1
|
Wu W, Yu C, Sui L, Xu H, Li J, Zhou N, Chen L, Song Z. Molecularly imprinted polymer-coated silica microbeads for high-performance liquid chromatography. Analyst 2024; 149:3765-3772. [PMID: 38842353 DOI: 10.1039/d4an00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Molecularly imprinted polymer (MIP)-based chromatographic separation materials, owing to their advantages of unique selectivity, low cost, suitable reproducibility, and acceptable stability, have attracted a great deal of research in different fields. In this investigation, a new type of MIP-coated silica (MIP/SiO2) separation material was developed using sulfamethoxazole as a template; the specific recognition ability of MIP and appropriate physicochemical properties (abundant Si-OH, suitable pore structure, good stability, etc.) of SiO2 microbeads were combined. The MIP/SiO2 separation materials were characterized carefully. Then, various compounds (such as sulfonamides, ginsenosides, nucleosides, and several pesticides) were used to comprehensively evaluate the chromatographic performances of the MIP/SiO2 column. Furthermore, the chromatographic performances of the MIP/SiO2 column were compared with those of other separation materials (such as non-imprinted polymer-coated silica, C18/SiO2, and bare silica) packed columns. The resolution value of all measured compounds was more than 1.51. The column efficiencies of 13 510 plates per meter (N m-1) for sulfamethoxazole, 11 600 N m-1 for ginsenoside Rd, and 10 510 N m-1 for 2'-deoxyadenosine were obtained. The acceptable results verified that the MIP/SiO2 column can be applied to separate highly polar drugs such as sulfonamides, ginsenosides, nucleosides, and pesticides.
Collapse
Affiliation(s)
- Wenpu Wu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| | - Cuichi Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| | - Lei Sui
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Na Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- School of Pharmacy, Binzhou Medical College, Yantai 264003, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China.
| |
Collapse
|
2
|
Tan S, Zou Z, Luan X, Chen C, Li S, Zhang Z, Quan M, Li X, Zhu W, Yang G. Synthesis, Anti-Inflammatory Activities, and Molecular Docking Study of Novel Pyxinol Derivatives as Inhibitors of NF-κB Activation. Molecules 2024; 29:1711. [PMID: 38675532 PMCID: PMC11052049 DOI: 10.3390/molecules29081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pyxinol, an active metabolite of ginsenosides in human hepatocytes, exhibits various pharmacological activities. Here, a series of C-3 modified pyxinol derivatives was designed and virtually screened by molecular docking with the key inflammation-related proteins of the nuclear factor kappa B (NF-κB) pathway. Some of the novel derivatives were synthesized to assess their effects in inhibiting the production of nitric oxide (NO) and mitochondrial reactive oxygen species (MtROS) in lipopolysaccharide-triggered RAW264.7 cells. Derivative 2c exhibited the highest NO and MtROS inhibitory activities with low cytotoxicity. Furthermore, 2c decreased the protein levels of interleukin 1β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2 and suppressed the activation of NF-κB signaling. Cellular thermal shift assays indicated that 2c could directly bind with p65 and p50 in situ. Molecular docking revealed that 2c's binding to the p65-p50 heterodimer and p50 homodimer was close to their DNA binding sites. In summary, pyxinol derivatives possess potential for development as NF-κB inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (S.T.); (Z.Z.); (X.L.); (C.C.); (S.L.); (Z.Z.); (M.Q.); (X.L.)
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (S.T.); (Z.Z.); (X.L.); (C.C.); (S.L.); (Z.Z.); (M.Q.); (X.L.)
| |
Collapse
|
3
|
Yang G, Liu S, Zhang C, Yu L, Zou Z, Wang C, Gao M, Li S, Ma Y, Xu R, Song Z, Liu R, Wang H. Discovery of Pyxinol Amide Derivatives Bearing Amino Acid Residues as Nonsubstrate Allosteric Inhibitors of P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2023. [PMID: 37332162 DOI: 10.1021/acs.jmedchem.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Nonsubstrate allosteric inhibitors of P-glycoprotein (Pgp), which are considered promising modulators for overcoming multidrug resistance (MDR), are relatively unknown. Herein, we designed and synthesized amino acids bearing amide derivatives of pyxinol, the main ginsenoside metabolite produced by the human liver, and examined their MDR reversal abilities. A potential nonsubstrate inhibitor (7a) was identified to undergo high-affinity binding to the putative allosteric site of Pgp at the nucleotide-binding domains. Subsequent assays confirmed that 7a (25 μM) was able to suppress both basal and verapamil-stimulated Pgp-ATPase activities (inhibition rates of 87 and 60%, respectively) and could not be pumped out by Pgp, indicating that it was a rare nonsubstrate allosteric inhibitor. Moreover, 7a interfered with Pgp-mediated Rhodamine123 efflux while exhibiting high selectivity for Pgp. Notably, 7a also markedly enhanced the therapeutic efficacy of paclitaxel, with a tumor inhibition ratio of 58.1%, when used to treat nude mice bearing KBV xenograft tumors.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zongji Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghui Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Meng Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yiqi Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ruoxuan Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhihua Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
4
|
