1
|
Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med 2023; 21:769. [PMID: 37907984 PMCID: PMC10617136 DOI: 10.1186/s12967-023-04649-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small RNA that regulate a series of biological effects by binding to the 3'-UTR of the target mRNA, degrading the mRNA, or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from multiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive understanding of the important role of miR-1-3p in tumors.
Collapse
Affiliation(s)
- Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China.
| |
Collapse
|
2
|
Ottman R, Ganapathy K, Lin HY, Osterman CD, Dutil J, Matta J, Ruiz-Deya G, Wang L, Yamoah K, Berglund A, Chakrabarti R, Park JY. Differential Expression of miRNAs Contributes to Tumor Aggressiveness and Racial Disparity in African American Men with Prostate Cancer. Cancers (Basel) 2023; 15:cancers15082331. [PMID: 37190259 DOI: 10.3390/cancers15082331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Prostate cancer is the leading cancer in incidence and second leading cause of cancer mortality in US men. African American men have significantly higher incidence and mortality rates from prostate cancer than European American men. Previous studies reported that the disparity in prostate cancer survival or mortality can be explained by different biological backgrounds. microRNAs (miRNAs) regulate gene expression of their cognate mRNAs in many cancers. Therefore, miRNAs may be a potentially promising diagnostic tool. The role of miRNAs in prostate cancer aggressiveness and racial disparity has not been fully established. The goal of this study is to identify miRNAs associated with aggressiveness and racial disparity in prostate cancer. Here we report miRNAs that are associated with tumor status and aggressiveness in prostate cancer using a profiling approach. Further, downregulated miRNAs in African American tissues were confirmed by qRT-PCR. These miRNAs have also been shown to negatively regulate the expression of the androgen receptor in prostate cancer cells. This report provides a novel insight into understanding tumor aggressiveness and racial disparities of prostate cancer.
Collapse
Affiliation(s)
- Richard Ottman
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Kavya Ganapathy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Carlos Diaz Osterman
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Juracek J, Madrzyk M, Stanik M, Ruckova M, Trachtova K, Malcikova H, Lzicarova E, Barth DA, Pichler M, Slaby O. A tissue miRNA expression pattern is associated with disease aggressiveness of localized prostate cancer. Prostate 2023; 83:340-351. [PMID: 36478451 DOI: 10.1002/pros.24466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is a heterogeneous malignancy with high variability in clinical course. Insufficient stratification according to the aggressiveness at the time of diagnosis causes unnecessary or delayed treatment. Current stratification systems are not effective enough because they are based on clinical, surgical or biochemical parameters, but do not take into account molecular factors driving PCa cancerogenesis. MicroRNAs (miRNAs) are important players in molecular pathogenesis of PCa and could serve as valuable biomarkers for the assessment of disease aggressiveness and its prognosis. METHODS In the study, in total, 280 PCa patients were enrolled. The miRNA expression profiles were analyzed in FFPE PCa tissue using the miRCURY LNA miRNA PCR System. The expression levels of candidate miRNAs were further verified by two-level validation using the RT-qPCR method and evaluated in relation to PCa stratification reflecting the disease aggressiveness. RESULTS MiRNA profiling revealed 172 miRNAs dysregulated between aggressive (ISUP 3-5) and indolent PCa (ISUP 1) (p < 0.05). In the training and validation cohort, miR-15b-5p and miR-106b-5p were confirmed to be significantly upregulated in tissue of aggressive PCa when their level was associated with disease aggressiveness. Furthermore, we established a prognostic score combining the level of miR-15b-5p and miR-106b-5p with serum PSA level, which discriminated indolent PCa from an aggressive form with even higher analytical parameters (AUC being 0.9338 in the training set and 0.8014 in the validation set, respectively). The score was also associated with 5-year biochemical progression-free survival (bPFS) of PCa patients. CONCLUSIONS We identified a miRNA expression pattern associated with disease aggressiveness in prostate cancer patients. These miRNAs may be of biological interest as the focus can be also set on their specific role within the molecular pathology and the molecular mechanism that underlies the aggressivity of prostate cancer.
Collapse
Affiliation(s)
- Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Madrzyk
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michal Stanik
- Department of Urologic Oncology, Clinic of Surgical Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Michaela Ruckova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karolina Trachtova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hana Malcikova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Eva Lzicarova
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Dominik A Barth
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Department of Internal Medicine, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Duca RB, Massillo C, Farré PL, Graña KD, Moro J, Gardner K, Lacunza E, De Siervi A. Hsa-miR-133a-3p, miR-1-3p, GOLPH3 and JUP combination results in a good biomarker to distinguish between prostate cancer and non-prostate cancer patients. Front Oncol 2022; 12:997457. [PMID: 36387263 PMCID: PMC9641240 DOI: 10.3389/fonc.2022.997457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2023] Open
Abstract
The incidence and mortality of Prostate Cancer (PCa) worldwide correlate with age and bad dietary habits. Previously, we investigated the mRNA/miRNA role on PCa development and progression using high fat diet (HFD) fed mice. Here our main goal was to investigate the effect of HFD on the expression of PCa-related miRNAs and their relevance in PCa patients. We identified 6 up- and 18 down-regulated miRNAs in TRAMP-C1 mice prostate tumors under HFD conditions using miRNA microarrays. Three down-regulated miRNAs: mmu-miR-133a-3p, -1a-3p and -29c-3p were validated in TRAMP-C1 mice prostate tumor by stem-loop RT-qPCR. Hsa-miR-133a-3p/1-3p expression levels were significantly decreased in PCa compared to normal tissues while hsa-miR-133a-3p was found to be further decreased in metastatic prostate cancer tumors compared to non-metastatic PCa. We examined the promoter region of hsa-miR-133a-3p/1-3p genes and compared methylation at these loci with mature miRNA expression. We found that hsa-miR-1-2/miR-133a-1 cluster promoter hypermethylation decreased hsa-miR-133a-3p/1-3p expression in PCa. GOLPH3 and JUP, two hsa-miR-133a-3p and miR-1-3p predicted target genes, were up-regulated in PCa. ROC analysis showed that the combination of hsa-miR-133a-3p, miR-1-3p, GOLPH3 and JUP is a promising panel biomarker to distinguish between PCa and normal adjacent tissue (NAT). These results link PCa aggressiveness to the attenuation of hsa-miR-133a-3p and miR-1-3p expression by promoter hypermethylation. Hsa-miR-133a-3p and miR-1-3p down-regulation may enhance PCa aggressiveness in part by targeting GOLPH3 and JUP.
Collapse
Affiliation(s)
- Rocío Belén Duca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Lucía Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Karen Daniela Graña
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juana Moro
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Kevin Gardner
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Role of miRNA-145, 148, and 185 and Stem Cells in Prostate Cancer. Int J Mol Sci 2022; 23:ijms23031626. [PMID: 35163550 PMCID: PMC8835890 DOI: 10.3390/ijms23031626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a role in cancer linked to the regulation of important cellular processes and pathways involving tumorigenesis, cell proliferation, differentiation, and apoptosis. A lot of human miRNA sequences have been identified which are linked to cancer pathogenesis. MicroRNAs, in prostate cancer (PC), play a relevant role as biomarkers, show a specific profile, and have been used as therapeutic targets. Prostate cancer (PC) is the most frequently diagnosed cancer in men. Clinical diagnoses among the gold standards for PC diagnosis and monitoring are prostate-specific antigen (PSA) testing, digital rectal examination, and prostate needle biopsies. PSA screening still has a large grey area of patients, which leads to overdiagnosis. Therefore, new biomarkers are needed to improve existing diagnostic tools. The miRNA expression profiles from tumour versus normal tissues are helpful and exhibit significant differences not only between cancerous and non-cancerous tissues, but also between different cancer types and subtypes. In this review, we focus on the role of miRNAs-145, 148, and 185 and their correlation with stem cells in prostate cancer pathogenesis. MiR-145, by modulating multiple oncogenes, regulates different cellular processes in PC, which are involved in the transition from localised to metastatic disease. MiR-148 is downregulated in high-grade tumours, suggesting that the miR-148-3 family might act as tumour suppressors in PC as a potential biomarker for detecting this disease. MiR-185 regulation is still unclear in being able to regulate tumour processes in PC. Nevertheless, other authors confirm the role of this miRNA as a tumour suppressor, suggesting its potential use as a suitable biomarker in disease prognosis. These three miRNAs are all involved in the regulation of prostate cancer stem cell behaviour (PCSCs). Within this contest, PCSCs are often involved in the onset of chemo-resistance in PC, therefore strategies for targeting this subset of cells are strongly required to control the disease. Hence, the relationship between these two players is interesting and important in prostate cancer pathogenesis and in PCSC stemness regulation, in the attempt to pave the way for novel therapeutic targets in prostate cancer.
Collapse
|
6
|
Lu G, Cai W, Wang X, Huang B, Zhao Y, Shao Y, Wang D. Identifying prognostic signatures in the microenvironment of prostate cancer. Transl Androl Urol 2022; 10:4206-4218. [PMID: 34984186 PMCID: PMC8661256 DOI: 10.21037/tau-21-819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background An increasing number of studies has indicated that the tumor microenvironment (TME), an important component of tumor tissue, has clinicopathological significance in predicting disease outcome and therapeutic efficacy. However, little evidence in prostate cancer (PCa) is available. Methods The cohort of TCGA-PRAD (n=477) was used in this study. Based on the proportion of 22 types of immune cells calculated by CIBERSORT, the TME was classified by K-means clustering and differentially expressed genes (DEGs) were determined. The TMEscore was calculated based on cluster signature genes, which were obtained from DEGs by the random forest method, and the samples were classified into two subtypes. Analyses of somatic mutation and copy number variation (CNVs) were further conducted to identify the genetic characteristics of the two subtypes. Correlation analysis was performed to explore the correlation between TMEscore and the tumor response to immune checkpoint inhibitors (ICIs) as well as the prognosis of PCa. Results Based on the distribution of infiltrating immune cells in the TME, we constructed the TMEscore model and classified PCa samples into high and low TMEscore groups. Survival analysis indicated that the high TMEscore group had significantly better survival outcome than the low TMEscore group. Correlation analysis showed a significantly positive correlation between TMEscore and the known prognostic factors of PCa. Conclusions Our study indicates that the TMEscore could be a potential prognostic biomarker in PCa. A comprehensive description of the characteristics of TME may help predict the response to therapies and provide new treatment strategies for PCa patients.
