1
|
Effect of the Interaction between Elevated Carbon Dioxide and Iron Limitation on Proteomic Profiling of Soybean. Int J Mol Sci 2022; 23:ijms232113632. [DOI: 10.3390/ijms232113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Elevated atmospheric CO2 (eCO2) and iron (Fe) availability are important factors affecting plant growth that may impact the proteomic profile of crop plants. In this study, soybean plants treated under Fe-limited (0.5 mM) and Fe-sufficient (20 mM) conditions were grown at ambient (400 μmol mol−1) and eCO2 (800 μmol mol−1) in hydroponic solutions. Elevated CO2 increased biomass from 2.14 to 3.14 g plant−1 and from 1.18 to 2.91 g plant−1 under Fe-sufficient and Fe-limited conditions, respectively, but did not affect leaf photosynthesis. Sugar concentration increased from 10.92 to 26.17 μmol g FW−1 in roots of Fe-sufficient plants and from 8.75 to 19.89 μmol g FW−1 of Fe-limited plants after exposure to eCO2. In leaves, sugar concentration increased from 33.62 to 52.22 μmol g FW−1 and from 34.80 to 46.70 μmol g FW−1 in Fe-sufficient and Fe-limited conditions, respectively, under eCO2. However, Fe-limitation decreases photosynthesis and biomass. Pathway enrichment analysis showed that cell wall organization, glutathione metabolism, photosynthesis, stress-related proteins, and biosynthesis of secondary compounds changed in root tissues to cope with Fe-stress. Moreover, under eCO2, at sufficient or limited Fe supply, it was shown an increase in the abundance of proteins involved in glycolysis, starch and sucrose metabolism, biosynthesis of plant hormones gibberellins, and decreased levels of protein biosynthesis. Our results revealed that proteins and metabolic pathways related to Fe-limitation changed the effects of eCO2 and negatively impacted soybean production.
Collapse
|
2
|
Lobo AKM, Catarino ICA, Silva EA, Centeno DC, Domingues DS. Physiological and Molecular Responses of Woody Plants Exposed to Future Atmospheric CO2 Levels under Abiotic Stresses. PLANTS 2022; 11:plants11141880. [PMID: 35890514 PMCID: PMC9322912 DOI: 10.3390/plants11141880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Climate change is mainly driven by the accumulation of carbon dioxide (CO2) in the atmosphere in the last century. Plant growth is constantly challenged by environmental fluctuations including heat waves, severe drought and salinity, along with ozone accumulation in the atmosphere. Food security is at risk in an increasing world population, and it is necessary to face the current and the expected effects of global warming. The effects of the predicted environment scenario of elevated CO2 concentration (e[CO2]) and more severe abiotic stresses have been scarcely investigated in woody plants, and an integrated view involving physiological, biochemical and molecular data is missing. This review highlights the effects of elevated CO2 in the metabolism of woody plants and the main findings of its interaction with abiotic stresses, including a molecular point of view, aiming to improve the understanding of how woody plants will face the predicted environmental conditions. Overall, e[CO2] stimulates photosynthesis and growth and attenuates mild to moderate abiotic stress in woody plants if root growth and nutrients are not limited. Moreover, e[CO2] does not induce acclimation in most tree species. Some high-throughput analyses involving omics techniques were conducted to better understand how these processes are regulated. Finally, knowledge gaps in the understanding of how the predicted climate condition will affect woody plant metabolism were identified, with the aim of improving the growth and production of this plant species.
