1
|
Kumar S, De Leon EM, Granados J, Whitworth DJ, VandeBerg JL. Monodelphis domestica Induced Pluripotent Stem Cells Reveal Metatherian Pluripotency Architecture. Int J Mol Sci 2022; 23:12623. [PMID: 36293487 PMCID: PMC9604385 DOI: 10.3390/ijms232012623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Marsupials have been a powerful comparative model to understand mammalian biology. However, because of the unique characteristics of their embryology, marsupial pluripotency architecture remains to be fully understood, and nobody has succeeded in developing embryonic stem cells (ESCs) from any marsupial species. We have developed an integration-free iPSC reprogramming method and established validated iPSCs from two inbred strains of a marsupial, Monodelphis domestica. The monoiPSCs showed a significant (6181 DE-genes) and highly uniform (r2 [95% CI] = 0.973 ± 0.007) resetting of the cellular transcriptome and were similar to eutherian ESCs and iPSCs in their overall transcriptomic profiles. However, monoiPSCs showed unique regulatory architecture of the core pluripotency transcription factors and were more like marsupial epiblasts. Our results suggest that POU5F1 and the splice-variant-specific expression of POU5F3 synergistically regulate the opossum pluripotency gene network. It is plausible that POU5F1, POU5F3 splice variant XM_016427856.1, and SOX2 form a self-regulatory network. NANOG expression, however, was specific to monoiPSCs and epiblasts. Furthermore, POU5F1 was highly expressed in trophectoderm cells, whereas all other pluripotency transcription factors were significantly downregulated, suggesting that the regulatory architecture of core pluripotency genes of marsupials may be distinct from that of eutherians.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
| | - Erica M. De Leon
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
| | - Jose Granados
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
| | - Deanne J. Whitworth
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - John L. VandeBerg
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| |
Collapse
|
2
|
Ikeda-Yorifuji I, Tsujioka H, Sakata Y, Yamashita T. Single-nucleus RNA sequencing identified cells with ependymal cell-like features enriched in neonatal mice after spinal cord injury. Neurosci Res 2022; 181:22-38. [PMID: 35452717 DOI: 10.1016/j.neures.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
The adult mammalian central nervous system has limited regenerative ability, and spinal cord injury (SCI) often causes lifelong motor disability. While regeneration is limited in adults, injured spinal cord tissue can be regenerated and neural function can be almost completely restored in neonates. However, difference of cellular composition in lesion has not been well characterized. To gain insight into the age-dependent cellular reaction after SCI, we performed single-nucleus RNA sequencing, analyzing 4,076 nuclei from sham and injured spinal cords from adult and neonatal mice. Clustering analysis identified 18 cell populations. We identified previously undescribed cells with ependymal cell-like gene expression profile, the number of which was increased in neonates after SCI. Histological analysis revealed that these cells line the central canal under physiological conditions in both adults and neonates. We confirmed that they were enriched in the lesion only in neonates. We further showed that these cells were positive for the cellular markers of ependymal cells, astrocytes and radial glial cells. This study provides a deeper understanding of neonate-specific cellular responses after SCI, which may determine regenerative capacity.