Collapse
Affiliation(s)
- Guoliang Lu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co., Ltd., Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baoxing Huang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dawei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Atalar MN, Aras A, Türkan F, Barlak N, Yildiko Ü, Karatas OF, Alma MH. The effects of Daucus carota extract against PC3, PNT1a prostate cells, acetylcholinesterase, glutathione S-transferase, and α-glycosidase; an in vitro-in silico study. J Food Biochem 2021; 45:e13975. [PMID: 34676566 DOI: 10.1111/jfbc.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022]
Abstract
Daucus carota L. ssp. major (DCM) plant is widely used in traditional medicine to treat some types of cancer and various diseases. Therefore, we evaluated the biological activities of this plant to define its effects against prostate cancer (PCa), Alzheimer's disease (AD), oxidation, and diabetes mellitus (DM) as well as identified its phenolic composition. To determine the anti-cancer properties of the plant extract, we treated PCa cells with the extract at a concentration range of 0.25, 0.5, 1, 2, and 4 mg/ml. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. As a result of precise measurements at the millimolar level, it was observed that the plant extract showed an effective inhibition (IC50 ) against glutathione S-transferase (GST; 12.84 mM), acetyl cholinesterase (AChE; 15.07 mM), and α-Gly (11.75 mM) enzymes when compared with standard inhibitors. Antioxidant activities of DCM methanol extract were determined via two well-known in vitro techniques. The extracts showed antioxidant activities against the DPPH and ABTS+ . The LC-ESI-MS/MS was used to determine the phenolic compounds of methanol extract from DCM. Chlorogenic acid (2,089.096 µg/g), shikimic acid (193.14 µg/g), and coumarin (113.604 µg/g) were characterized as major phenolic compounds. In addition, the interactions of chlorogenic acid, chrysin, coumarin, and shikimic acid with the used three enzymes have been calculated using molecular docking simulation. PRACTICAL APPLICATIONS: Plant natural phenolic compounds have protective effects such as anti-inflammatory, antioxidant, anticarcinogen, and enzyme inhibitory. Therefore, it has an important place in the food and pharmaceutical industry. The present study aims to reveal the enzyme inhibitory, antioxidant, and anticarcinogenic properties of the Daucus carota ssp. Major (DCM) plant extract. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. DCM extract demonstrated considerable antioxidant activity and inhibitory potential on used metabolic enzymes. These biological effects are thought to have a relationship with rich chemical composition.
Collapse
Affiliation(s)
- Mehmet Nuri Atalar
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| | - Neslisah Barlak
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Cancer Therapeutics Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ümit Yildiko
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, Igdir, Turkey.,Department of Bioengineering, Kafkas University, Kars, Turkey
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Cancer Therapeutics Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Hakkı Alma
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| |
Collapse
|
8
|
He X, Ma J, Zhang M, Cui J, Yang H. Circ_0007031 enhances tumor progression and promotes 5-fluorouracil resistance in colorectal cancer through regulating miR-133b/ABCC5 axis. Cancer Biomark 2021; 29:531-542. [PMID: 32865180 DOI: 10.3233/cbm-200023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed malignancies worldwide. Circular RNAs (circRNAs) are being found to play crucial roles in human cancer, including CRC. The purpose of this study was to explore the function and mechanism of circ_0007031 on CRC progression and 5-fluorouracil (5-FU) resistance. The levels of circ_0007031, ATP-binding cassette subfamily C member 5 (ABCC5) and miR-133b were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell survival and proliferation were detected by the 3-(4,5-dimethylthiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Cell colony formation was evaluated using a standard colony formation assay. Transwell assays were performed to determine cell migration and invasion. Targeted correlations among circ_0007031, miR-133b and ABCC5 were verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pulldown assays. Animal experiments were performed to observe the role of circ_0007031 in vivo. Our data indicated that circ_0007031 up-regulation was associated with CRC resistance to 5-FU. Circ_0007031 knockdown repressed CRC cell proliferation, migration and invasion and enhanced 5-FU sensitivity. Circ_0007031 directly interacted with miR-133b. Moreover, circ_0007031 knockdown regulated CRC cell progression and 5-FU sensitivity by miR-133b. ABCC5 was a direct target of miR-133b, and circ_0007031 mediated ABCC5 expression via acting as a miR-133b sponge. Furthermore, miR-133b overexpression regulated CRC cell progression and sensitivity to 5-FU by down-regulating ABCC5. Additionally, circ_0007031 knockdown suppressed tumor growth in vivo. Our current work had led to the identification of circ_0007031 knockdown that repressed CRC cell malignant progression and enhanced 5-FU sensitivity via regulating ABCC5 expression by sponging miR-133b.
Collapse
|
9
|
Petrović N, Stanojković TP, Nikitović M. MicroRNAs in prostate cancer following radiotherapy: Towards predicting response to radiation treatment. Curr Med Chem 2021; 29:1543-1560. [PMID: 34348602 DOI: 10.2174/0929867328666210804085135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed male cancer worldwide. Early diagnosis of PCa, response to therapy and prognosis still represent a challenge. Nearly 60% of PCa patients undergo radiation therapy (RT) which might cause side effects. In spite of numerous researches in this field, predictive biomarkers for radiation toxicity are still not elucidated. MicroRNAs as posttranscriptional regulators of gene expression are shown to be changed during and after irradiation. Manipulation with miRNA levels might be used to modulate response to RT-to reverse radioresistance-to induce radiosensitivity, or if needed, to reduce sensitivity to treatment to avoid side effects. In this review we have listed and described miRNAs involved in response to RT in PCa, and highlighted potential candidates for future biological tests predicting radiation response to RT, with the special focus on side effects of RT. Individual radiation response is a result of the interactions between physical characteristics of radiation treatment and biological background of each patient, and miRNA expression changes among others. According to described literature we concluded that let-7, miR-21, miR-34a, miR-146a, miR-155, and members of miR-17/92 cluster might be promising candidates for biological tests predicting radiosensitivity of PCa patients undergoing radiation treatment, and as future agents for modulation of radiation response. Predictive miRNA panels, especially for acute and late side effects of RT can serve as a starting point for decisions for individualized RT planning. We believe that this review might be one step closer to understanding molecular mechanisms underlying individual radiation response of patients with PCa.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade. Serbia
| | - Tatjana P Stanojković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade. Serbia
| | - Marina Nikitović
- Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia, Pasterova 14, 11000 Belgrade. Serbia
| |
Collapse
|
10
|
Lv D, Cao Z, Li W, Zheng H, Wu X, Liu Y, Gu D, Zeng G. Identification and Validation of a Prognostic 5-Protein Signature for Biochemical Recurrence Following Radical Prostatectomy for Prostate Cancer. Front Surg 2021; 8:665115. [PMID: 34136527 PMCID: PMC8202683 DOI: 10.3389/fsurg.2021.665115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Biochemical recurrence (BCR) is an indicator of prostate cancer (PCa)-specific recurrence and mortality. However, there is a lack of an effective prediction model that can be used to predict prognosis and to determine the optimal method of treatment for patients with BCR. Hence, the aim of this study was to construct a protein-based nomogram that could predict BCR in PCa. Methods: Protein expression data of PCa patients was obtained from The Cancer Proteome Atlas (TCPA) database. Clinical data on the patients was downloaded from The Cancer Genome Atlas (TCGA) database. Lasso and Cox regression analyses were conducted to select the most significant prognostic proteins and formulate a protein signature that could predict BCR. Subsequently, Kaplan–Meier survival analysis and Cox regression analyses were conducted to evaluate the performance of the prognostic protein-based signature. Additionally, a nomogram was constructed using multivariate Cox regression analysis. Results: We constructed a 5-protein-based prognostic prediction signature that could be used to identify high-risk and low-risk groups of PCa patients. The survival analysis demonstrated that patients with a higher BCR showed significantly worse survival than those with a lower BCR (p < 0.0001). The time-dependent receiver operating characteristic curve showed that the signature had an excellent prognostic efficiency for 1, 3, and 5-year BCR (area under curve in training set: 0.691, 0.797, 0.808 and 0.74, 0.739, 0.82 in the test set). Univariate and multivariate analyses indicated that this 5-protein signature could be used as independent prognosis marker for PCa patients. Moreover, the concordance index (C-index) confirmed the predictive value of this 5-protein signature in 3, 5, and 10-year BCR overall survival (C-index: 0.764, 95% confidence interval: 0.701–0.827). Finally, we constructed a nomogram to predict BCR of PCa. Conclusions: Our study identified a 5-protein-based signature and constructed a nomogram that could reliably predict BCR. The findings might be of paramount importance for the prediction of PCa prognosis and medical decision-making. Subjects: Bioinformatics, oncology, urology.
Collapse
Affiliation(s)
- Daojun Lv
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zanfeng Cao
- Department of Emergency Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjie Li
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Nanshan College, Guangzhou Medical University, Guangzhou, China
| | - Haige Zheng
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangkun Wu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yongda Liu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Di Gu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Guohua Zeng
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Ku A, Fredsøe J, Sørensen KD, Borre M, Evander M, Laurell T, Lilja H, Ceder Y. High-Throughput and Automated Acoustic Trapping of Extracellular Vesicles to Identify microRNAs With Diagnostic Potential for Prostate Cancer. Front Oncol 2021; 11:631021. [PMID: 33842337 PMCID: PMC8029979 DOI: 10.3389/fonc.2021.631021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Molecular profiling of extracellular vesicles (EVs) offers novel opportunities for diagnostic applications, but the current major obstacle for clinical translation is the lack of efficient, robust, and reproducible isolation methods. To bridge that gap, we developed a microfluidic, non-contact, and low-input volume compatible acoustic trapping technology for EV isolation that enabled downstream small RNA sequencing. In the current study, we have further automated the acoustic microfluidics-based EV enrichment technique that enables us to serially process 32 clinical samples per run. We utilized the system to enrich EVs from urine collected as the first morning void from 207 men referred to 10-core prostate biopsy performed the same day. Using automated acoustic trapping, we successfully enriched EVs from 199/207 samples (96%). After RNA extraction, size selection, and library preparation, a total of 173/199 samples (87%) provided sufficient materials for next-generation sequencing that generated an average of 2 × 106 reads per sample mapping to the human reference genome. The predominant RNA species identified were fragments of long RNAs such as protein coding and retained introns, whereas small RNAs such as microRNAs (miRNA) accounted for less than 1% of the reads suggesting that partially degraded long RNAs out-competed miRNAs during sequencing. We found that the expression of six miRNAs was significantly different (Padj < 0.05) in EVs isolated from patients found to have high grade prostate cancer [ISUP 2005 Grade Group (GG) 4 or higher] compared to those with GG3 or lower, including those with no evidence of prostate cancer at biopsy. These included miR-23b-3p, miR-27a-3p, and miR-27b-3p showing higher expression in patients with GG4 or high grade prostate cancer, whereas miR-1-3p, miR-10a-5p, and miR-423-3p had lower expression in the GG4 PCa cases. Cross referencing our differentially expressed miRNAs to two large prostate cancer datasets revealed that the putative tumor suppressors miR-1, miR-23b, and miR-27a are consistently deregulated in prostate cancer. Taken together, this is the first time that our automated microfluidic EV enrichment technique has been found to be capable of enriching EVs on a large scale from 900 μl of urine for small RNA sequencing in a robust and disease discriminatory manner.
Collapse
Affiliation(s)
- Anson Ku
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikael Evander
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Hans Lilja
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Yvonne Ceder
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Hu YM, Lou XL, Liu BZ, Sun L, Wan S, Wu L, Zhao X, Zhou Q, Sun MM, Tao K, Zhang YS, Wang SL. TGF-β1-regulated miR-3691-3p targets E2F3 and PRDM1 to inhibit prostate cancer progression. Asian J Androl 2021; 23:188-196. [PMID: 33159025 PMCID: PMC7991816 DOI: 10.4103/aja.aja_60_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 08/07/2020] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) acts as a tumor promoter in advanced prostate cancer (PCa). We speculated that microRNAs (miRNAs) that are inhibited by TGF-β1 might exert anti-tumor effects. To assess this, we identified several miRNAs downregulated by TGF-β1 in PCa cell lines and selected miR-3691-3p for detailed analysis as a candidate anti-oncogene miRNA. miR-3691-3p was expressed at significantly lower levels in human PCa tissue compared with paired benign prostatic hyperplasia tissue, and its expression level correlated inversely with aggressive clinical pathological features. Overexpression of miR-3691-3p in PCa cell lines inhibited proliferation, migration, and invasion, and promoted apoptosis. The miR-3691-3p target genes E2F transcription factor 3 (E2F3) and PR domain containing 1, with ZNF domain (PRDM1) were upregulated in miR-3691-3p-overexpressing PCa cells, and silencing of E2F3 or PRDM1 suppressed PCa cell proliferation, migration, and invasion. Treatment of mice bearing PCa xenografts with a miR-3691-3p agomir inhibited tumor growth and promoted tumor cell apoptosis. Consistent with the negative regulation of E2F3 and PRDM1 by miR-3691-3p, both proteins were overexpressed in clinical PCa specimens compared with noncancerous prostate tissue. Our results indicate that TGF-β1-regulated miR-3691-3p acts as an anti-oncogene in PCa by downregulating E2F3 and PRDM1. These results provide novel insights into the mechanisms by which TGF-β1 contributes to the progression of PCa.