Collapse
Affiliation(s)
- Ana Karla M. Lobo
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| | - Ingrid C. A. Catarino
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
| | - Emerson A. Silva
- Institute of Environmental Research, São Paulo 04301-002, Brazil;
| | - Danilo C. Centeno
- Centre for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Douglas S. Domingues
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| |
Collapse
|
3
|
Du C, Sun P, Cheng X, Zhang L, Wang L, Hu J. QTL mapping of drought-related traits in the hybrids of Populus deltoides 'Danhong'×Populus simonii 'Tongliao1'. BMC PLANT BIOLOGY 2022; 22:238. [PMID: 35545765 PMCID: PMC9092850 DOI: 10.1186/s12870-022-03613-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Poplar trees provide a large amount of wood material, but many parts of the world are arid or semi-arid areas because of insufficient annual precipitation, which seriously affects the growth of poplar trees. Populus simonii 'Tongliao1' shows strong tolerance to stress environments, and Populus deltoides 'Danhong' shows a stronger growth rate in a suitable environment. To identify drought tolerance-related QTLs and genes, an F1 population derived from the cross between the 'Danhong' and 'Tongliao 1' Populus was assessed under drought stress. RESULTS We measured drought-related traits such as the relative height growth, relative diameter growth, leaf senescence number, specific leaf area, and leaf relative water content in the population under control and drought environments. The results showed that drought stress reduced the plant height relative growth, ground diameter relative growth, specific leaf area and leaf relative water content and increased the number of leaf drops. A total of 208 QTLs were identified by QTL mapping analysis, and they consisted of 92, 63 and 53 QTLs under control, drought stress treatment and drought index conditions, respectively. A molecular identification marker for drought tolerance, np2841, which was associated with a QTL (qDLRWC-LG10-1) for relative leaf water content, was initially developed. We mined 187 candidate genes for QTL regions of five traits under a drought environment. The reference genome annotation for Populus trichocarpa and a homologous gene analysis of Arabidopsis thaliana identified two candidate genes, Potri.003G171300 and Potri.012G123900, with significant functions in response to drought stress. We identified five key regulatory genes (Potri.006G273500, Potri.007G111500, Potri.007G111600, Potri.007G111700, and Potri.007G111800) related to drought tolerance through the poplar coexpression network. CONCLUSION In this study, our results indicate that the QTLs can effectively enhance the drought tolerance of poplar. It is a step closer towards unravelling the genetic basis of poplar drought tolerance-related traits, and to providing validated candidate genes and molecular markers for future genetic improvement.
Collapse
Affiliation(s)
- Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Xingqi Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
4
|
Roy S, Mathur P. Delineating the mechanisms of elevated CO 2 mediated growth, stress tolerance and phytohormonal regulation in plants. PLANT CELL REPORTS 2021; 40:1345-1365. [PMID: 34169360 DOI: 10.1007/s00299-021-02738-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Global climate change has drastically affected natural ecosystems and crop productivity. Among several factors of global climate change, CO2 is considered to be the dynamic parameter that will regulate the responses of all biological system on earth in the coming decade. A number of experimental studies in the past have demonstrated the positive effects of elevated CO2 on photosynthesis, growth and biomass, biochemical and physiological processes such as increased C:N ratio, secondary metabolite production, as well as phytohormone concentrations. On the other hand, elevated CO2 imparts an adverse effect on the nutritional quality of crop plants and seed quality. Investigations have also revealed effects of elevated CO2 both at cellular and molecular level altering expression of various genes involved in various metabolic processes and stress signaling pathways. Elevated CO2 is known to have mitigating effect on plants in presence of abiotic stresses such as drought, salinity, temperature etc., while contrasting effects in the presence of different biotic agents i.e. phytopathogens, insects and herbivores. However, a well-defined crosstalk is incited by elevated CO2 both under abiotic and biotic stresses in terms of phytohormones concentration and secondary metabolites production. With this background, the present review attempts to shed light on the major effects of elevated CO2 on plant growth, physiological and molecular responses and will highlight the interactive effects of elevated CO2 with other abiotic and biotic factors. The article will also provide deep insights into the phytohormones modulation under elevated CO2.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
5
|
Li X, Zhao J, Shang M, Song H, Zhang J, Xu X, Zheng S, Hou L, Li M, Xing G. Physiological and molecular basis of promoting leaf growth in strawberry (Fragaria ananassa Duch.) by CO2 enrichment. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1811766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Xuan Li
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Jing Zhao
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Mengya Shang