Collapse
Affiliation(s)
- Iyo Ikeda-Yorifuji
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Tsujioka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
3
|
Tomljanović I, Petrović A, Ban J, Mladinic M. Proteomic analysis of opossum Monodelphis domestica spinal cord reveals the changes of proteins related to neurodegenerative diseases during developmental period when neuroregeneration stops being possible. Biochem Biophys Res Commun 2022; 587:85-91. [PMID: 34864550 DOI: 10.1016/j.bbrc.2021.11.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
One of the major challenges of modern neurobiology concerns the inability of the adult mammalian central nervous system (CNS) to regenerate and repair itself after injury. It is still unclear why the ability to regenerate CNS is lost during evolution and development and why it becomes very limited in adult mammals. A convenient model to study cellular and molecular basis of this loss is neonatal opossum (Monodelphis domestica). Opossums are marsupials that are born very immature with the unique possibility to successfully regenerate postnatal spinal cord after injury in the first two weeks of their life, after which this ability abbruptly stops. Using comparative proteomic approach we identified the proteins that are differentially distributed in opossum spinal tissue that can and cannot regenerate after injury, among which stand out the proteins related to neurodegenerative diseases (NDD), such as Huntington, Parkinson and Alzheimer's disease, previously detected by comparative transcriptomics on the analog tissue. The different distribution of the selected proteins detected by comparative proteomics was further confirmed by Western blot (WB), and the changes in the expression of related genes were analysed by quantitative reverse transcription PCR (qRT-PCR). Furthermore, we explored the cellular localization of the selected proteins using immunofluorescent microscopy. To our knowledge, this is the first report on proteins differentially present in developing, non-injured mammalian spinal cord tissue with different regenerative capacities. The results of this study indicate that the proteins known to have an important role in the pathophysiology of neurodegeneration in aged CNS, could also have an important phyisological role during CNS postnatal development and in neuroregeneration process.
Collapse
Affiliation(s)
- Ivana Tomljanović
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Antonela Petrović
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Jelena Ban
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia.
| |
Collapse
|
4
|
Wheaton BJ, Sena J, Sundararajan A, Umale P, Schilkey F, Miller RD. Identification of regenerative processes in neonatal spinal cord injury in the opossum (Monodelphis domestica): A transcriptomic study. J Comp Neurol 2021; 529:969-986. [PMID: 32710567 PMCID: PMC7855507 DOI: 10.1002/cne.24994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
This study investigates the response to spinal cord injury in the gray short‐tailed opossum (Monodelphis domestica). In opossums spinal injury early in development results in spontaneous axon growth through the injury, but this regenerative potential diminishes with maturity until it is lost entirely. The mechanisms underlying this regeneration remain unknown. RNA sequencing was used to identify differential gene expression in regenerating (SCI at postnatal Day 7, P7SCI) and nonregenerating (SCI at Day 28, P28SCI) cords +1d, +3d, and +7d after complete spinal transection, compared to age‐matched controls. Genes showing significant differential expression (log2FC ≥ 1, Padj ≤ 0.05) were used for downstream analysis. Across all time‐points 233 genes altered expression after P7SCI, and 472 genes altered expression after P28SCI. One hundred and forty‐seven genes altered expression in both injury ages (63% of P7SCI data set). The majority of changes were gene upregulations. Gene ontology overrepresentation analysis in P7SCI gene‐sets showed significant overrepresentations only in immune‐associated categories, while P28SCI gene‐sets showed overrepresentations in these same immune categories, along with other categories such as “cell proliferation,” “cell adhesion,” and “apoptosis.” Cell‐type–association analysis suggested that, regardless of injury age, injury‐associated gene transcripts were most strongly associated with microglia and endothelial cells, with strikingly fewer astrocyte, oligodendrocyte and neuron‐related genes, the notable exception being a cluster of mostly downregulated oligodendrocyte‐associated genes in the P7SCI + 7d gene‐set. Our findings demonstrate a more complex transcriptomic response in nonregenerating cords, suggesting a strong influence of non‐neuronal cells in the outcome after injury and providing the largest survey yet of the transcriptomic changes occurring after SCI in this model.