Collapse
Affiliation(s)
- Yue-Mei Hu
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- Department of Pathology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Collaborative Innovation Center of Clinical Immunology between Soochow University and Sihong People's Hospital, Sihong 223900, China
| | - Xiao-Li Lou
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Clinical Immunology between Soochow University and Sihong People's Hospital, Sihong 223900, China
| | - Bao-Zhu Liu
- Collaborative Innovation Center of Clinical Immunology between Soochow University and Sihong People's Hospital, Sihong 223900, China
- Department of Pathology, Sihong People's Hospital, Sihong 223900, China
| | - Li Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Shan Wan
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lei Wu
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Xin Zhao
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Qing Zhou
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mao-Min Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - Kun Tao
- Department of Pathology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yong-Sheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shou-Li Wang
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou 215006, China
| |
Collapse
|
13
|
Pandareesh MD, Kameshwar VH, Byrappa K. Prostate Carcinogenesis: Insights in Relation to Epigenetics and Inflammation. Endocr Metab Immune Disord Drug Targets 2021; 21:253-267. [PMID: 32682386 DOI: 10.2174/1871530320666200719020709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic, and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer poses a challenge for the researchers. Besides genetic mutations, many epigenetic alterations, including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodeling, and chromosomal looping, have significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via modifications in the tumor microenvironment by initiating epithelialmesenchymal transition and remodeling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation, and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss the clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment..
Collapse
Affiliation(s)
- Mirazkar D Pandareesh
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Vivek H Kameshwar
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| | - Kullaiah Byrappa
- Center for Research and Innovation, BGSIT Campus, Adichunchanagiri University, B.G. Nagara, Mandya District, Karnataka 571448, India
| |
Collapse
|
14
|
Kawana S, Saito R, Miki Y, Kimura Y, Abe J, Sato I, Endo M, Sugawara S, Sasano H. Suppression of tumor immune microenvironment via microRNA-1 after epidermal growth factor receptor-tyrosine kinase inhibitor resistance acquirement in lung adenocarcinoma. Cancer Med 2020; 10:718-727. [PMID: 33305905 PMCID: PMC7877390 DOI: 10.1002/cam4.3639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is considered one of the most important therapeutic strategies for patients with lung adenocarcinoma after the development of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance. However, useful predictors of immunotherapy for these patients has not been examined well, although the status of the tumor immune microenvironment (TIME), including programmed death-ligand 1 expression and lymphocyte infiltration, has been generally known to provide predictive markers for the efficacy of immunotherapy. This study aimed to clarify novel predictors of immunotherapy following EGFR-TKI resistance in lung adenocarcinoma, especially regarding micro RNA (miRNA). We evaluated the correlation between EGFR-TKI resistance and lymphocyte infiltration, before and after acquiring EGFR-TKI resistance, in 21 cases of lung adenocarcinoma, and further explored this by in vitro studies, using miRNA PCR arrays. Subsequently, we transfected miRNA-1 (miR-1), the most variable miRNA in this array, into three kinds of lung cancer cells, and examined the effects of miR-1 on EGFR-TKI sensitivity, cytokine expression and lymphocyte migration. Histopathological examination demonstrated that infiltration levels of CD8-positive T cells were significantly decreased after development of EGFR-TKI resistance. In vitro studies revealed that miR-1 significantly inhibited EGFR-TKI effect and induction of cytokines, such as C-C motif chemokine ligand 5 and C-X-C motif chemokine ligand 10, causing inhibition of monocyte migration. These results indicate that the upregulated miR-1 might suppress the TIME, following development of EGFR-TKI resistance. Therefore, miR-1 could be a clinically useful marker to predict therapeutic efficacy of immunotherapy in lung adenocarcinoma patients with EGFR-TKI resistance.
Collapse
Affiliation(s)
- Sachiko Kawana
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan.,Department of Respiratory Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Ryoko Saito
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Yuichiro Kimura
- Department of Respiratory Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, Miyagi, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Mareyuki Endo
- Department of Pathology, Sendai Kousei Hospital, Miyagi, Japan
| | - Shunichi Sugawara
- Department of Respiratory Medicine, Sendai Kousei Hospital, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
15
|
Design, synthesis and biological evaluation of 3,5-diaryl isoxazole derivatives as potential anticancer agents. Bioorg Med Chem Lett 2020; 30:127427. [DOI: 10.1016/j.bmcl.2020.127427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
|
16
|
Lakshmanan VK, Ojha S, Jung YD. A modern era of personalized medicine in the diagnosis, prognosis, and treatment of prostate cancer. Comput Biol Med 2020; 126:104020. [PMID: 33039808 DOI: 10.1016/j.compbiomed.2020.104020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
The present era is witnessing rapid advancements in the field of medical informatics and modern healthcare management. The role of translational bioinformatics (TBI), an infant discipline in the field of medical informatics, is pivotal in this revolution. The development of high-throughput technologies [e.g., microarrays, next-generation sequencing (NGS)] has propelled TBI to the next stage in this modern era of medical informatics. In this review, we assess the promising translational outcomes of microarray- and NGS-based discovery of genes, proteins, micro RNAs, and other active biological compounds aiding in the diagnosis, prognosis, and therapy of prostate cancer (PCa) to improve treatment strategies at the localized and/or metastatic stages in patients. Several promising candidate biomarkers in circulating blood (miR-25-3p and miR-18b-5p), urine (miR-95, miR-21, miR-19a, and miR-19b), and prostatic secretions (miR-203) have been identified. AURKA and MYCN, novel candidate biomarkers, were found to be specifically expressed in neuroendocrine PCa. The use of BTNL2 gene mutations and inflammasomes as biomarkers in immune function-mediated, inherited PCa has also been elucidated based on NGS data. Although TBI discoveries can benefit clinical performance metrics, the translational potential and the in vivo performance of TBI outcomes need to be verified. In conclusion, TBI aids in the effective clinical management of PCa; furthermore, the fate of personalized/precision medicine mostly relies on the enhanced diagnostic, prognostic, and therapeutic potential of TBI.
Collapse
Affiliation(s)
- Vinoth-Kumar Lakshmanan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600 116, Tamil Nadu, India; Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, 4184, United Arab Emirates.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, 160 Baeksuh-Roh, Dong Gu, Gwangju, 61469, Republic of Korea
| |
Collapse
|
17
|
Liu B, Sun Y, Tang M, Liang C, Huang CP, Niu Y, Wang Z, Chang C. The miR-361-3p increases enzalutamide (Enz) sensitivity via targeting the ARv7 and MKNK2 to better suppress the Enz-resistant prostate cancer. Cell Death Dis 2020; 11:807. [PMID: 32978369 PMCID: PMC7519644 DOI: 10.1038/s41419-020-02932-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
The androgen receptor splicing variant 7 (ARv7) that lacks the ligand-binding domain is increasingly considered as a key player leading to enzalutamide (Enz) resistance in patients with prostate cancer (PCa). However, the detailed mechanisms of how ARv7 expression is regulated and whether it also needs other factors to induce maximal Enz resistance remain unclear. Here, we identified a microRNA, miR-361-3p, whose expression is lower in patients with recurrent PCa, could function via binding to the 3'UTR of ARv7, but not the wild type of AR, to suppress its expression to increase the Enz sensitivity. Importantly, we found that miR-361-3p could also bind to the 3'UTR of MAP kinase-interacting serine/threonine kinase 2 (MKNK2) to suppress its expression to further increase the Enz sensitivity. In turn, the increased Enz can then function via a feedback mechanism through altering the HIF-2α/VEGFA signaling to suppress the expression of miR-361-3p under hypoxia conditions. Preclinical studies using an in vivo mouse model with orthotopically xenografted CWR22Rv1 cells demonstrated that combining the Enz with the small molecule miR-361-3p would result in better suppression of the Enz-resistant PCa tumor progression. Together, these preclinical studies demonstrate that miR-361-3p can function via suppressing the expression of ARv7 and MKNK2 to maximally increase the Enz sensitivity, and targeting these newly identified Enz/miR-361-3p/ARv7 and/or Enz/miR-361-3p/MKNK2 signals with small molecules may help in the development of novel therapies to better suppress the CRPC in patients that already have developed the Enz resistance.
Collapse
Affiliation(s)
- Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi-Ping Huang
- Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan
| | - Yuanjie Niu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
18
|
Urinary microRNAs expression in prostate cancer diagnosis: a systematic review. Clin Transl Oncol 2020; 22:2061-2073. [PMID: 32323148 DOI: 10.1007/s12094-020-02349-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/25/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Circulating microRNAs (miRNAs) have been shown to have the potential as noninvasive diagnosis biomarkers in several types of cancers, including prostate cancer (PCa). Urine-based miRNA biomarkers have been researched as an alternative tool in PCa diagnosis. However, few studies have performed miRNA detection in urine samples from PCa patients, as well as low numbers of miRNAs have been assayed, and there is a lack of standard strategies for validation. In this context, we conducted an in-depth literature review focusing on miRNAs isolated from urine samples that may contribute to the diagnosis of PCa. METHODS A systematic review was performed searching the PubMed, Lilacs and Cochrane Library databases for articles focused on the value of significantly deregulated miRNAs as biomarkers in PCa patients. RESULTS Only 18 primary manuscripts were included in this review, according to the search criteria. Our results suggest that miR-21-5p, miR-141-3p, miR-375 and miR-574-3p should be considered as potential urinary biomarkers for the diagnosis of PCa. CONCLUSION These results suggested that large-scale prospective studies are still needed to validate our findings, using standardized protocols for analysis.
Collapse
|
19
|
A Novel Predictor Tool of Biochemical Recurrence after Radical Prostatectomy Based on a Five-MicroRNA Tissue Signature. Cancers (Basel) 2019; 11:cancers11101603. [PMID: 31640261 PMCID: PMC6826532 DOI: 10.3390/cancers11101603] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022] Open
Abstract
Within five to ten years after radical prostatectomy (RP), approximately 15–34% of prostate cancer (PCa) patients experience biochemical recurrence (BCR), which is defined as recurrence of serum levels of prostate-specific antigen >0.2 µg/L, indicating probable cancer recurrence. Models using clinicopathological variables for predicting this risk for patients lack accuracy. There is hope that new molecular biomarkers, like microRNAs (miRNAs), could be potential candidates to improve risk prediction. Therefore, we evaluated the BCR prognostic capability of 20 miRNAs, which were selected by a systematic literature review. MiRNA expressions were measured in formalin-fixed, paraffin-embedded (FFPE) tissue RP samples of 206 PCa patients by RT-qPCR. Univariate and multivariate Cox regression analyses were performed, to assess the independent prognostic potential of miRNAs. Internal validation was performed, using bootstrapping and the split-sample method. Five miRNAs (miR-30c-5p/31-5p/141-3p/148a-3p/miR-221-3p) were finally validated as independent prognostic biomarkers. Their prognostic ability and accuracy were evaluated using C-statistics of the obtained prognostic indices in the Cox regression, time-dependent receiver-operating characteristics, and decision curve analyses. Models of miRNAs, combined with relevant clinicopathological factors, were built. The five-miRNA-panel outperformed clinically established BCR scoring systems, while their combination significantly improved predictive power, based on clinicopathological factors alone. We conclude that this miRNA-based-predictor panel will be worth to be including in future studies.