Yang G, Mi X, Wang Y, Li S, Yu L, Huang X, Tan S, Yu H. Fusion of Michael-acceptors enhances the anti-inflammatory activity of ginsenosides as potential modulators of the NLRP3 signaling pathway. Bioorg Chem 2023; 134:106467. [PMID: 36933337 DOI: 10.1016/j.bioorg.2023.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Ginsenosides are a promising group of secondary metabolites for developing anti-inflammatory agents. In this study, Michael acceptor was fused into the aglycone A-ring of protopanoxadiol (PPD)-type ginsenosides (MAAG), the main pharmacophore of ginseng, and its liver metabolites to produce novel derivatives and assess their anti-inflammatory activity in vitro. The structure-activity relationship of MAAG derivatives was assessed based on their NO-inhibition activities. Of these, a 4-nitrobenzylidene derivative of PPD (2a) was the most effective and dose-dependently inhibited the release of proinflammatory cytokines. Further studies indicated that 2a-induced downregulation on lipopolysaccharide (LPS)-induced iNOS protein expression and cytokine release may be related to its inhibitory effect on MAPK and NF-κB signaling pathways. Importantly, 2a almost completely inhibited LPS-induced production of mitochondrial reactive oxygen species (mtROS) and LPS-induced NLRP3 upregulation. This inhibition was higher than that by hydrocortisone sodium succinate, a glucocorticoid drug. Overall, the fusion of Michael acceptors into the aglycone of ginsenosides greatly enhanced the anti-inflammatory activities of the derivatives, and 2a alleviated inflammation considerably. These findings could be attributed to the inhibition of LPS-induced mtROS to block abnormal activation of the NLRP3 pathway.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| | - Xiaoliang Mi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yunxiao Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xinru Huang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuai Tan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
5
|
Xue J, Zhang J, Yu C, Arabi M, Li J, Li G, Yang G, Chen L, Song Z. Synthesis and evaluation of ginsenosides imprinted polymer-based chromatographic stationary phase. J Sep Sci 2023; 46:e2200825. [PMID: 36892410 DOI: 10.1002/jssc.202200825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023]
Abstract
The molecular imprinting technique has aroused great interest in preparing novel stationary phases, and the resulting materials named molecularly imprinted polymers coated silica packing materials exhibit good performance in separating diverse analytes based on their good characteristics (including high selectivity, simple synthesis, and good chemical stability). To date, mono-template is commonly used in synthesizing molecularly imprinted polymers-based stationary phases. The resulting materials always own the disadvantages of low column efficiency and restricted analytes, and the price of ginsenosides with high purity was very high. In this study, to overcome the weaknesses of molecularly imprinted polymers-based stationary phases mentioned above, the multi-templates (total saponins of folium ginseng) strategy was used to prepare ginsenosides imprinted polymer-based stationary phase. The resulting ginsenosides imprinted polymer-coated silica stationary phase has a good spherical shape and suitable pore structures. Additionally, the total saponins of folium ginseng were cheaper than other kinds of ginsenosides. Moreover, the ginsenosides imprinted polymer-coated silica stationary phase-packed column performed well in the separation of ginsenosides, nucleosides, and sulfonamides. The ginsenosides imprinted polymer-coated silica stationary phase possesses good reproducibility, repeatability, and stability for seven days. Therefore, a multi-templates strategy for synthesizing the ginsenosides imprinted polymer-coated silica stationary phase is considered in the future.
Collapse
Affiliation(s)
- Junping Xue
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Jingxiu Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Cuichi Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China
| | - Guisheng Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, P. R. China.,School of Pharmacy, Binzhou Medical University, Yantai, P. R. China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China
| |
Collapse
|
6
|
Wang Y, Mi X, Du Y, Li S, Yu L, Gao M, Yang X, Song Z, Yu H, Yang G. Design, Synthesis, and Anti-Inflammatory Activities of 12-Dehydropyxinol Derivatives. Molecules 2023; 28:molecules28031307. [PMID: 36770974 PMCID: PMC9921557 DOI: 10.3390/molecules28031307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Pyxinol skeleton is a promising framework of anti-inflammatory agents formed in the human liver from 20S-protopanaxadiol, the main active aglycone of ginsenosides. In the present study, a new series of amino acid-containing derivatives were produced from 12-dehydropyxinol, a pyxinol oxidation metabolite, and its anti-inflammatory activity was assessed using an NO inhibition assay. Interestingly, the dehydrogenation at C-12 of pyxinol derivatives improved their potency greatly. Furthermore, half of the derivatives exhibited better NO inhibitory activity than hydrocortisone sodium succinate, a glucocorticoid drug. The structure-activity relationship analysis indicated that the kinds of amino acid residues and their hydrophilicity influenced the activity to a great extent, as did R/S stereochemistry at C-24. Of the various derivatives, 5c with an N-Boc-protected phenylalanine residue showed the highest NO inhibitory activity and relatively low cytotoxicity. Moreover, derivative 5c could dose-dependently suppress iNOS, IL-1β, and TNF-α via the MAPK and NF-κB pathways, but not the GR pathway. Overall, pyxinol derivatives hold potential for application as anti-inflammatory agents.
Collapse
Affiliation(s)
- Yunxiao Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xiaoliang Mi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yuan Du
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Meng Gao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xiaoyue Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai 264025, China
- Correspondence: (H.Y.); (G.Y.)