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Hongxia Song
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Jing Zhang
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Xiaoyong Xu
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Shaowen Zheng
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Leiping Hou
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Meilan Li
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| | - Guoming Xing
- Collaborative Innovation Center for Improving Quality and Increasing Profits of Protected Vegetables in Shanxi, College of Horticulture, Shanxi Agricultural University, Taigu, PR China
| |
Collapse
|
6
|
Gasparini K, Costa LC, Brito FAL, Pimenta TM, Cardoso FB, Araújo WL, Zsögön A, Ribeiro DM. Elevated CO 2 induces age-dependent restoration of growth and metabolism in gibberellin-deficient plants. PLANTA 2019; 250:1147-1161. [PMID: 31175419 DOI: 10.1007/s00425-019-03208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The effect of elevated [CO2] on the growth of tomato plants with reduced gibberellin content is influenced by developmental stage. The impact of increased atmospheric carbon dioxide (CO2) on plants has aroused interest in the last decades. Signaling molecules known as plant hormones are fundamental controllers of plant growth and development. Elevated CO2 concentration ([CO2]) increases plant growth; however, whether plant hormones act as mediators of this effect is still an open question. Here, we show the response to elevated [CO2] in tomato does not require a functional gibberellin (GA) biosynthesis pathway. We compared growth and primary metabolism between wild-type (WT) and GA-deficient mutant (gib-1) plants transferred from ambient (400 ppm) to elevated (750 ppm) [CO2] at two different growth stages (either 21 or 35 days after germination, DAG). Growth, photosynthetic parameters and primary metabolism in the stunted gib-1 plants were restored when they were transferred to elevated [CO2] at 21 DAG. Elevated [CO2] also stimulated growth and photosynthetic parameters in WT plants at 21 DAG; however, only minor changes were observed in the level of primary metabolites. At 35 DAG, on the other hand, elevated [CO2] did not stimulate growth in WT plants and gib-1 mutants showed their characteristic stunted growth phenotype. Taken together, our results reveal that elevated [CO2] enhances growth only within a narrow developmental window, in which GA biosynthesis is dispensable. This finding could be relevant for breeding crops in the face of the expected increases in atmospheric CO2 over the next century.
Collapse
Affiliation(s)
- Karla Gasparini
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Lucas C Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Fred A L Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Thaline M Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | | | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil.
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| |
Collapse
|
7
|
Zheng Y, Li F, Hao L, Yu J, Guo L, Zhou H, Ma C, Zhang X, Xu M. Elevated CO 2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC PLANT BIOLOGY 2019; 19:255. [PMID: 31195963 PMCID: PMC6567668 DOI: 10.1186/s12870-019-1788-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/18/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Understanding the mechanisms of crops in response to elevated CO2 concentrations is pivotal to estimating the impacts of climate change on the global agricultural production. Based on earlier results of the "doubling-CO2 concentration" experiments, many current climate models may overestimate the CO2 fertilization effect on crops, and meanwhile, underestimate the potential impacts of future climate change on global agriculture ecosystem when the atmospheric CO2 concentration goes beyond the optimal levels for crop growth. RESULTS This study examined the photosynthetic response of soybean (Glycine max (L.) Merr.) to elevated CO2 concentration associated with changes in leaf structure, non-structural carbohydrates and nitrogen content with environmental growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, 1200, 1400, 1600 ppm. We found CO2-induced down-regulation of leaf photosynthesis as evidenced by the consistently declined leaf net photosynthetic rate (An) with elevated CO2 concentrations. This down-regulation of leaf photosynthesis was evident in biochemical and photochemical processes since the maximum carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax) were dramatically decreased at higher CO2 concentrations exceeding their optimal values of about 600 ppm and 400 ppm, respectively. Moreover, the down-regulation of leaf photosynthesis at high CO2 concentration was partially attributed to the reduced stomatal conductance (Gs) as demonstrated by the declines in stomatal density and stomatal area as well as the changes in the spatial distribution pattern of stomata. In addition, the smaller total mesophyll size (palisade and spongy tissues) and the lower nitrogen availability may also contribute to the down-regulation of leaf photosynthesis when soybean subjected to high CO2 concentration environment. CONCLUSIONS Down-regulation of leaf photosynthesis associated with the changes in stomatal traits, mesophyll tissue size, non-structural carbohydrates, and nitrogen availability of soybean in response to future high atmospheric CO2 concentration and climate change.
