactive oxygen species. Motivated by the success of photodynamic therapy (PDT) against several types of tumors, further applications of this approach are constantly identified which require the design and synthesis of novel photosensitizers with specifically tailored properties for a particular clinical application. METHODS Hydrophobic photosensitizers are currently gaining attention and hence a tetramethylsulfonyl Zn(II) phthalocyanine (2) was designed with respect to the desired photoproperties. The photodynamic potential of 2 was assessed by the determination of its photophysical and photochemical properties, and by a large range of biological tests including its phototoxicity against cancer cells and Gram(+) bacteria. Unsubstituted ZnPc was used as a reference compound for comparison purposes. RESULTS Phthalocyanine 2 has a better oxygen generation and is more photostable than ZnPc. 2 is a polyvalent and powerful hydrophobic photosensitizer with a wide spectrum of photodynamic applications against cancer (tested on A431 cells) and for Gram(+) PDI. Against Staphylococcus aureus, a maximum photokilling efficiency of more than 6 log10 steps was induced by a 5μM concentration of 2, outperforming the 3 log10 criterion for an antimicrobial effect (according to the recommendation of the American Society for Microbiology) by more than three orders of magnitude. CONCLUSIONS Phthalocyanine 2 has attractive photophysical and -chemical characteristics. Initial evaluation of its application in anti-tumor PDT and PDI suggest potential for further pre-clinical and clinical development of this compound.
Collapse
Affiliation(s)
- Ümit İşci
- Department of Chemistry, Gebze Technical University, P. O. Box 141, Gebze 41400, Kocaeli, Turkey
| | - Marlena Beyreis
- Laboratory for Tumour Biology and Experimental Therapies, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nicole Tortik
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Materials Science and Physics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Sevinc Z Topal
- Department of Chemistry, Gebze Technical University, P. O. Box 141, Gebze 41400, Kocaeli, Turkey
| | - Michael Glueck
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Materials Science and Physics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Vefa Ahsen
- Department of Chemistry, Gebze Technical University, P. O. Box 141, Gebze 41400, Kocaeli, Turkey
| | - Fabienne Dumoulin
- Department of Chemistry, Gebze Technical University, P. O. Box 141, Gebze 41400, Kocaeli, Turkey.
| | - Tobias Kiesslich
- Laboratory for Tumour Biology and Experimental Therapies, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria; Department of Internal Medicine I, Salzburger Landeskliniken / Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Kristjan Plaetzer
- Laboratory of Photodynamic Inactivation of Microorganisms, Department of Materials Science and Physics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
40
|
Fluorescence Behaviour and Singlet Oxygen Production of Aluminium Phthalocyanine in the Presence of Upconversion Nanoparticles. J Fluoresc 2015; 25:1417-29. [DOI: 10.1007/s10895-015-1632-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/26/2015] [Indexed: 11/25/2022]
|