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
- Correspondence: (H.Y.); (G.Y.)
| |
Collapse
|
7
|
Zhang Y, Yu H, Fu S, Tan L, Liu J, Zhou B, Li L, Liu Y, Wang C, Li P, Liu J. Synthesis and Anti-Hepatocarcinoma Effect of Amino Acid Derivatives of Pyxinol and Ocotillol. Molecules 2021; 26:molecules26040780. [PMID: 33546225 PMCID: PMC7913291 DOI: 10.3390/molecules26040780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022] Open
Abstract
Aiming at seeking an effective anti-hepatocarcinoma drug with low toxicity, a total of 24 amino acid derivatives (20 new along with 4 known derivatives) of two active ocotillol-type sapogenins (pyxinol and ocotillol) were synthesized. Both in vitro and in vivo anti-hepatocarcinoma effects of derivatives were evaluated. At first, the HepG2 human cancer cell was employed to evaluate the anti-cancer activity. Most of the derivatives showed obvious enhanced activity compared with pyxinol or ocotillol. Among them, compound 2e displayed the most excellent activity with an IC50 value of 11.26 ± 0.43 µM. Next, H22 hepatoma-bearing mice were used to further evaluate the anti-liver cancer activity of compound 2e. It was revealed that the growth of H22 transplanted tumor was significantly inhibited when treated with compound 2e or compound 2e combined with cyclophosphamide (CTX) (p < 0.05, p < 0.01), and the inhibition rates of tumor growth were 35.32% and 55.30%, respectively. More importantly, compound 2e caused limited damage to liver and kidney in contrast with CTX causing significant toxicity. Finally, the latent mechanism of compound 2e was explored by serum and liver metabolomics based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) technology. A total of 21 potential metabolites involved in 8 pathways were identified. These results suggest that compound 2e is a promising agent for anti-hepato-carcinoma, and that it also could be used in combination with CTX to increase efficiency and to reduce toxicity.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
- The First Hospital of Jilin University, Changchun 130021, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Shuzheng Fu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Le Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
8
|
Wang XH, Wang HY, Zhang SN, Song J, Liang LH, Zhao FL, Meng QG. The crystal structure of (8 R,10 R,12 R,14 R)- 12-hydroxy-16-(5-(2-hydroxypropan-2-yl)-2-methyltetrahydrofuran-2-yl)- 4,4,8,10,14-pentamethyltetradecahydro-3 H- cyclopenta[ a]phenanthrene-3,6(2 H)-dione, C 30H 48O 5. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2020-0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C30H48O5, orthorhombic, P212121 (no. 19), a = 11.6608(10) Å, b = 14.8098(15) Å, c = 15.9975(16) Å, V = 2762.7(5) Å3, Z = 4, Rgt
(F) = 0.0586, wRref
(F
2) = 0.1580, T = 293(2) K.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Hui-yun Wang
- College of Pharmacy, Jining Medical University , Rizhao , 276826 , P. R. China
| | - Sheng-Nan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Jia Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Lun-Hai Liang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Feng-Lan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| | - Qing-Guo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University , Yantai , P. R. China
| |
Collapse
|
9
|
Cao Y, Wang K, Xu S, Kong L, Bi Y, Li X. Recent Advances in the Semisynthesis, Modifications and Biological Activities of Ocotillol-Type Triterpenoids. Molecules 2020; 25:E5562. [PMID: 33260848 PMCID: PMC7730845 DOI: 10.3390/molecules25235562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Ginseng is one of the most widely consumed herbs in the world and plays an important role in counteracting fatigue and alleviating stress. The main active substances of ginseng are its ginsenosides. Ocotillol-type triterpenoid is a remarkably effective ginsenoside from Vietnamese ginseng that has received attention because of its potential antibacterial, anticancer and anti-inflammatory properties, among others. The semisynthesis, modification and biological activities of ocotillol-type compounds have been extensively studied in recent years. The aim of this review is to summarize semisynthesis, modification and pharmacological activities of ocotillol-type compounds. The structure-activity relationship studies of these compounds were reported. This summary should prove useful information for drug exploration of ocotillol-type derivatives.
Collapse
Affiliation(s)
| | | | | | | | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Y.C.); (K.W.); (S.X.); (L.K.); (X.L.)