Collapse
Affiliation(s)
- Yunpu Zheng
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038 China
| | - Fei Li
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038 China
| | - Lihua Hao
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038 China
| | - Jingjin Yu
- School of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Lili Guo
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038 China
| | - Haoran Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Chao Ma
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038 China
| | - Xixi Zhang
- School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038 China
| | - Ming Xu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng, 475004 China
- Center for Remote Sensing and Spatial Analysis, Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| |
Collapse
|
8
|
New insights into the impacts of elevated CO 2, nitrogen, and temperature levels on the regulation of C and N metabolism in durum wheat using network analysis. N Biotechnol 2017; 40:192-199. [PMID: 28827159 DOI: 10.1016/j.nbt.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 06/28/2017] [Accepted: 08/12/2017] [Indexed: 12/19/2022]
Abstract
The use of correlation networks and hierarchical cluster analysis provides a framework to organize and study the coordination of parameters such as genes, metabolites, proteins and physiological parameters. We have analyzed 142 traits from primary C and N metabolism, including biochemical and gene expression analyses, in a range of 32 different growth conditions (various [CO2] levels, temperatures, N supplies, growth stages and experimental methods). To test the integration of primary metabolism, particularly under climate change, we investigated which C and N metabolic traits and transcript levels are correlated in durum wheat flag leaves using a correlation network and a hierarchical cluster analysis. There was a high amount of positive correlation between traits involved in a wide range of biological processes, suggesting a close and intricate coordination between C-N metabolisms at the biochemical and transcriptional levels. Transcript levels for genes related to N uptake and assimilation were especially coexpressed with genes belonging to the respiratory pathway, highlighting the coordination between the synthesis of organic N compounds and provision of energy and C skeletons. Also involved in this coordination were Rubisco and nitrate reductase activities, which play a key role in the regulation of plant metabolism. Carbohydrate accumulation was linked with a down-regulation of photosynthetic and N metabolism genes and nitrate reductase activity. Based on the degree of connectivity between nodes, network exploration facilitated the identification of some traits that may be biologically relevant during plant abiotic stress tolerance, as most of them are involved in limiting steps of plant metabolism.
Collapse
|
9
|
Domec JC, Smith DD, McCulloh KA. A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: implications for whole-plant water use efficiency and resistance to drought. PLANT, CELL & ENVIRONMENT 2017; 40:921-937. [PMID: 27739596 DOI: 10.1111/pce.12843] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Here, we summarize studies on the effects of elevated [CO2 ] (CO2e ) on the structure and function of plant hydraulic architecture and explore the implications of those changes using a model. Changes in conduit diameter and hydraulic conductance due to CO2e vary among species. Ring-porous species tend towards an increase in conduit size and consequently conductivity. The effect in diffuse-porous species is much more limited. In conifers, the results are mixed, some species show minor changes in xylem structure, while other studies found increases in tracheid density and diameter. Non-woody plants generally exhibited the reverse pattern with narrower conduits and lower hydraulic conductivity under CO2e . Further, changes in drought-resistance traits suggest that non-woody plants were the most affected by CO2e , which may permit them to better resist drought-induced embolism under future conditions. Due to their complexity, acclimation in hydraulic traits in response to CO2e is difficult to interpret when relying solely on measurements. When we examined how the observed tissues-specific trends might alter plant function, our modelling results suggest that these hydraulic changes would lead to reduced conductance and more frequent drought stress in trees that develop under CO2e with a more pronounced effect in isohydric than in anisohydric species.
Collapse
Affiliation(s)
- Jean-Christophe Domec
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175, Gradignan Cedex, France
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kate A McCulloh
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
10
|
PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants. Sci Rep 2016; 6:31356. [PMID: 27515999 PMCID: PMC4981870 DOI: 10.1038/srep31356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/18/2016] [Indexed: 01/05/2023] Open
Abstract
Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network web service PoplarGene, offering comprehensive functional interactions and extensive poplar gene functional annotations. PoplarGene incorporates two network-based gene prioritization algorithms, neighborhood-based prioritization and context-based prioritization, which can be used to perform gene prioritization in a complementary manner. Furthermore, the co-functional information in PoplarGene can be applied to other woody plant proteomes with high efficiency via orthology transfer. In addition to poplar gene sequences, the webserver also accepts Arabidopsis reference gene as input to guide the search for novel candidate functional genes in PoplarGene. We believe that PoplarGene (http://bioinformatics.caf.ac.cn/PoplarGene and http://124.127.201.25/PoplarGene) will greatly benefit the research community, facilitating studies of poplar and other woody plants.