Collapse
Affiliation(s)
- Benjamin J Wheaton
- Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden.,Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Johnny Sena
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | | | - Pooja Umale
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
5
|
Teng L, Guan T, Guo B, Ma C, Lin G, Wu R, Xu M, Liu M, Liu Y. GIP-GIPR promotes neurite outgrowth of cortical neurons in Akt dependent manner. Biochem Biophys Res Commun 2021; 534:121-127. [PMID: 33321289 DOI: 10.1016/j.bbrc.2020.11.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
The intrinsic capacity of axonal growth is varied among the neurons form different tissues or different developmental stages. In this study, we established an in vitro model to compare the axonal growth of neurons from embryonic 18 days, post-natal 1 day and post-natal 3 days rat. The E18 neurons showed powerful ability of neuritogenensis and axon outgrowth and the ability decreased rapidly along with development. The transcriptome profile of these neurons revealed a set of genes positively correlated with the capacity of neurite outgrowth. Glucose-dependent insulinotropic polypeptide receptor (GIPR) is identified as a gene to promote neurite outgrowth, which was approved by siRNA knock down assay in E18 neuron. Glucose-dependent insulinotropic polypeptide (GIP), a ligand of GIPR secreted from enteroendocrine K cells, is well-known for its role in nutrient sensing and intake. To verify the effect of GIP-GIPR signal on neurite outgrowth, we administrated GIP to stimulate the E18 neurons, the results showed that GIP significantly improved extension of axon. We further revealed that GIP increased Rac1/Cdc42 phosphorylation in Akt dependent manner. In summary, our study established an in vitro model to screen the genes involved in neurite outgrowth, and we provided mechanical insight on the GIP-GIPR axis to promote axonal outgrowth.
Collapse
Affiliation(s)
- Long Teng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Chao Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China.
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China.
| |
Collapse
|
6
|
Bowden TJ, Kraev I, Lange S. Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:79-102. [PMID: 32731012 DOI: 10.1016/j.fsi.2020.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The American lobster (Homarus americanus) is a commercially important crustacean with an unusual long life span up to 100 years and a comparative animal model of longevity. Therefore, research into its immune system and physiology is of considerable importance both for industry and comparative immunology studies. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family that catalyses post-translational protein deimination via the conversion of arginine to citrulline. This can lead to structural and functional protein changes, sometimes contributing to protein moonlighting, in health and disease. PADs also regulate the cellular release of extracellular vesicles (EVs), which is an important part of cellular communication, both in normal physiology and in immune responses. Hitherto, studies on EVs in Crustacea are limited and neither PADs nor associated protein deimination have been studied in a Crustacean species. The current study assessed EV and deimination signatures in haemolymph of the American lobster. Lobster EVs were found to be a poly-dispersed population in the 10-500 nm size range, with the majority of smaller EVs, which fell within 22-115 nm. In lobster haemolymph, 9 key immune and metabolic proteins were identified to be post-translationally deiminated, while further 41 deiminated protein hits were identified when searching against a Crustacean database. KEGG (Kyoto encyclopedia of genes and genomes) and GO (gene ontology) enrichment analysis of these deiminated proteins revealed KEGG and GO pathways relating to a number of immune, including anti-pathogenic (viral, bacterial, fungal) and host-pathogen interactions, as well as metabolic pathways, regulation of vesicle and exosome release, mitochondrial function, ATP generation, gene regulation, telomerase homeostasis and developmental processes. The characterisation of EVs, and post-translational deimination signatures, reported in lobster in the current study, and the first time in Crustacea, provides insights into protein moonlighting functions of both species-specific and phylogenetically conserved proteins and EV-mediated communication in this long-lived crustacean. The current study furthermore lays foundation for novel biomarker discovery for lobster aquaculture.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science,Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
7
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020; 11:1695. [PMID: 32849592 PMCID: PMC7427103 DOI: 10.3389/fimmu.2020.01695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R. Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K. Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M. Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G. Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O. Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
8
|
Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:2702-2726. [PMID: 32328876 DOI: 10.1007/s12035-020-01916-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Degradomics is a proteomics sub-discipline whose goal is to identify and characterize protease-substrate repertoires. With the aim of deciphering and characterizing key signature breakdown products, degradomics emerged to define encryptic biomarker neoproteins specific to certain disease processes. Remarkable improvements in structural and analytical experimental methodologies as evident in research investigating cellular behavior in neuroscience and cancer have allowed the identification of specific degradomes, increasing our knowledge about proteases and their regulators and substrates along with their implications in health and disease. A physiologic balance between protein synthesis and degradation is sought with the activation of proteolytic enzymes such as calpains, caspases, cathepsins, and matrix metalloproteinases. Proteolysis is essential for development, growth, and regeneration; however, inappropriate and uncontrolled activation of the proteolytic system renders the diseased tissue susceptible to further neurotoxic processes. In this article, we aim to review the protease-substrate repertoires as well as emerging therapeutic interventions in spinal cord injury at the degradomic level. Several protease substrates and their breakdown products, essential for the neuronal structural integrity and functional capacity, have been characterized in neurotrauma including cytoskeletal proteins, neuronal extracellular matrix glycoproteins, cell junction proteins, and ion channels. Therefore, targeting exaggerated protease activity provides a potentially effective therapeutic approach in the management of protease-mediated neurotoxicity in reducing the extent of damage secondary to spinal cord injury.