| | | |
Collapse
|
10
|
Sun Y, Fang X, Gao M, Wang C, Gao H, Bi W, Tang H, Cui Y, Zhang L, Fan H, Yu H, Yang G. Synthesis and Structure-Activity Relationship of Pyxinol Derivatives as Novel Anti-Inflammatory Agents. ACS Med Chem Lett 2020; 11:457-463. [PMID: 32292550 DOI: 10.1021/acsmedchemlett.9b00562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
Pyxinol, the main metabolite of 20S-protopanaxadiol in human liver, was chosen as a novel skeleton for the development of anti-inflammatory agents. Pyxinol derivatives modified at C-3, C-12, or C-25 and selected stereoisomers were designed, prepared, and investigated for in vitro anti-inflammatory activities. Structure-activity relationship (SAR), focused on skeleton, was analyzed based on their ability to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) synthesis. The preliminary SAR results signified that the biological activity of the pyxinol derivatives is largely dependent on the R/S stereochemistry of pyxinol skeleton and the hydroxy at C-3 is a modifiable position. Among the tested compounds, the 3-oximinopyxinol (4a) exhibited the most potent NO-inhibitory activity and was even comparable to the steroid drug. Furthermore, compound 4a also significantly decreased LPS-induced TNF-α and IL-6 synthesis and iNOS and COX-2 expressions via the NF-κB pathway. This study proves that pyxinol is an interesting skeleton for anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Yixiao Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaojuan Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Meng Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghui Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyan Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Wenjing Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hanhan Tang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yetong Cui
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai 264025, China
| | - Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
11
|
Hao DC, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based Cardiovascular Drug Research. Curr Drug Metab 2020; 20:556-574. [PMID: 31237211 DOI: 10.2174/1389200220666190618101526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/09/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The representative cardiovascular herbs, i.e. Panax, Ligusticum, Carthamus, and Pueraria plants, are traditionally and globally used in the prevention and treatment of various cardiovascular diseases. Modern phytochemical studies have found many medicinal compounds from these plants, and their unique pharmacological activities are being revealed. However, there are few reviews that systematically summarize the current trends of Drug Metabolism/Pharmacokinetic (DMPK) investigations of cardiovascular herbs. METHODS Here, the latest understanding, as well as the knowledge gaps of the DMPK issues in drug development and clinical usage of cardiovascular herbal compounds, was highlighted. RESULTS The complicated herb-herb interactions of cardiovascular Traditional Chinese Medicine (TCM) herb pair/formula significantly impact the PK/pharmacodynamic performance of compounds thereof, which may inspire researchers to develop a novel herbal formula for the optimized outcome of different cardiovascular diseases. While the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME/T) of some compounds has been deciphered, DMPK studies should be extended to more cardiovascular compounds of different medicinal parts, species (including animals), and formulations, and could be streamlined by versatile omics platforms and computational analyses. CONCLUSION In the context of systems pharmacology, the DMPK knowledge base is expected to translate bench findings to clinical applications, as well as foster cardiovascular drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Guo W, Li Z, Yuan M, Chen G, Li Q, Xu H, Yang X. Molecular Insight into Stereoselective ADME Characteristics of C20-24 Epimeric Epoxides of Protopanaxadiol by Docking Analysis. Biomolecules 2020; 10:E112. [PMID: 31936432 PMCID: PMC7022797 DOI: 10.3390/biom10010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/28/2022] Open
Abstract
Chirality is a common phenomenon, and it is meaningful to explore interactions between stereoselective bio-macromolecules and chiral small molecules with preclinical and clinical significance. Protopanaxadiol-type ginsenosides are main effective ingredients in ginseng and are prone to biotransformation into a pair of ocotillol C20-24 epoxide epimers, namely, (20S,24S)-epoxy-dammarane-3,12,25-triol (24S-PDQ) and (20S,24R)-epoxy dammarane-3,12,25-triol (24R-PDQ) that display stereoselective fate in vivo. However, possible molecular mechanisms involved are still unclear. The present study aimed to investigate stereoselective ADME (absorption, distribution, metabolism and excretion) characteristics of PDQ epimers based on molecular docking analysis of their interaction with some vital proteins responsible for drug disposal. Homology modeling was performed to obtain 3D-structure of the human isoenzyme UGT1A8, while calculation of docking score and binding free energy and ligand-protein interaction pattern analysis were achieved by using the Schrödinger package. Stereoselective interaction was found for both UGT1A8 and CYP3A4, demonstrating that 24S-PDQ was more susceptible to glucuronidation, whereas 24R-PDQ was more prone to oxidation catalyzed by CYP3A4. However, both epimers displayed similarly strong interaction with P-gp, a protein with energy-dependent drug-pump function, suggesting an effect of the dammarane skeleton but not C-24 stereo-configuration. These findings provide an insight into stereo-selectivity of ginsenosides, as well as a support the rational development of ginseng products.
Collapse
Affiliation(s)
- Wenna Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Zhiyong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Meng Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Geng Chen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264000, China;
| | - Qiao Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Hui Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264000, China; (W.G.); (Z.L.); (M.Y.); (Q.L.)
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264000, China;
| |
Collapse
|
13
|
Yang Q, Wang N, Zhang J, Chen G, Xu H, Meng Q, Du Y, Yang X, Fan H. In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y 12 receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152899. [PMID: 31454649 DOI: 10.1016/j.phymed.2019.152899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND P2Y12 receptor (P2Y12R) is a newly discovered Gi-coupled ADP receptor that plays critical role in platelet function. Ginsenosides are the main constituents responsible for most of pharmacological actions of ginseng, especially cardio-cerebrovascular protective efficacy that is closely related to the influence on platelet function. HYPOTHESIS/PURPOSE To explore stereoselective effect of naturally abundant ginsenoside isomers, including the C-20 epimers of protopanaxadiol (PPD), protopanaxatriol (PPT), and their glycosides Rg2, Rg3, Rh1, Rh2 on P2Y12R in platelets. STUDY DESIGN/METHODS Both in vitro assay and in silico molecular docking study were performed to investigate the stereoselective effects. RESULTS In vitro assay using washed rat platelets revealed differential effects of ginsenoside isomers on ADP-induced platelet aggregation with the direction and degree of action varying with chemical structures. More to the point, the ginsenoside 20S-Rh2 but not its 20R-epimer was found to be the only one that could significantly promote in vitro platelets aggregation induced by ADP. The correlation analysis demonstrated that ginsenosides may have impact on P2Y12R related platelet functions through a cAMP-dependent pathway. Molecular docking stimulation further indicated that ginsenoside isomers could be potent substrate of P2Y12R with differential protein-ligand interaction that would be responsible for the stereoselective efficacy of C-20 ginsenoside epimers. Hydrogen bonding with Asp266 via the C-20 hydroxyl may provide ginsenosides with promoting effect on ADP-induced platelets aggregation, whereas interactions with Tyr105 could contribute to the promotion of inhibitory efficacy. CONCLUSION Ginsenosides are potent P2Y12R substrate with stereoselective effects on P2Y12R-related platelet function, which result from their chemical diversity and are closely related to the different interaction ways as P2Y12R ligand.