Collapse
|
20
|
Song X, Zhang C, Liu Z, Liu Q, He K, Yu Z. Characterization of ceRNA network to reveal potential prognostic biomarkers in triple-negative breast cancer. PeerJ 2019; 7:e7522. [PMID: 31565554 PMCID: PMC6741283 DOI: 10.7717/peerj.7522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a particular subtype of breast malignant tumor with poorer prognosis than other molecular subtypes. Previous studies have demonstrated that some abnormal expression of non-coding RNAs including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were closely related to tumor cell proliferation, apoptosis, invasion, migration and drug sensitivity. However, the role of non-coding RNAs in the pathogenesis of TNBC is still unclear. In order to characterize the molecular mechanism of non-coding RNAs in TNBC, we downloaded RNA data and miRNA data from the cancer genome atlas database. We successfully identified 686 message RNAs (mRNAs), 26 miRNAs and 50 lncRNAs as key molecules for high risk of TNBC. Then, we hypothesized that the lncRNA–miRNA–mRNA regulatory axis positively correlates with TNBC and constructed a competitive endogenous RNA (ceRNA) network of TNBC. Our series of analyses has shown that five molecules (TERT, TRIML2, PHBP4, mir-1-3p, mir-133a-3p) were significantly associated with the prognosis of TNBC, and there is a prognostic ceRNA sub-network between those molecules. We mapped the Kaplan–Meier curve of RNA on the sub-network and also suggested that the expression level of the selected RNA is related to the survival rate of breast cancer. Reverse transcription-quantitative polymerase chain reaction showed that the expression level of TRIML2 in TNBC cells was higher than normal. In general, our findings have implications for predicting metastasis, predicting prognosis and discovering new therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Xiang Song
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.,Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Chao Zhang
- The People's Hospital of Xintai City, Xintai, Shandong, People's Republic of China
| | - Zhaoyun Liu
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.,School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qi Liu
- School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China
| | - Kewen He
- School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Zhiyong Yu
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| |
Collapse
|
21
|
Kaya M, Suer İ, Öztürk Ş, Çefle K, Karaman B, Palanduz Ş. Case Report: a novel chromosomal insertion, 46, XY, inv ins(18;2)(q11.2;q13q22), in a patient with infertility and mild intellectual disability. F1000Res 2019; 8:281. [PMID: 31231514 PMCID: PMC6567292 DOI: 10.12688/f1000research.18455.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 11/20/2022] Open
Abstract
Infertility is an important health problem affecting 15% of couples worldwide. Intellectual disability (ID) is characterized with significant impairment of intellectual function, adaptive daily life skills and social skills. Insertion is a rare chromosomal rearrangement causing infertility and ID. Here, we report a 39-year-old man presenting with primary infertility and mild ID. The patient's spermiogram was consistent with azoospermia. Conventional cytogenetic analysis showed a novel inversion/insertion type of chromosomal aberration involving chromosomes 18 and 2: 46, XY, inv ins(18;2)(q11.2;q13q22). We carried out the array comparative genomic hybridization analysis to confirm the cytogenetic findings. Y micro-deletion analysis demonstrated that the AZF region as intact. We suggest that the novel insertion found in this case [46, XY, inv ins(18;2)(q11.2;q13q22)] may have caused infertility and mild ID in our patient. To the best of our knowledge, this chromosomal insertion has not previously been reported.
Collapse
Affiliation(s)
- Murat Kaya
- Department of Medical Genetics of Internal Diseases, Istanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - İlknur Suer
- Department of Medical Genetics of Internal Diseases, Istanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Şükrü Öztürk
- Department of Medical Genetics of Internal Diseases, Istanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Kıvanç Çefle
- Department of Medical Genetics of Internal Diseases, Istanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| | - Birsen Karaman
- Department of Medical Genetics, İstanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Şükrü Palanduz
- Department of Medical Genetics of Internal Diseases, Istanbul Medical Faculty, İstanbul University, İstanbul, Turkey
| |
Collapse
|
22
|
The role of miRNAs as biomarkers in prostate cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:165-174. [PMID: 31416574 DOI: 10.1016/j.mrrev.2019.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
There is an urged need of non-invasive biomarkers for the implementation of precision medicine. These biomarkers are required to these days for improving prostate cancer (PCa) screening, treatment or stratification in current clinical strategies. There are several commercial kits (Oncotype DX genomic prostate score®, Prolaris®, among others) that use genomic changes, rearrangement or even non-coding RNA events. However, none of them are currently used in the routine clinical practice. Many recent studies indicate that miRNAs are relevant molecules (small single-stranded non-coding RNAs that regulate gene expression of more than 30% of human genes) to be implement non-invasive biomarkers. However, contrasting to others tumors, such as breast cancer where miR-21 seems to be consistently upregulated; PCa data are controversial. Here we reported an extended revision about the role of miRNAs in PCa including data of AR signaling, cell cycle, EMT process, CSCs regulation and even the role of miRNAs as PCa diagnostic, prognostic and predictive tool. It is known that current biomedical research uses big-data analysis like Next Generation Sequencing (NGS) analysis. We also conducted an extensive online search, including the main platforms and kits for miRNAs massive analysis (like MiSeq, Nextseq 550, or Ion S5™ systems) indicating their pros, cons and including pre-analytical and analytical issues of miRNA studies.
Collapse
|
23
|
Suer I, Guzel E, Karatas OF, Creighton CJ, Ittmann M, Ozen M. MicroRNAs as prognostic markers in prostate cancer. Prostate 2019; 79:265-271. [PMID: 30345533 DOI: 10.1002/pros.23731] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most commonly diagnosed malignancy in men who are especially over the age of 50 years in the western countries. Currently used therapeutic modalities mostly fail to give positive clinical outcomes and nearly 30% of the PCa patients eventually develop clinical recurrence. Therefore, understanding the underlying mechanisms of PCa progression is of paramount importance to help determining the course of disease. In this study, we aimed at profiling the differentially expressed microRNAs in recurrent PCa samples. METHODS We profiled the microRNA expression of 20 recurrent and 20 non-recurrent PCa patients with microRNA microarray, and validated the differential expression of significantly deregulated microRNAs in 40 recurrent and 39 non-recurrent PCa specimens using quantitative reverse-transcription PCR (qRT-PCR). Data were statistically analyzed using two-sided Student's t-test, Pearson Correlation test, Receiver operating characteristic (ROC) analysis. RESULTS Our results demonstrated that a total of 682 probes were significantly deregulated in recurrent versus non-recurrent PCa specimen comparison. Among those, we confirmed the significant downregulation of miR-424 and upregulation of miR-572 with further qRT-PCR analysis in a larger sample set. Further ROC analysis showed that these microRNAs have enough power to distinguish recurrent specimens from non-recurrent ones on their own. CONCLUSIONS Here, we report that differential expression of miR-424 and miR-572 in recurrent PCa specimens can serve as novel biomarkers for prediction of PCa progression.
Collapse
Affiliation(s)
- Ilknur Suer
- Department of Medical Genetics, Istanbul University, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Esra Guzel
- Department of Molecular Biology and Genetics, Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Omer F Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey VAMC, Houston, Texas
| | - Mustafa Ozen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
24
|
Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis 2019; 10:37. [PMID: 30674872 PMCID: PMC6425037 DOI: 10.1038/s41419-018-1048-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/08/2018] [Accepted: 07/13/2018] [Indexed: 11/22/2022]
Abstract
Androgen-deprivation therapy (ADT) with newly developed antiandrogen enzalutamide (Enz) may increase the castration-resistant prostate cancer (CRPC) patients survival an extra 4.8 months. Yet eventually most patients may fail with development of Enz resistance. While recent clinical studies indicated that the increased expression of the androgen receptor (AR) splicing variant ARv7 might have key roles for the development of Enz resistance in CRPC, its detailed mechanism, especially its linkage to the circular RNAs (circRNAs), a form of non-coding RNA, however, remains unclear. Here we found from human clinical sample survey that circRNA17 (hsa_circ_0001427) has a lower expression in higher Gleason score PCa, and results from in vitro cell lines studies also revealed the lower expression in CRPC C4–2 Enz-resistant (EnzR-C4–2) cells compared to their parental Enz-sensitive (EnzS-C4–2) cells. Mechanism dissection indicated that suppressing circRNA17 in EnzS-C4–2 cells increased ARv7 expression that might then lead to increase the Enz resistance and cell invasion. Mechanism dissection demonstrated that Enz could suppress the circRNA17 expression at the transcriptional level via suppressing transcription of its host gene PDLIM5, and circRNA17 could regulate ARv7 expression via altering the expression of miR-181c-5p that involved the direct binding of miR-181c-5p to the 3′UTR of ARv7. Preclinical study using in vivo mouse model with xenografted EnzR-CWR22Rv1 cells revealed that adding circRNA17 or miRNA-181c-5p could suppress the EnzR-CWR22Rv1 cells growth. Together, results from these preclinical studies suggest that circRNA17 may function as suppressor to alter the Enz sensitivity and cell invasion in CRPC cells via altering the miR-181c-5p/ARv7 signaling and targeting this newly identified signaling may help in the development of a better therapy to further suppress the EnzR cell growth.
Collapse
|
25
|
Reuter A, Sckell A, Brandenburg LO, Burchardt M, Kramer A, Stope MB. Overexpression of MicroRNA-1 in Prostate Cancer Cells Modulates the Blood Vessel System of an In Vivo Hen's Egg Test-Chorioallantoic Membrane Model. In Vivo 2019; 33:41-46. [PMID: 30587600 PMCID: PMC6364071 DOI: 10.21873/invivo.11436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM In prostate cancer (PC), the formation of new blood vessels is stimulated by hypoxic conditions, androgens, and a number of molecular factors including microRNAs. MicroRNA-1 (miR-1) has been characterized in some tumor entities as anti-angiogenic, but this has not yet been investigated in PC. MATERIALS AND METHODS PC cells stably overexpressing miR-1 (LNCaP-miR-1) were incubated on an in vivo hen's egg test-chorioallantoic membrane (HET-CAM) model and compared to maternal LNCaP cells. Cell growth, blood vessel organisation, and total blood vessel area were analysed. RESULTS Both matrigel-embedded LNCaP and LNCaP-miR-1 cells formed compact tumor-like cell aggregates on the CAM of the HET-CAM model. Although not quantifiable, bleeding of the CAM and remodelling of the blood vessel network in the CAM indicated an influence of miR-1 on the vascular system. The statistically significant decrease in the total surface area of blood vessels in the visible CAM section to 79.4% of control cells demonstrated the antiangiogenic properties of miR-1 for the first time. CONCLUSION MiR-1 had a tumor-suppressive and anti-angiogenic effect in an in vivo PC model. In the clinic, miR-1-mediated anti-angiogenesis would result in reduced tumor supply and increased hypoxic stress inside the tumor. Thus, miR-1 restoration by nucleic acid-based miR-1 mimetics would represent a promising option for future PC therapy.