Collapse
|
11
|
Ruiz C, Pla M, Company N, Riudavets J, Nadal A. High CO2 concentration as an inductor agent to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories. PLANT MOLECULAR BIOLOGY 2016; 90:329-343. [PMID: 26687131 DOI: 10.1007/s11103-015-0419-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
Cationic α-helical antimicrobial peptides such as BP100 are of increasing interest for developing novel phytosanitary or therapeutic agents and products with industrial applications. Biotechnological production of these peptides in plants can be severely impaired due to the toxicity exerted on the host by high-level expression. This can be overcome by using inducible promoters with extremely low activity throughout plant development, although the yields are limited. We examined the use of modified atmospheres using the increased levels of [CO2], commonly used in the food industry, as the inductor agent to biotechnologically produce phytotoxic compounds with higher yields. Here we show that 30% [CO2] triggered a profound transcriptional response in rice leaves, including a change in the energy provision from photosynthesis to glycolysis, and the activation of stress defense mechanisms. Five genes with central roles in up-regulated pathways were initially selected and their promoters successfully used to drive the expression of phytotoxic BP100 in genetically modified (GM) rice. GM plants had a normal phenotype on development and seed production in non-induction conditions. Treatment with 30 % [CO2] led to recombinant peptide accumulation of up to 1 % total soluble protein when the Os.hb2 promoter was used. This is within the range of biotechnological production of other peptides in plants. Using BP100 as a proof-of-concept we demonstrate that very high [CO2] can be considered an economically viable strategy to drive production of recombinant phytotoxic antimicrobial peptides in plant biofactories.
Collapse
Affiliation(s)
- Cristina Ruiz
- Institute for Agricultural and Food Technology (INTEA), University of Girona, Campus Montilivi s/n, 17071, Girona, Spain
| | - Maria Pla
- Institute for Agricultural and Food Technology (INTEA), University of Girona, Campus Montilivi s/n, 17071, Girona, Spain
| | - Nuri Company
- Institute for Agricultural and Food Technology (INTEA), University of Girona, Campus Montilivi s/n, 17071, Girona, Spain
| | - Jordi Riudavets
- Institute for Agrifood Research and Technology (IRTA), Ctra. de Cabrils Km 2, 08348, Cabrils, Barcelona, Spain
| | - Anna Nadal
- Institute for Agricultural and Food Technology (INTEA), University of Girona, Campus Montilivi s/n, 17071, Girona, Spain.
| |
Collapse
|
12
|
Boudichevskaia A, Heckwolf M, Kaldenhoff R. T-DNA insertion in aquaporin gene AtPIP1;2 generates transcription profiles reminiscent of a low CO2 response. PLANT, CELL & ENVIRONMENT 2015; 38:2286-2298. [PMID: 25850563 DOI: 10.1111/pce.12547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
Results from CO2 diffusion studies and characterization of Arabidopsis thaliana aquaporin AtPIP1;2 T-DNA insertion lines support the idea that specific aquaporins facilitate the diffusion of CO2 through biological membranes. However, their function as CO2 diffusion facilitators in plant physiology is still a matter of debate. Assuming that a lack of AtPIP1;2 causes a characteristic transcriptional response, we compared data from a AtPIP1;2 T-DNA insertion line obtained by Illumina sequencing, Affymetrix chip analysis and quantitative RT-PCR to the transcriptome of plants grown under drought stress or under low CO2 conditions. The plant reaction to the deficit of AtPIP1;2 was unlike drought stress responses but comparable with that of low CO2 conditions. In addition, we observed a phenotype characteristic to plants grown under low CO2 . The findings support the hypothesis that the AtPIP1;2 function in plant physiology is not to facilitate water but CO2 diffusion.
Collapse
Affiliation(s)
| | - Marlies Heckwolf
- Applied Plant Science, Darmstadt University of Technology, Darmstadt, D-64287, Germany
- Department of Energy Great Lakes Bioenergy Research Center, Department of Agronomy, University of Wisconsin, Madison, WI, 53703, USA
| | - Ralf Kaldenhoff
- Applied Plant Science, Darmstadt University of Technology, Darmstadt, D-64287, Germany
| |
Collapse
|
13
|
Xu Z, Jiang Y, Zhou G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:701. [PMID: 26442017 PMCID: PMC4564695 DOI: 10.3389/fpls.2015.00701] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2015] [Indexed: 05/19/2023]
Abstract
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|