Collapse
Affiliation(s)
- Qianwen Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Yantai 264005, Shandong, China
| | - Ning Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Yantai 264005, Shandong, China
| | - Jie Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Yantai 264005, Shandong, China
| | - Geng Chen
- School of Chemistry and Chemical Engineering, Yantai University, No. 32 Qingquan Road, Yantai 264005, Shandong, China
| | - Hui Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Yantai 264005, Shandong, China.
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Yantai 264005, Shandong, China.
| | - Yuan Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Yantai 264005, Shandong, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, No. 32 Qingquan Road, Yantai 264005, Shandong, China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, No. 32 Qingquan Road, Yantai 264005, Shandong, China
| |
Collapse
|
14
|
Wu W, Jiao C, Li H, Ma Y, Jiao L, Liu S. LC-MS based metabolic and metabonomic studies of Panax ginseng. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:331-340. [PMID: 29460310 DOI: 10.1002/pca.2752] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 05/28/2023]
Abstract
INTRODUCTION Panax ginseng has received much attention as a valuable health supplement with medicinal potential. Its chemical diversity and multiple pharmacological properties call for comprehensive methods to better understand the effects of ginseng and ginsenosides. Liquid chromatography-mass spectrometry (LC-MS) based metabonomic approaches just fit the purpose. OBJECTIVE Aims to give a review of recent progress on LC-MS based pharmacokinetic, metabolic, and phytochemical metabolomic studies of ginseng, and metabonomic studies of ginseng intervention effects. METHODS The review has four sections: the first section discusses metabolic studies of ginsenosides based on LC-MS, the second focuses on ginsenoside-drug interactions and pharmacokinetic interaction between herb compounds based on LC-MS, the third is phytochemical metabolomic studies of ginseng based on LC-MS, and the fourth deals with metabonomic studies of ginseng intervention effects based on LC-MS. RESULTS LC-MS based metabonomic research on ginseng include analysis of single ginsenoside and total ginsenosides. The theory of multi-components and multi-targeted mechanisms helps to explain ginseng effects. CONCLUSION LC-MS based metabonomics is a promising way to comprehensively assess ginseng. It is valuable for quality control and mechanism studies of ginseng.
Collapse
Affiliation(s)
- Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Chuanxi Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yue Ma
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| |
Collapse
|
15
|
Wang X, Zheng M, Liu J, Huang Z, Bai Y, Ren Z, Wang Z, Tian Y, Qiao Z, Liu W, Feng F. Differences of first-pass effect in the liver and intestine contribute to the stereoselective pharmacokinetics of rhynchophylline and isorhynchophylline epimers in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:175-183. [PMID: 28755970 DOI: 10.1016/j.jep.2017.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria rhynchophylla (Miq.) Miq. ex Havil., is a plant species used in traditional Chinese medicine to treat cardiovascular and central nervous system diseases. Rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of epimers, are major alkaloids isolated from U. rhynchophylla and exhibit diverse pharmacological effects. Our previous study demonstrated that the pharmacokinetics of these epimers existed stereoselectivity after oral administration; however, the specific mechanism remains unknown and merits investigation. AIM OF THE STUDY In the present study, the aim was to elucidate the mechanism underlying stereoselective pharmacokinetic characteristics of RIN and IRN in rats. MATERIALS AND METHODS The total (F), hepatic (Fh) and intestinal (Fa·Fg) bioavailabilities of each epimer were measured using portal vein cannulated rats following different dosing routes (intravenous, intraportal and intraduodenal) to assess individual contributions of the liver and intestine in stereoselective pharmacokinetics. Then the differences of first-pass metabolism in the liver and intestine between two epimers were evaluated by in vitro incubation with rat liver microsomes, intestinal S9 and gastrointestinal (GI) content solutions, respectively. Meanwhile, the membrane permeability and efflux by P-glycoprotein (P-gp) were examined by in situ single-pass intestinal perfusion with and without P-gp inhibitor verapamil. The configurational interconversion at different pH values and the excretions via feces and urine were also examined. RESULTS Pharmacokinetic data showed that the total bioavailability of RIN was 5.9 folds higher than that of IRN (23.4% vs. 4.0%). The hepatic availability of RIN was 4.6 folds higher than that of IRN (46.9% vs. 10.3%), whereas the intestinal availability of RIN (48.1%) was comparable to that of IRN (42.7%). In addition, intestinal perfusion showed that IRN possessed higher intestinal permeability than RIN and co-perfusion with verapamil could affect absorption process of RIN but not IRN. Conversely, the metabolism rate of IRN in rat liver microsomes was significantly faster than that of RIN, resulting in a lower systemic exposure of IRN after oral administration. The degradation in GI lumen and epimerization between two epimers also existed but had small contributions. Additionally, the excretions of both epimers via feces and urine were negligible. CONCLUSIONS Taken together, different first-pass metabolism in the liver was the major factor responsible for the stereoselective pharmacokinetics of RIN and IRN.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Mei Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Jia Liu