Collapse
Affiliation(s)
- Arik Reuter
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Axel Sckell
- Department of Trauma, Hand and Reconstructive Surgery, Rostock University Medical Center, Rostock, Germany
| | | | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Gao G, Tian Z, Zhu HY, Ouyang XY. miRNA-133b targets FGFR1 and presents multiple tumor suppressor activities in osteosarcoma. Cancer Cell Int 2018; 18:210. [PMID: 30574019 PMCID: PMC6299514 DOI: 10.1186/s12935-018-0696-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common bone malignancy prevalent in children and young adults. MicroRNA-133b (miR-133b), through directly targeting the fibroblast growth factor receptor 1 (FGFR1), is increasingly recognized as a tumor suppressor in different types of cancers. However, little is known on the biological and functional significance of miR-133b/FGFR1 regulation in osteosarcoma. Methods The expressions of miR-133b and FGFR1 were examined by RT-qPCR and compared between 30 paired normal bone tissues and OS tissues, and also between normal osteoblasts and three OS cells lines, MG-63, U2OS, and SAOS-2. Using U2OS and MG-63 as the model system, the functional significance of miR-133b and FGFR1 was assessed on cell viability, proliferation, apoptosis, migration/invasion, and epithelial–mesenchymal transition (EMT) by overexpressing miR-133b and down-regulating FGFR1 expression, respectively. Furthermore, the signaling cascades controlled by miR-133b/FGFR1 were examined. Results miR-133b was significantly down-regulated while FGFR1 robustly up-regulated in OS tissues and OS cell lines, when compared to normal bone tissues and normal osteoblasts, respectively. Low miR-133b expression and high FGFR1 expression were associated with location of the malignant lesion, advanced clinical stage, and distant metastasis. FGFR1 was a direct target of miR-133b. Overexpressing miRNA-133b or knocking down FGFR1 significantly reduced the viability, proliferation, migration/invasion, and EMT, but promoted apoptosis of both MG-63 and U2OS cells. Both the Ras/MAPK and PI3K/Akt intracellular signaling cascades were inhibited in response to overexpressing miRNA-133b or knocking down FGFR1 in OS cells. Conclusion miR-133b, by targeting FGFR1, presents a plethora of tumor suppressor activities in OS cells. Boosting miR-133b expression or reducing FGFR1 expression may benefit OS therapy.
Collapse
Affiliation(s)
- Gan Gao
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Zhen Tian
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Huan-Ye Zhu
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Xun-Yan Ouyang
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| |
Collapse
|
27
|
Huang S, Wa Q, Pan J, Peng X, Ren D, Li Q, Dai Y, Yang Q, Huang Y, Zhang X, Zhou W, Yuan D, Cao J, Li Y, He P, Tang Y. Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling. Cell Death Dis 2018; 9:779. [PMID: 30006541 PMCID: PMC6045651 DOI: 10.1038/s41419-018-0807-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
High avidity of bone metastasis is an important characteristic in prostate cancer (PCa). Downexpression of miR-133b has been reported to be implicated in the development, progression and recurrence in PCa. However, clinical significance and biological roles of miR-133b in bone metastasis of PCa remain unclear. Here we report that miR-133b is downregulated in PCa tissues and further decreased in bone metastatic PCa tissues. Downexpression of miR-133b positively correlates with advanced clinicopathological characteristics and shorter bone metastasis-free survival in PCa patients. Upregulating miR-133b inhibits invasion, migration in vitro and bone metastasis in vivo in PCa cells. Mechanistically, we find that miR-133b suppresses activity of TGF-β signaling via directly targeting TGF-β receptor I and II, which further inhibits bone metastasis of PCa cells. Our results further reveal that overexpression of REST contributes to miR-133b downexpression via transcriptional repression in PCa tissues. Importantly, silencing miR-133b enhances invasion and migration abilities in vitro and bone metastasis ability in vivo in REST-silenced PCa cells. The clinical correlation of miR-133b with TGFBRI, TGFBRII, REST and TGF-β signaling activity is verified in PCa tissues. Therefore, our results uncover a novel mechanism of miR-133b downexpression that REST transcriptionally inhibits miR-133b expression in PCa cells, and meanwhile support the notion that administration of miR-133b may serve as a rational regimen in the treatment of PCa bone metastasis.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qingde Wa
- Department of Orthopaedic Surgery, the Affiliated Hospital of Zunyi Medical college, 563003, Zunyi, China
| | - Jincheng Pan
- Department of Urology Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Dong Ren
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qiji Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Qing Yang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yan Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Xin Zhang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Wei Zhou
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Dan Yuan
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Jiazheng Cao
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Yuming Li
- Department of Orthopaedic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Peiheng He
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China.
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, China.
| |
Collapse
|
28
|
Vanacore D, Boccellino M, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, Romano FJ, Montanari M, La Mantia E, Piscitelli R, Nocerino F, Cappuccio F, Grimaldi G, Izzo A, Castaldo L, Pepe MF, Malzone MG, Iovane G, Ametrano G, Stiuso P, Quagliuolo L, Barberio D, Perdonà S, Muto P, Montella M, Maiolino P, Veneziani BM, Botti G, Caraglia M, Facchini G. Micrornas in prostate cancer: an overview. Oncotarget 2018; 8:50240-50251. [PMID: 28445135 PMCID: PMC5564846 DOI: 10.18632/oncotarget.16933] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second highest cause of cancer mortality after lung tumours. In USA it affects about 2.8 million men and the incidence increases with age in many countries. Therefore, early diagnosis is a very important step for patient clinical evaluation and for a selective and efficient therapy. The study of miRNAs' functions and molecular mechanisms has brought new knowledge in biological processes of cancer. In prostate cancer there is a deregulation of several miRNAs that may function as tumour suppressors or oncogenes. The aim of this review is to analyze the progress made to our understanding of the role of miRNA dysregulation in prostate cancer tumourigenesis.
Collapse
Affiliation(s)
- Daniela Vanacore
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Carla Cavaliere
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto, Taranto, Italy
| | - Carmine D'Aniello
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Napoli, Italy
| | - Rossella Di Franco
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Francesco Jacopo Romano
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Elvira La Mantia
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale, Naples, Italy
| | - Flavia Nocerino
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Francesca Cappuccio
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Giovanni Grimaldi
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Alessandro Izzo
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Luigi Castaldo
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Maria Filomena Pepe
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Maria Gabriella Malzone
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Gelsomina Iovane
- Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Gianluca Ametrano
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Lucio Quagliuolo
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Daniela Barberio
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Psicology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Maurizio Montella
- Epidemiology Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale', IRCCS, Napoli, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori, Istituto Nazionale Tumori-Fondazione G. Pascale, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.,Scientific Directorate, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli" Naples, Naples, Italy
| | - Gaetano Facchini
- Progetto ONCONET2.0, Linea progettuale 14 per l'implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Division of Medical Oncology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori 'Fondazione G. Pascale', IRCCS, Naples, Italy
| |
Collapse
|
29
|
miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget 2018; 8:50193-50208. [PMID: 28422730 PMCID: PMC5564843 DOI: 10.18632/oncotarget.16745] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs, a family of single-stranded and non-coding RNAs, play a crucial role in regulating gene expression at posttranscriptional level, by which it can mediate various types of physiological and pathological process in normal developmental progress and human disease, including cancer. The microRNA-133b originally defined as canonical muscle-specific microRNAs considering their function to the development and health of mammalian skeletal and cardiac muscles, but new findings coming from our group and others revealed that miR-133b have frequently abnormal expression in various kinds of human cancer and its complex complicated regulatory networks affects the tumorigenicity and development of malignant tumors. Very few existing reviews on miR-133b, until now, are principally about its role in homologous cluster (miR-1, −133 and -206s), however, most of constantly emerging new researches now are focused mainly on one of them, so In this article, to highlight the unique pathological role of miR-133b playing in tumor, we conduct a review to summarize the current understanding about one of the muscle-specific microRNAs, namely miR-133b, acting in human cancer. The review focused on the following four aspects: the overview of miR-133b, the target genes of miR-133b involved in human cancer, the expression of miR-133b and regulatory mechanisms leading to abnormal expression of miR-133b.
Collapse
|
30
|
Fort RS, Mathó C, Oliveira-Rizzo C, Garat B, Sotelo-Silveira JR, Duhagon MA. An integrated view of the role of miR-130b/301b miRNA cluster in prostate cancer. Exp Hematol Oncol 2018; 7:10. [PMID: 29744254 PMCID: PMC5930504 DOI: 10.1186/s40164-018-0102-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/20/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a major health problem worldwide due to its high incidence morbidity and mortality. There is currently a need of improved biomarkers, capable to distinguish mild versus aggressive forms of the disease, and thus guide therapeutic decisions. Although miRNAs deregulated in cancer represent exciting candidates as biomarkers, its scientific literature is frequently fragmented in dispersed studies. This problem is aggravated for miRNAs belonging to miRNA gene clusters with shared target genes. The miRNA cluster composed by hsa-mir-130b and hsa-mir-301b precursors was recently involved in prostate cancer pathogenesis, yet different studies assigned it opposite effects on the disease. We sought to elucidate the role of the human miR-130b/301b miRNA cluster in prostate cancer through a comprehensive data analysis of most published clinical cohorts. We interrogated methylomes, transcriptomes and patient clinical data, unifying previous reports and adding original analysis using the largest available cohort (TCGA-PRAD). We found that hsa-miR-130b-3p and hsa-miR-301b-3p are upregulated in neoplastic vs normal prostate tissue, as well as in metastatic vs primary sites. However, this increase in expression is not due to a decrease of the global DNA methylation of the genes in prostate tissues, as the promoter of the gene remains lowly methylated in normal and neoplastic tissue. A comparison of the levels of human miR-130b/301b and all the clinical variables reported for the major available cohorts, yielded positive correlations with malignance, specifically significant for T-stage, residual tumor status and primary therapy outcome. The assessment of the correlations between the hsa-miR-130b-3p and hsa-miR-301b-3p and candidate target genes in clinical samples, supports their repression of tumor suppressor genes in prostate cancer. Altogether, these results favor an oncogenic role of miR-130b/301b cluster in prostate cancer.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Mathó
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carolina Oliveira-Rizzo
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- 3Depto. de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,4Depto. de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- 1Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,2Depto. de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Wang JY, Huang JC, Chen G, Wei DM. Expression level and potential target pathways of miR-1-3p in colorectal carcinoma based on 645 cases from 9 microarray datasets. Mol Med Rep 2018; 17:5013-5020. [PMID: 29393467 PMCID: PMC5865962 DOI: 10.3892/mmr.2018.8532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
For the purpose of demonstrating the clinical value and unraveling the molecular mechanisms of micro RNA (miR)-1-3p in colorectal carcinoma (CRC), the present study collected expression and diagnostic data from Gene Expression Omnibus (GEO), ArrayExpress and existing literature to conduct meta-analyses and diagnostic tests. Furthermore, the potential targets of miR-1-3p were attained from datasets that transfected miR-1-3p into CRC cells, online prediction databases and differentially expressed genes from The Cancer Genome Atlas and literature. Subsequently, bioinformatics analysis was conducted based on the aforementioned selected target genes. As a result, downregulation of miR-1-3p was observed. The combined standardized mean difference was −0.51 with 95% confidence interval (CI) of −0.68 to −0.33 using a fixed effect model, which demonstrated a significant downregulation of miR-1-3p in CRC. The combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio diagnostic score and odds ratio were 0.74 (95%CI: 0.48, 0.90), 0.75 (95%CI: 0.35, 0.94), 2.94 (95%CI: 1.01, 8.55), 0.34 (95%CI: 0.19, 0.60), 2.15 (95%CI: 1.06, 3.23) and 8.57 (95%CI: 2.89, 25.36). The summarized receiver operating characteristic curve demonstrated that the area under the curve was 0.81. In bioinformatics analyses based on 30 promising targets, the most enriched terms in Gene Ontology were positive regulation of transcription from RNA polymerase II promoter, extracellular region and transcription factor binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis highlighted the pathway termed cytokine-cytokine receptor interaction. In protein-protein interaction analysis, platelet factor 4 was selected as the hub gene. To conclude, miR-1-3p is downregulated in CRC and likely suppresses CRC via multiple biological approaches, which indicates the diagnostic potential and tumor suppressive efficacy.