- Pharmic Laboratory Animal Center, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhifeng Huang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Yidan Bai
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhuoying Ren
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Ziwen Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Yangli Tian
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhou Qiao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Liu J, Xu Y, Yang J, Wang W, Zhang J, Zhang R, Meng Q. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J Ginseng Res 2017; 41:373-378. [PMID: 28701880 PMCID: PMC5489761 DOI: 10.1016/j.jgr.2017.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 11/30/2022] Open
Abstract
Ocotillol-type saponins are one kind of tetracyclic triterpenoids, sharing a tetrahydrofuran ring. Natural ocotillol-type saponins have been discovered in Panax quinquefolius L., Panax japonicus, Hana mina, and Vietnamese ginseng. In recent years, the semisynthesis of 20(S/R)-ocotillol-type saponins has been reported. The biological activities of ocotillol-type saponins include neuroprotective effect, antimyocardial ischemia, antiinflammatory, antibacterial, and antitumor activities. Owing to their chemical structure, pharmacological actions, and the stereoselective activity on antimyocardial ischemia, ocotillol-type saponins are subjected to extensive consideration. In this review, we sum up the discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
17
|
Liu J, Xu YR, An XS, Hou GG, Meng QG. Synthesis and crystal structures of a 3-acetylated (20S,24S)-ocotillol-type saponin and its C-24 epimer. Acta Crystallogr C Struct Chem 2017; 73:464-469. [PMID: 28579568 DOI: 10.1107/s2053229617006507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/30/2017] [Indexed: 11/10/2022] Open
Abstract
In order to study the in vivo protective effect on myocardial ischemia, (20S,24R)-epoxydammarane-12β,25-diol, (V), and (20S,24S)-epoxydammarane-12β,25-diol, (VI), were synthesized through a novel synthetic route. Two key intermediates, namely (20S,24R)-3-acetyl-20,24-epoxydammarane-3β,12β,25-triol, (III) [obtained as the hemihydrate, C32H54O5·0.5H2O, (IIIa), and the ethanol hemisolvate, C32H54O5·0.5C2H5OH, (IIIb), with identical conformations but different crystal packings], and (20S,24S)-3-acetyl-20,24-epoxydammarane-3β,12β,25-triol, C32H54O5, (IV), were obtained during the synthesis. The structures were confirmed by 1H NMR, 13C NMR and HRMS analyses, and single-crystal X-ray diffraction. Molecules of (IIIa) are extended into a two-dimensional network constructed with water molecules linked alternately through intermolecular O-H...O hydrogen bonds, which are further stacked into a three-dimensional network. Compound (IIIb) contains two completely asymmetric molecules, which are linked in a disordered manner through intermolecular C-H...O hydrogen bonds. While the crystal stacks in compound (IV) are linked via weak C-H...O hydrogen bonds, the hydrogen-bonded chains extend helically along the crystallographic b axis.
Collapse
Affiliation(s)
- Juan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Yang Rong Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Xing Si An
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Gui Ge Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Qing Guo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
18
|
Characterization, Molecular Docking, and In Vitro Dissolution Studies of Solid Dispersions of 20(S)-Protopanaxadiol. Molecules 2017; 22:molecules22020274. [PMID: 28208662 PMCID: PMC6155859 DOI: 10.3390/molecules22020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, we prepared solid dispersions (SDs) of 20(S)-protopanaxadiol (PPD) using a melting-solvent method with different polymers, in order to improve the solubility and dissolution performance of drugs with poor water solubility. The SDs were characterized via differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and molecular docking and dynamics study. DSC and PXRD results indicated that PPD crystallinity in SDs was significantly reduced, and that the majority of PPD is amorphous. No interaction was observed between PPD and polymers on FTIR and NMR spectra. Molecular docking and dynamic calculations indicated that the PPD molecule localized to the interpolated charged surface, rather than within the amorphous polymer chain network, which might help prevent PPD crystallization, consequently enhancing the PPD dispersion in polymers. An in vitro dissolution study revealed that the SDs considerably improved the PPD dissolution performance in distilled water containing 0.35% Tween-80 (T-80). Furthermore, among three PPD-SDs formulations, Poloxamer188 (F68) was the most effective in improving the PPD solubility and was even superior to the mixed polymers. Therefore, the SD prepared with F68 as a hydrophilic polymer carrier might be a promising strategy for improving solubility and in vitro dissolution performance. F68-based SD, containing PPD with a melting-solvent preparation method, can be used as a promising, nontoxic, quick-release, and effective intermediate for other pharmaceutical formulations, in order to achieve a more effective drug delivery.
Collapse
|
19
|
Zhao J, Zeng Z, Sun J, Zhang Y, Li D, Zhang X, Liu M, Wang X. A Novel Model of P-Glycoprotein Inhibitor Screening Using Human Small Intestinal Organoids. Basic Clin Pharmacol Toxicol 2016; 120:250-255. [PMID: 27657920 DOI: 10.1111/bcpt.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/19/2016] [Indexed: 01/31/2023]
Abstract
P-glycoprotein (P-gp), an important efflux transporter in intestine, regulates the bioavailability of orally taken drugs. To develop an in vitro model that preferably mimics the physiological microenvironment of human intestine, we employed the three-dimensionally (3D) cultured organoids from human normal small intestinal epithelium. It was observed that the intestinal crypts could efficiently form cystic organoid structure with the extension of culture time. Furthermore, the physiological expression of ABCB1 was detected at both mRNA and protein levels in cultured organoids. Rhodamine 123 (Rh123), a typical substrate of P-gp, was actively transported across 3D organoids and accumulated in the luminal space. This transport process was also inhibited by verapamil and mitotane. In summary, the above-mentioned model based on human small intestinal 3D organoids is suitable to imitate the small intestinal epithelium and could be used as a novel in vitro model especially for P-gp inhibitor screening.
Collapse
Affiliation(s)
- Junfang Zhao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Research Center for Translational Medicine, Shanghai Key laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhiyang Zeng
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Research Center for Translational Medicine, Shanghai Key laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialiang Sun
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Research Center for Translational Medicine, Shanghai Key laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Yuanjin Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Research Center for Translational Medicine, Shanghai Key laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dali Li
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Research Center for Translational Medicine, Shanghai Key laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xueli Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Research Center for Translational Medicine, Shanghai Key laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Research Center for Translational Medicine, Shanghai Key laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Xin Wang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Research Center for Translational Medicine, Shanghai Key laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Wang X, Zheng M, Liu J, Qiao Z, Liu W, Feng F. Stereoselective pharmacokinetic study of rhynchophylline and isorhynchophylline epimers in rat plasma by liquid chromatography–tandem mass spectrometry. Xenobiotica 2016; 47:479-487. [DOI: 10.1080/00498254.2016.1203043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xin Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China,
| | - Mei Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China,
| | - Jia Liu
- Pharmic Laboratory Animal Center, China Pharmaceutical University, Nanjing, China,
| | - Zhou Qiao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China,
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China,
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China, and
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Xu YR, Yang JJ, Liu J, Hou GG, Meng QG. Synthesis and crystal structures of C24-epimeric 20(R)-ocotillol-type saponins. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2016; 72:498-503. [PMID: 27256698 DOI: 10.1107/s2053229616007270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/01/2016] [Indexed: 11/11/2022]
Abstract
Ocotillol-type saponins have a wide spectrum of biological activities. Previous studies indicated that the configuration at the C24 position may be responsible for their stereoselectivity in pharmacological action and pharmacokinetics. Natural ocotillol-type saponins share a 20(S)-form but it has been found that the 20(R)-stereoisomers have different pharmacological effects. The semisynthesis of 20(R)-ocotillol-type saponins has not been reported and it is therefore worthwhile clarifying their crystal structures. Two C24 epimeric 20(R)-ocotillol-type saponins, namely (20R,24S)-20,24-epoxydammarane-3β,12β,25-triol, C30H52O4, (III), and (20R,24R)-20,24-epoxydammarane-3β,12β,25-triol monohydrate, C30H52O4·H2O, (IV), were synthesized, and their structures were elucidated by spectral studies and finally confirmed by single-crystal X-ray diffraction. The (Me)C-O-C-C(OH) torsion angle of (III) is 146.41 (14)°, whereas the corresponding torsion angle of (IV) is -146.4 (7)°, indicating a different conformation at the C24 position. The crystal stacking in (III) generates an R4(4)(8) motif, through which the molecules are linked into a one-dimensional double chain. The chains are linked via nonclassical C-H...O hydrogen bonds into a two-dimensional network, and further stacked into a three-dimensional structure. In contrast to (III), epimer (IV) crystallizes as a hydrate, in which the water molecules act as hydrogen-bond donors linking one-dimensional chains into a two-dimensional network through intermolecular O-H...O hydrogen bonds. The hydrogen-bonded chains extend helically along the crystallographic a axis and generate a C4(4)(8) motif.
Collapse
Affiliation(s)
- Yang Rong Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Jing Jing Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Juan Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Gui Ge Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Qing Guo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
22
|
Yang J, Xu Y, Li X, Zhang K, Zhang R, Wang W, He X, Meng Q, Hou G. Synthesis and Crystal Structures of Two C24 Epimeric 3-Acetyled 20(R)-Ocotillol Type Sapogenins Obtained from 20(R)-Protopanaxadiol. JOURNAL OF CHEMICAL RESEARCH 2016. [DOI: 10.3184/174751916x14579531034854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two C24 epimeric 3-acetylated ocotillol-type sapogenins, 20 R,24 S-epoxy-dammarane-3β,12β,25-triol acetate and 20 R,24 R-epoxy-dammarane-3β,12β,25-triol acetate have been achieved from 20( R)-protopanaxadiol. Their structures were confirmed by HRMS, 1H NMR, 13C NMR and single crystal X-ray diffraction which showed that their configurations were (20 R, 24 S) and (20 R, 24 R), respectively. In the crystal structure of the 24 ( S)-epimer, there were two intramolecular hydrogen bonds and a left-handed helical chain whilst in the 24 ( R)-epimer there was one intramolecular hydrogen bond and a right-handed helical chain.