Collapse
Affiliation(s)
- Jie-Yu Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Cheng Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
32
|
Hongdan L, Feng L. miR-3120-5p promotes colon cancer stem cell stemness and invasiveness through targeting Axin2. Biochem Biophys Res Commun 2018; 496:302-308. [PMID: 29307822 DOI: 10.1016/j.bbrc.2018.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 01/12/2023]
Abstract
It is well known that colon cancer stemness and invasiveness are the main reasons for tumor recurrence and metastasis. MicroRNAs dysregulation can disrupt the balance of cell signaling and growth processes, resulting in cancer proliferation, invasion and metastasis, chemoresistance and so on. In this study, we used colon cancer cell lines HCT-116 and SW-480 to investigate the effects of miR-3120-5p on stemness and invasiveness of colon cancer. We found that the population of CD133 + and Lgr5+ stem cells in both cell lines expressed miR-3120-5p highly, and introducing miR-3120-5p into both cell lines increased the population of cancer stem cells, as measured by flow cytometry, qRT-PCR and sphere formation assays. Transwell assay, Gelatin zymography assay and Western blot assays further revealed that miR-3120-5p promotes colon cancer cells invasive ability. By the target prediction algorithm TargetScan, we found Axin2 is a potential target for miR-3120-5p, and luciferase reporter assay demonstrated that miR-3120-5p reduces Axin2 expression. Transfection of siRNA against Axin2 into colon cancer cells promoted the stemness and invasion of colon cancer cells. Furthermore, Axin2 overexpression partially reversed the promotion of stemness and invasiveness caused by miR-3120-5p in colon cancer cells. Together, all the results demonstrated miR-3120-5p promotes stemness and invasiveness of colon cancer cells through direct targeting of Axin2. They suggest that antago-miR-3120-5p plays important roles on treatment strategy for colon cancer.
Collapse
Affiliation(s)
- Li Hongdan
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health and Family Planning Commission of the PRC, Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Li Feng
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health and Family Planning Commission of the PRC, Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China.
| |
Collapse
|
33
|
Karakas C, Wang C, Deng F, Huang H, Wang D, Lee P. Molecular mechanisms involving prostate cancer racial disparity. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2017; 5:34-48. [PMID: 29181436 PMCID: PMC5698597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths in the United States. The African (AA) descent has greater incidence and mortality rates of PCa as compared to Caucasian (CA) men. While socioeconomic differences across racial groups contribute to disparity in PCa, increasing evidence points that genetic and molecular alterations play important roles in racial disparities associated with PCa. In this review, we focus on genetic and molecular influences that contribute to racial disparity between AA and CA men including: androgen and estrogen receptor signaling pathways, growth factors, apoptotic proteins, genetic, genomic and epigenetic alterations. Future translational studies will identify prognostic and predictive biomarkers for AA PCa and assist in the development of new targeted-therapies specifically for AA men with PCa.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Cassie Wang
- Department of Bioengineering, University of PennsylvaniaPennsylvania, PA, USA
| | - Fangming Deng
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Hongying Huang
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Dongwen Wang
- Department of Urology, First Hospital of Shanxi Medical UniversityTaiyuan, Shanxi, China
| | - Peng Lee
- Department of Pathology, New York University School of MedicineNew York, NY, USA
- Department of Urology, New York University School of MedicineNew York, NY, USA
- Department of New York Harbor Healthcare System, New York University School of MedicineNew York, NY, USA
| |
Collapse
|
34
|
Kanwal R, Plaga AR, Liu X, Shukla GC, Gupta S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett 2017; 407:9-20. [DOI: 10.1016/j.canlet.2017.08.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 12/19/2022]
|
35
|
Tissue-Based MicroRNAs as Predictors of Biochemical Recurrence after Radical Prostatectomy: What Can We Learn from Past Studies? Int J Mol Sci 2017; 18:ijms18102023. [PMID: 28934131 PMCID: PMC5666705 DOI: 10.3390/ijms18102023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
With the increasing understanding of the molecular mechanism of the microRNAs (miRNAs) in prostate cancer (PCa), the predictive potential of miRNAs has received more attention by clinicians and laboratory scientists. Compared with the traditional prognostic tools based on clinicopathological variables, including the prostate-specific antigen, miRNAs may be helpful novel molecular biomarkers of biochemical recurrence for a more accurate risk stratification of PCa patients after radical prostatectomy and may contribute to personalized treatment. Tissue samples from prostatectomy specimens are easily available for miRNA isolation. Numerous studies from different countries have investigated the role of tissue-miRNAs as independent predictors of disease recurrence, either alone or in combination with other clinicopathological factors. For this purpose, a PubMed search was performed for articles published between 2008 and 2017. We compiled a profile of dysregulated miRNAs as potential predictors of biochemical recurrence and discussed their current clinical relevance. Because of differences in analytics, insufficient power and the heterogeneity of studies, and different statistical evaluation methods, limited consistency in results was obvious. Prospective multi-institutional studies with larger sample sizes, harmonized analytics, well-structured external validations, and reasonable study designs are necessary to assess the real prognostic information of miRNAs, in combination with conventional clinicopathological factors, as predictors of biochemical recurrence.
Collapse
|
36
|
Karatas OF, Wang J, Shao L, Ozen M, Zhang Y, Creighton CJ, Ittmann M. miR-33a is a tumor suppressor microRNA that is decreased in prostate cancer. Oncotarget 2017; 8:60243-60256. [PMID: 28947967 PMCID: PMC5601135 DOI: 10.18632/oncotarget.19521] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 01/17/2023] Open
Abstract
Prostate cancer is one of the most frequently diagnosed neoplasms among men worldwide. MicroRNAs (miRNAs) are involved in numerous important cellular processes including proliferation, differentiation and apoptosis. They have been found to be aberrantly expressed in many types of human cancers. They can act as either tumor suppressors or oncogenes, and changes in their levels are associated with tumor initiation, progression and metastasis. miR-33a is an intronic miRNA embedded within SREBF2 that has been reported to have tumor suppressive properties in some cancers but has not been examined in prostate cancer. SREBF2 increases cholesterol and lipid levels both directly and via miR-33a action. The levels of SREBF2 and miR-33a are correlated in normal tissues by co-transcription from the same gene locus. Paradoxically, SREBF2 has been reported to be increased in prostate cancer, which would be predicted to increase miR-33a levels potentially leading to tumor suppression. We show here that miR-33a has tumor suppressive activities and is decreased in prostate cancer. The decreased miR-33a increases mRNA for the PIM1 oncogene and multiple genes in the lipid β-oxidation pathway. Levels of miR-33a are not correlated with SREBF2 levels, implying posttranscriptional regulation of its expression in prostate cancer.
Collapse
Affiliation(s)
- Omer Faruk Karatas
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA.,Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Jianghua Wang
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| | - Longjiang Shao
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| | - Mustafa Ozen
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Yiqun Zhang
- Dan L. Duncan Cancer Center Division of Biostatistics, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Cancer Center Division of Biostatistics, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology and Immunology and Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, TX, USA
| |
Collapse
|
37
|
Wang X, Bu J, Liu X, Wang W, Mai W, Lv B, Zou J, Mo X, Li X, Wang J, Niu B, Fan Y, Hou B. miR-133b suppresses metastasis by targeting HOXA9 in human colorectal cancer. Oncotarget 2017; 8:63935-63948. [PMID: 28969042 PMCID: PMC5609974 DOI: 10.18632/oncotarget.19212] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 06/11/2017] [Indexed: 01/20/2023] Open
Abstract
Functions and mechanisms of microRNA (miRNA) involved in colorectal cancer (CRC) metastasis are largely unknown. Here, a miRNA microarray analysis was performed in CRC primary tissues and metastatic hepatic tissues to disclose crucial miRNA involved in CRC metastasis. MiR-133b was decreased and negatively correlated with metastasis in CRC. Overexpression of miR-133b significantly suppressed metastasis of CRC in vitro and in vivo. HOXA9 was identified as a direct and functional target of miR-133b. In addition, HOXA9 was negatively correlated with miR-133b and promoted CRC malignant progress. Moreover, miR-133b decreased HOXA9 expression, and subsequently downregulated ZEB1 and upregulated E-cadherin expression. Intriguingly, lower miR-133b and higher HOXA9 expression significantly contributed to poorer outcomes in CRC patients. Multivariate analysis indicated that miR-133b was an independent and significant predictor of CRC patient overall survival. In conclusion, we newly determined that miR-133b targeted the HOXA9/ZEB1 pathway to promote tumor metastasis in CRC cells. This axis provided insights into the mechanism underlying miRNA regulation of CRC metastasis and a novel therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Xiao Wang
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Juyuan Bu
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Xingwei Liu
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Wenfeng Wang
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Weihua Mai
- Departments of Preventive Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Baojun Lv
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jinlin Zou
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Xiangqiong Mo
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Xiaoling Li
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jingyu Wang
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Bin Niu
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yunping Fan
- Departments of ENT - Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Bingzong Hou
- Departments of General Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
38
|
Inhibition of the androgen receptor induces a novel tumor promoter, ZBTB46, for prostate cancer metastasis. Oncogene 2017; 36:6213-6224. [DOI: 10.1038/onc.2017.226] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 05/27/2017] [Indexed: 12/17/2022]
|
39
|
Pashaei E, Pashaei E, Ahmady M, Ozen M, Aydin N. Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS One 2017; 12:e0179543. [PMID: 28651018 PMCID: PMC5484492 DOI: 10.1371/journal.pone.0179543] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a leading reason of death in men and the most diagnosed malignancies in the western countries at the present time. After radical prostatectomy (RP), nearly 30% of men develop clinical recurrence with high serum prostate-specific antigen levels. An important challenge in PCa research is to identify effective predictors of tumor recurrence. The molecular alterations in microRNAs are associated with PCa initiation and progression. Several miRNA microarray studies have been conducted in recurrence PCa, but the results vary among different studies. METHODS We conducted a meta-analysis of 6 available miRNA expression datasets to identify a panel of co-deregulated miRNA genes and overlapping biological processes. The meta-analysis was performed using the 'MetaDE' package, based on combined P-value approaches (adaptive weight and Fisher's methods), in R version 3.3.1. RESULTS Meta-analysis of six miRNA datasets revealed miR-125A, miR-199A-3P, miR-28-5P, miR-301B, miR-324-5P, miR-361-5P, miR-363*, miR-449A, miR-484, miR-498, miR-579, miR-637, miR-720, miR-874 and miR-98 are commonly upregulated miRNA genes, while miR-1, miR-133A, miR-133B, miR-137, miR-221, miR-340, miR-370, miR-449B, miR-489, miR-492, miR-496, miR-541, miR-572, miR-583, miR-606, miR-624, miR-636, miR-639, miR-661, miR-760, miR-890, and miR-939 are commonly downregulated miRNA genes in recurrent PCa samples in comparison to non-recurrent PCa samples. The network-based analysis showed that some of these miRNAs have an established prognostic significance in other cancers and can be actively involved in tumor growth. Gene ontology enrichment revealed many target genes of co-deregulated miRNAs are involved in "regulation of epithelial cell proliferation" and "tissue morphogenesis". Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these miRNAs regulate cancer pathways. The PPI hub proteins analysis identified CTNNB1 as the most highly ranked hub protein. Besides, common pathway analysis showed that TCF3, MAX, MYC, CYP26A1, and SREBF1 significantly interact with those DE miRNA genes. The identified genes have been known as tumor suppressors and biomarkers which are closely related to several cancer types, such as colorectal cancer, breast cancer, PCa, gastric, and hepatocellular carcinomas. Additionally, it was shown that the combination of DE miRNAs can assist in the more specific detection of the PCa and prediction of biochemical recurrence (BCR). CONCLUSION We found that the identified miRNAs through meta-analysis are candidate predictive markers for recurrent PCa after radical prostatectomy.