Collapse
Affiliation(s)
- Jingjing Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Yangrong Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Xinli Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Kaixia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Renmei Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Wenzhi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Xiaoyu He
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, P.R. China
| |
Collapse
|
23
|
Yang M, Chen J, Shi X, Xu L, Xi Z, You L, An R, Wang X. Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening. Mol Pharm 2015; 12:3691-713. [PMID: 26376206 DOI: 10.1021/acs.molpharmaceut.5b00465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P-glycoprotein (P-gp) is regarded as an important factor in determining the ADMET (absorption, distribution, metabolism, elimination, and toxicity) characteristics of drugs and drug candidates. Successful prediction of P-gp inhibitors can thus lead to an improved understanding of the underlying mechanisms of both changes in the pharmacokinetics of drugs and drug-drug interactions. Therefore, there has been considerable interest in the development of in silico modeling of P-gp inhibitors in recent years. Considering that a large number of molecular descriptors are used to characterize diverse structural moleculars, efficient feature selection methods are required to extract the most informative predictors. In this work, we constructed an extensive available data set of 2428 molecules that includes 1518 P-gp inhibitors and 910 P-gp noninhibitors from multiple resources. Importantly, a two-step feature selection approach based on a genetic algorithm and a greedy forward-searching algorithm was employed to select the minimum set of the most informative descriptors that contribute to the prediction of P-gp inhibitors. To determine the best machine learning algorithm, 18 classifiers coupled with the feature selection method were compared. The top three best-performing models (flexible discriminant analysis, support vector machine, and random forest) and their ensemble model using respectively only 3, 9, 7, and 14 descriptors achieve an overall accuracy of 83.2%-86.7% for the training set containing 1040 compounds, an overall accuracy of 82.3%-85.5% for the test set containing 1039 compounds, and a prediction accuracy of 77.4%-79.9% for the external validation set containing 349 compounds. The models were further extensively validated by DrugBank database (1890 compounds). The proposed models are competitive with and in some cases better than other published models in terms of prediction accuracy and minimum number of descriptors. Applicability domain then was addressed by developing an ensemble classification model to obtain more reliable predictions. Finally, we employed these models as a virtual screening tool for identifying potential P-gp inhibitors in Traditional Chinese Medicine Systems Pharmacology (TCMSP) database containing a total of 13 051 unique compounds from 498 herbs, resulting in 875 potential P-gp inhibitors and 15 inhibitor-rich herbs. These predictions were partly supported by a literature search and are valuable not only to develop novel P-gp inhibitors from TCM in the early stages of drug development, but also to optimize the use of herbal remedies.
Collapse
Affiliation(s)
- Ming Yang
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai 200444, People's Republic of China.,Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Jialei Chen
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Xiufeng Shi
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Liwen Xu
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Zhijun Xi
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Lisha You
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai 200444, People's Republic of China
| | - Rui An
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai 200444, People's Republic of China
| | - Xinhong Wang
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai 200444, People's Republic of China
| |
Collapse
|
24
|
Zhao WM, Jiang SW, Chen Y, Zhong ZY, Wang ZJ, Zhang M, Li Y, Xu P, Liu L, Liu XD. Laminaria japonica increases plasma exposure of glycyrrhetinic acid following oral administration of Liquorice extract in rats. Chin J Nat Med 2015; 13:540-9. [PMID: 26233845 DOI: 10.1016/s1875-5364(15)30049-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 10/23/2022]
Abstract
The present study was designed to investigate the effects of Laminaria japonica (Laminaria) on pharmacokinetics of glycyrrhetinic acid (GA) following oral administration of Liquorice extract in rats. Following oral administrations of single-dose and multi-dose Liquorice extract and Liquorice-Laminaria extract, respectively, plasma samples were obtained at various times and the concentrations of GA, liquiritigenin, and isoliquiritigenin were measured by LC-MS. The effects of Laminaria extract on pharmacokinetics of GA were also investigated, following single-dose and multidose of glycyrrhizic acid (GL). The effects of Laminaria extract on intestinal absorption of GA and GL were studied using the in situ single-pass intestinal perfusion model. The metabolism of GL to GA in the contents of small and large intestines was also studied. The results showed Liquorice-Laminaria extract markedly increased the plasma concentration of GA, accompanied by a shorter Tmax. Similar alteration was observed following multidose administration. However, pharmacokinetics of neither liquiritigenin nor isoliquiritigenin was affected by Laminaria. Similarly, Laminaria markedly increased concentration and decreased Tmax of GA following oral GL were observed. The data from the intestinal perfusion model showed that Laminaria markedly increased GL absorption in duodenum and jejunum, but did not affect the intestinal absorption of GA. It was found that Laminaria enhanced the metabolism of GL to GA in large intestine. In conclusion, Laminaria increased plasma exposures of GA following oral administration of liquorice or GL, which partly resulted from increased intestinal absorption of GL and metabolism of GL to GA in large intestine.
Collapse
Affiliation(s)
- Wei-Man Zhao
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Shu-Wen Jiang
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Chen
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Ze-Yu Zhong
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Zhong-Jian Wang
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Mian Zhang
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Li
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Xu
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China
| | - Li Liu
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiao-Dong Liu
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|