Collapse
Affiliation(s)
- Elnaz Pashaei
- Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Elham Pashaei
- Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Maryam Ahmady
- Department of Computer Engineering and IT, Payame Noor University, Tehran, Iran
| | - Mustafa Ozen
- Department of Pathology & Immunology Baylor College of Medicine, Houston, Texas, United States of America
| | - Nizamettin Aydin
- Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
40
|
Luu HN, Lin HY, Sørensen KD, Ogunwobi OO, Kumar N, Chornokur G, Phelan C, Jones D, Kidd L, Batra J, Yamoah K, Berglund A, Rounbehler RJ, Yang M, Lee SH, Kang N, Kim SJ, Park JY, Di Pietro G. miRNAs associated with prostate cancer risk and progression. BMC Urol 2017; 17:18. [PMID: 28320379 PMCID: PMC5359825 DOI: 10.1186/s12894-017-0206-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is the most common malignancy among men in the US. Though considerable improvement in the diagnosis of prostate cancer has been achieved in the past decade, predicting disease outcome remains a major clinical challenge. Recent expression profiling studies in prostate cancer suggest microRNAs (miRNAs) may serve as potential biomarkers for prostate cancer risk and disease progression. miRNAs comprise a large family of about 22-nucleotide-long non-protein coding RNAs, regulate gene expression post-transcriptionally and participate in the regulation of numerous cellular processes. In this review, we discuss the current status of miRNA in studies evaluating the disease progression of prostate cancer. The discussion highlights key findings from previous studies, which reported the role of miRNAs in risk and progression of prostate cancer, providing an understanding of the influence of miRNA on prostate cancer. Our review indicates that somewhat consistent results exist between these studies and reports on several prostate cancer related miRNAs. Present promising candidates are miR-1, −21, 106b, 141, −145, −205, −221, and −375, which are the most frequently studied and seem to be the most promising for diagnosis and prognosis for prostate cancer. Nevertheless, the findings from previous studies suggest miRNAs may play an important role in the risk and progression of prostate cancer as promising biomarkers.
Collapse
Affiliation(s)
- Hung N Luu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, 10065, USA
| | - Nagi Kumar
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ganna Chornokur
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Catherine Phelan
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Dominique Jones
- Department of Pharmacology and Toxicology, James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - LaCreis Kidd
- Department of Pharmacology and Toxicology, James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-QLD, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Kosj Yamoah
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Robert J Rounbehler
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mihi Yang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyoung Women's University, Seoul, Republic of Korea
| | - Sang Haak Lee
- Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nahyeon Kang
- Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - Giuliano Di Pietro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Pharmacy, Federal University of Sergipe, Rodovia Marechal Rodon, Jardim Rosa Elze, Sao Cristóvão, Brazil
| |
Collapse
|
41
|
Kumar B, Lupold SE. MicroRNA expression and function in prostate cancer: a review of current knowledge and opportunities for discovery. Asian J Androl 2017; 18:559-67. [PMID: 27056344 PMCID: PMC4955179 DOI: 10.4103/1008-682x.177839] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are well-conserved noncoding RNAs that broadly regulate gene expression through posttranscriptional silencing of coding genes. Dysregulated miRNA expression in prostate and other cancers implicates their role in cancer biology. Moreover, functional studies provide support for the contribution of miRNAs to several key pathways in cancer initiation and progression. Comparative analyses of miRNA gene expression between malignant and nonmalignant prostate tissues, healthy controls and prostate cancer (PCa) patients, as well as less aggressive versus more aggressive disease indicate that miRNAs may be future diagnostic or prognostic biomarkers in tumor tissue, blood, or urine. Further, miRNAs may be future therapeutics or therapeutic targets. In this review, we examine the miRNAs most commonly observed to be de-regulated in PCa gene expression analyses and review the potential contribution of these miRNAs to important pathways in PCa initiation and progression.
Collapse
Affiliation(s)
- Binod Kumar
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shawn E Lupold
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
TCF7 is suppressed by the androgen receptor via microRNA-1-mediated downregulation and is involved in the development of resistance to androgen deprivation in prostate cancer. Prostate Cancer Prostatic Dis 2017; 20:172-178. [PMID: 28220803 DOI: 10.1038/pcan.2017.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/30/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Resistance to androgen deprivation therapy (ADT) represents a key step in the malignant progression of prostate cancer, and mutation to androgen receptor (AR) is one major driver to an androgen-independent phenotype. However, alternative oncogenic pathways that bypass AR signaling have emerged as an important mechanism promoting resistance to ADT. It is known that AR activation can prevent the interaction between β-catenin and T cell factor/lymphoid enhancer-binding factor (TCF/LEF) family, inhibiting the Wnt signaling pathway. The aim of this study was to determine the role of transcription factor 7 (TCF7), a transcription factor best known as a Wnt effector that forms a complex with β-catenin, in the development of advanced prostate cancer. We further investigated the molecular mechanisms by which TCF7 is induced when AR signaling is inactivated. METHODS A novel AR signaling pathway that induces microRNA-1 (miR-1) to suppress metastatic prostate cancer was recently demonstrated (AR-miR-1 signaling axis), and its regulation of Wnt signaling was explored in the current study. Clinical data sets were analyzed for potential targets of AR-miR-1 signaling in the TCF/LEF family, and tissue samples were utilized to validate the relationship. The molecular mechanism and biological functions were demonstrated in prostate cancer cell lines and a mouse xenograft model. RESULTS We demonstrated a molecular mechanism of AR signaling suppressing TCF7 partly through miR-1-mediated downregulation. TCF7 exhibited oncogenic properties and compromised the tumor-suppressive effects of miR-1. Our results also showed that overexpression of TCF7 or disruption of miR-1 function promoted androgen-independent proliferation. CONCLUSIONS We demonstrated that the AR-miR-1 axis negatively regulates the novel oncogenic factor, TCF7. Dysregulation of TCF7 promoted a survival advantage and resistance to androgen deprivation, suggesting its therapeutic potential for castration-resistant prostate cancer.
Collapse
|
43
|
Wei W, Leng J, Shao H, Wang W. MiR-1, a Potential Predictive Biomarker for Recurrence in Prostate Cancer After Radical Prostatectomy. Am J Med Sci 2017; 353:315-319. [PMID: 28317618 DOI: 10.1016/j.amjms.2017.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/30/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Increasing evidence suggests that aberrant microRNAs expressions are significantly associated with cancer progression. Previous studies have reported that the relative expression of miR-1 is significantly downregulated in recurrent prostate cancer (PCa) samples when compared with nonrecurrent PCa tissues. However, whether miR-1 can serve as a novel predictive biomarker for PCa recurrence still remains unclear. MATERIALS AND METHODS The patients with clinically localized PCa who underwent radical prostatectomy by the same medical team at the Department of Urology, Ningbo No.2 Hospital were enrolled in this study. We examined the miR-1 expression levels in recurrent and nonrecurrent tumor samples by quantitative reverse transcription polymerase chain reaction. Univariate and multivariate Cox proportional hazards analyses were used for the evaluation of potential predictors of PCa recurrence. RESULTS During the study period, 78 patients (including 27 in the recurrent group and 51 in the nonrecurrent group) who were diagnosed with PCa and who underwent radical prostatectomy were included in the final analysis. MiR-1 was significantly downregulated in recurrent PCa tissues when compared with nonrecurrent tumor samples (P < 0.001). The univariate and multivariate Cox proportional hazards analyses indicated that miR-1 was the only independent prognostic factor for PCa recurrence (hazard ratio = 1.86; 95% CI: 1.21-2.94; P = 0.011). The area under the curve value of miR-1 for PCa recurrence was 0.885 (P < 0.001) with the sensitivity of 0.863 and specificity of 0.889 based on receiver operating characteristic curve analysis. CONCLUSIONS This study identifies that miR-1 in PCa tissues can function as an important independent predictive factor for PCa recurrence.
Collapse
Affiliation(s)
- Wei Wei
- Department of Urinary Surgery, Ningbo No.2 Hospital, Ningbo City, Zhejiang Province, China.
| | - Jiangyong Leng
- Department of Urinary Surgery, Ningbo No.2 Hospital, Ningbo City, Zhejiang Province, China
| | - Hongxiang Shao
- Department of Urinary Surgery, Ningbo No.2 Hospital, Ningbo City, Zhejiang Province, China
| | - Weidong Wang
- Department of Urinary Surgery, Ningbo No.2 Hospital, Ningbo City, Zhejiang Province, China
| |
Collapse
|
44
|
Han P, Li JW, Zhang BM, Lv JC, Li YM, Gu XY, Yu ZW, Jia YH, Bai XF, Li L, Liu YL, Cui BB. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol Cancer 2017; 16:9. [PMID: 28086904 PMCID: PMC5237133 DOI: 10.1186/s12943-017-0583-1] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022] Open
Abstract
Background With more than 600,000 mortalities each year, colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide. Recently, mechanisms involving noncoding RNAs have been implicated in the development of CRC. Methods We examined expression levels of lncRNA CRNDE and miR-181a-5p in 64 cases of CRC tissues and cell lines by qRT-PCR. Gain-of-function and loss-of-function assays were performed to examine the effect of CRNDE and miR-181a-5p on proliferation and chemoresistance of CRC cells. Using fluorescence reporter and western blot assays, we also explored the possible mechanisms of CRNDE in CRC cells. Results In this study, we found that the expression levels of the CRNDE were upregulated in CRC clinical tissue samples. We identified microRNA miR-181a-5p as an inhibitory target of CRNDE. Both CRNDE knockdown and miR-181a-5p overexpression in CRC cell lines led to inhibited cell proliferation and reduced chemoresistance. We also determined that β-catenin and TCF4 were inhibitory targets of miR-181a-5p, and that Wnt/β-catenin signaling was inhibited by both CRNDE knockdown and miR-181a-5p overexpression. Significantly, we found that the repression of cell proliferation, the reduction of chemoresistance, and the inhibition of Wnt/β-catenin signaling induced by CRNDE knockdown would require the increased expression of miR-181a-5p. Conclusions Our study demonstrated that the lncRNA CRNDE could regulate the progression and chemoresistance of CRC via modulating the expression levels of miR-181a-5p and the activity of Wnt/β-catenin signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0583-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Han
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Jing-Wen Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Bo-Miao Zhang
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Jia-Chen Lv
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Yong-Min Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Xin-Yue Gu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Zhi-Wei Yu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Yun-He Jia
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Xue-Feng Bai
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Li Li
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Yan-Long Liu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, 150040, People's Republic of China.
| |
Collapse
|
45
|
Peng CY, Liao YW, Lu MY, Yu CH, Yu CC, Chou MY. Downregulation of miR-1 enhances tumorigenicity and invasiveness in oral squamous cell carcinomas. J Formos Med Assoc 2017; 116:782-789. [PMID: 28089494 DOI: 10.1016/j.jfma.2016.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/23/2016] [Accepted: 12/04/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/PURPOSE Cumulative evidence suggest that microRNAs (miRNAs) function as biosignatures of oral squamous cell carcinomas (OSCC). However, the functional roles of miR-1 as well as its downstream targets in the regulation of tumorigenicity in OSCC remain unclear. METHODS miRNAs RT-PCR analysis was performed to identify miR-1 as a putative candidate on mediating invasiveness of OSCC cells. Consequently, we elucidated the tumorigenicity of OSCC cells with miR-1 downregulation or overexpression, respectively. Finally, miR-1 on OSCC tumor tissues was examined. RESULTS miR-1 levels were significantly downregulated in the malignant OSCC cells. Overexpression of miR-1 significantly reduced migration/invasiveness of OSCC cells. In addition, overexpression of miR-1 decreased cancer stem cells properties. Conversely, downregulation of miR-1 promotes migration and invasiveness in OSCC cells. We have shown that miR-1 is able to target Slug, suppressing their expression. Clinically, lower miR-1 expression was found in patients with advanced nodal metastasis OSCC. CONCLUSION miR-1 as novel biosignatures in OSCC lymph node metastatic patients, supporting the development of novel strategies for OSCC treatment.
Collapse
Affiliation(s)
- Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
46
|
Karatas OF, Suer I, Yuceturk B, Yilmaz M, Oz B, Guven G, Cansiz H, Creighton CJ, Ittmann M, Ozen M. Identification of microRNA profile specific to cancer stem-like cells directly isolated from human larynx cancer specimens. BMC Cancer 2016; 16:853. [PMID: 27816053 PMCID: PMC5097853 DOI: 10.1186/s12885-016-2863-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022] Open
Abstract
Background Emerging evidences proposed that microRNAs are associated with regulation of distinct physio-pathological processes including development of normal stem cells and carcinogenesis. In this study we aimed to investigate microRNA profile of cancer stem-like cells (CSLCs) isolated form freshly resected larynx cancer (LCa) tissue samples. Methods CD133 positive (CD133+) stem-like cells were isolated from freshly resected LCa tumor specimens. MicroRNA profile of 12 pair of CD133+ and CD133− cells was determined using microRNA microarray and differential expressions of selvected microRNAs were validated by quantitative real time PCR (qRT-PCR). Results MicroRNA profiling of CD133+ and CD133− LCa samples with microarray revealed that miR-26b, miR-203, miR-200c, and miR-363-3p were significantly downregulated and miR-1825 was upregulated in CD133+ larynx CSLCs. qRT-PCR analysis in a total of 25 CD133+/CD133− sample pairs confirmed the altered expressions of these five microRNAs. Expressions of miR-26b, miR-200c, and miR-203 were significantly correlated with miR-363-3p, miR-203, and miR-363-3p expressions, respectively. Furthermore, in silico analysis revealed that these microRNAs target both cancer and stem-cell associated signaling pathways. Conclusions Our results showed that certain microRNAs in CD133+ cells could be used as cancer stem cell markers. Based on these results, we propose that this panel of microRNAs might carry crucial roles in LCa pathogenesis through regulating stem cell properties of tumor cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2863-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
| | - Ilknur Suer
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Betul Yuceturk
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey.,Advanced Genomics and Bioinformatics Research Center, The Scientific and Technological Research Council of Turkey (TUBITAK), Gebze, Kocaeli, Turkey
| | - Mehmet Yilmaz
- Department of Otorhinolaryngology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Buge Oz
- Department of Pathology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Gulgun Guven
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey
| | - Harun Cansiz
- Department of Otorhinolaryngology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.,Michael E. DeBakey VAMC, Houston, TX, 77030, USA
| | - Mustafa Ozen
- Department of Medical Genetics, Istanbul University Cerrahpasa Medical School, Istanbul, Turkey. .,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
miR-20b Inhibits T Cell Proliferation and Activation via NFAT Signaling Pathway in Thymoma-Associated Myasthenia Gravis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9595718. [PMID: 27833920 PMCID: PMC5090074 DOI: 10.1155/2016/9595718] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/10/2016] [Accepted: 09/25/2016] [Indexed: 12/20/2022]
Abstract
Purpose. We examined the role of miR-20b in development of thymoma-associated myasthenia gravis, especially in T cell proliferation and activation. Materials and Methods. Using qRT-PCR, we assessed expression levels of miR-20b and its target genes in cultured cells and patient samples and examined the proliferation of cultured cells, using MTT cell proliferation assays and flow cytometry based cell cycle analysis. Activation of T cells was determined by both flow cytometry and qRT-PCR of activation-specific marker genes. Results. Expression of miR-20b was downregulated in samples of thymoma tissues and serum from patients with thymoma-associated myasthenia gravis. In addition, T cell proliferation and activation were inhibited by ectopic overexpression of miR-20b, which led to increased T cell proliferation and activation. NFAT5 and CAMTA1 were identified as targets of miR-20b. Expression levels of NFAT5 and CAMTA1 were inhibited by miR-20b expression in cultured cells, and the expression levels of miR-20b and NFAT5/CAMTA1 were inversely correlated in patients with thymoma-associated myasthenia gravis. Conclusion. miR-20b acts as a tumor suppressor in the development of thymoma and thymoma-associated myasthenia gravis. The tumor suppressive function of miR-20b in thymoma could be due to its inhibition of NFAT signaling by repression of NFAT5 and CAMTA1 expression.
Collapse
|
48
|
Doldi V, Pennati M, Forte B, Gandellini P, Zaffaroni N. Dissecting the role of microRNAs in prostate cancer metastasis: implications for the design of novel therapeutic approaches. Cell Mol Life Sci 2016; 73:2531-42. [PMID: 26970978 PMCID: PMC11108520 DOI: 10.1007/s00018-016-2176-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/19/2023]
Abstract
Metastatic prostate cancer is a lethal disease that remains incurable despite the recent approval of new drugs, thus making the development of alternative treatment approaches urgently needed. A more precise understanding of the molecular mechanisms underlying prostate cancer dissemination could lead to the identification of novel therapeutic targets for the design of efficient anti-metastatic strategies. MicroRNA (miRNAs) are endogenous, small non-coding RNA molecules acting as key regulators of gene expression at post-transcriptional level. It has been clearly established that altered miRNA expression is a common hallmark of cancer. In addition, emerging evidence suggests their direct involvement in the metastatic cascade. In this review, we present a comprehensive overview of the data generated in experimental tumor models indicating that specific miRNAs may impinge on the different stages of prostate cancer metastasis, including (i) the regulation of epithelial-to-mesenchymal transition and cell migration/invasion, (ii) the interplay between cancer cells and the surrounding stroma, (iii) the control of angiogenesis, (iv) the regulation of anoikis, and (v) the colonization of distant organs. Moreover, we show preliminary evidence of the clinical relevance of some of these miRNAs, in terms of association with tumor aggressiveness/dissemination and clinical outcome, as emerged from translation studies carried out in prostate cancer patient cohorts. We also discuss the potential and the current limitations of manipulating metastasis-related miRNAs, by mimicking or inhibiting them, as a strategy for the development of novel therapeutic approaches for the advanced disease.
Collapse
Affiliation(s)
- Valentina Doldi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Barbara Forte
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Paolo Gandellini
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy.
| |
Collapse
|
49
|
Chen X, Wu B, Xu Z, Li S, Tan S, Liu X, Wang K. Downregulation of miR-133b predict progression and poor prognosis in patients with urothelial carcinoma of bladder. Cancer Med 2016; 5:1856-62. [PMID: 27292588 PMCID: PMC4971914 DOI: 10.1002/cam4.777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022] Open
Abstract
We found microRNA-133b (miR-133b) was downregulated in urothelial carcinoma of the bladder (UCB) tissues, and it could inhibit the proliferation and induce apoptosis in UCB cells. Consequently, we intend to explore the clinical significance of miR-133b in UCB patients. Expression of miR-133b in 146 UCB specimens and matched adjacent non-neoplastic bladder tissues were measured by quantitative real-time polymerase chain reaction. The overall survival (OS) curve and progression-free survival (PFS) curve were plotted using the Kaplan-Meier method. Prognostic factors for OS and PFS were identified by univariate and multivariate analyses using the Cox proportional hazards regression model. The expression of miR-133b was significantly downregulated in UCB tissues compared with those in adjacent non-neoplastic bladder tissues (P < 0.001). Among UCB patients, low expression of miR-133b significantly correlated with aggressive clinicopathological features. Multivariate analysis indicated that the expression of miR-133b was the independent prognostic factors for predicting PFS (RR: 2.97; 95% CI: 1.78-6.44; P = 0.009) and OS (RR: 4.23; 95% CI: 1.51-11.8; P = 0.011) in patients with UCB. Our study demonstrated that downregulation of miR-133b associated with aggressive clinicopathological features and predicted unfavorable prognosis in patients with UCB, might serve as feasible biomarker for clinical outcome of UCB patients after surgery and potential therapeutic target in the future.
Collapse
Affiliation(s)
- Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Division of Nephrology and Cancer Center, University of California, Davis, CA, 95616
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
50
|
Das DK, Osborne JR, Lin HY, Park JY, Ogunwobi OO. miR-1207-3p Is a Novel Prognostic Biomarker of Prostate Cancer. Transl Oncol 2016; 9:236-41. [PMID: 27267842 PMCID: PMC4907897 DOI: 10.1016/j.tranon.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to be dysregulated in prostate cancer (PCa). In this study, we investigated if miR-1207-3p is capable of distinguishing between indolent and aggressive PCa and if it contributes to explaining the disproportionate aggressiveness of PCa in men of African ancestry (moAA). A total of 404 patients with primary adenocarcinoma of the prostate were recruited between 1988 and 2003 at the Moffitt Cancer Center, Tampa, FL, USA. Patient clinicopathological features and demographic characteristics such as race were identified. RNA samples from 404 postprostatectomy prostate tumor tissue samples were analyzed by real-time quantitative reverse transcription polymerase chain reaction for the mRNA expression of miR-1207-3p. miR-1207-3p expression in PCa that resulted in overall death or PCa-specific death is significantly higher than in PCa cases that did not. The same positive correlation holds true for other clinical characteristics such as biochemical recurrence, Gleason score, clinical stage, and prostate-specific antigen level. Furthermore, miR-1207-3p expression was significantly less in moAA in comparison to Caucasian men. We also evaluated whether miR-1207-3p is associated with clinical outcomes adjusted for age at diagnosis and tumor stage in the modeling. Using competing risk regression, the PCa patients with a high miR-1207-3p expression (≥6 vs 3) had a high risk to develop PCa recurrence (hazard rate = 2.5, P < .001) adjusting for age at diagnosis and tumor stage. In conclusion, miR-1207-3p is a promising novel prognostic biomarker for PCa. Furthermore, miR-1207-3p may also be important in explaining the disproportionate aggressiveness of PCa in moAA.
Collapse
Affiliation(s)
- Dibash K Das
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, 10065, USA; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY, 10016, USA
| | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hui-Yi Lin
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, 10065, USA; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY, 10016, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College Cornell University, New York, NY, 10065, USA.
| |
Collapse
|