Collapse
|
9
|
Koehn LM. ABC efflux transporters at blood-central nervous system barriers and their implications for treating spinal cord disorders. Neural Regen Res 2020; 15:1235-1242. [PMID: 31960802 PMCID: PMC7047801 DOI: 10.4103/1673-5374.272568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The barriers present in the interfaces between the blood and the central nervous system form a major hurdle for the pharmacological treatment of central nervous system injuries and diseases. The family of ATP-binding cassette (ABC) transporters has been widely studied regarding efflux of medications at blood-central nervous system barriers. These efflux transporters include P-glycoprotein (abcb1), 'breast cancer resistance protein' (abcg2) and the various 'multidrug resistance-associated proteins' (abccs). Understanding which efflux transporters are present at the blood-spinal cord, blood-cerebrospinal fluid and cerebrospinal fluid-spinal cord barriers is necessary to determine their involvement in limiting drug transfer from blood to the spinal cord tissue. Recent developments in the blood-brain barrier field have shown that barrier systems are dynamic and the profile of barrier defenses can alter due to conditions such as age, disease and environmental challenge. This means that a true understanding of ABC efflux transporter expression and localization should not be one static value but instead a range that represents the complex patient subpopulations that exist. In the present review, the blood-central nervous system barrier literature is discussed with a focus on the impact of ABC efflux transporters on: (i) protecting the spinal cord from adverse effects of systemically directed drugs, and (ii) limiting centrally directed drugs from accessing their active sites within the spinal cord.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020. [PMID: 32849592 DOI: 10.3389/fimmu.2020.01695/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States.,Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States.,Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
11
|
dos Santos ÍGD, de Oliveira Mendes TA, Silva GAB, Reis AMS, Monteiro-Vitorello CB, Schaker PDC, Herai RH, Fabotti ABC, Coutinho LL, Jorge EC. Didelphis albiventris: an overview of unprecedented transcriptome sequencing of the white-eared opossum. BMC Genomics 2019; 20:866. [PMID: 31730444 PMCID: PMC6858782 DOI: 10.1186/s12864-019-6240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The white-eared opossum (Didelphis albiventris) is widely distributed throughout Brazil and South America. It has been used as an animal model for studying different scientific questions ranging from the restoration of degraded green areas to medical aspects of Chagas disease, leishmaniasis and resistance against snake venom. As a marsupial, D. albiventris can also contribute to the understanding of the molecular mechanisms that govern the different stages of organogenesis. Opossum joeys are born after only 13 days, and the final stages of organogenesis occur when the neonates are inside the pouch, depending on lactation. As neither the genome of this opossum species nor its transcriptome has been completely sequenced, the use of D. albiventris as an animal model is limited. In this work, we sequenced the D. albiventris transcriptome by RNA-seq to obtain the first catalogue of differentially expressed (DE) genes and gene ontology (GO) annotations during the neonatal stages of marsupial development. RESULTS The D. albiventris transcriptome was obtained from whole neonates harvested at birth (P0), at 5 days of age (P5) and at 10 days of age (P10). The de novo assembly of these transcripts generated 85,338 transcripts. Approximately 30% of these transcripts could be mapped against the amino acid sequences of M. domestica, the evolutionarily closest relative of D. albiventris to be sequenced thus far. Among the expressed transcripts, 2077 were found to be DE between P0 and P5, 13,780 between P0 and P10, and 1453 between P5 and P10. The enriched GO terms were mainly related to the immune system, blood tissue development and differentiation, vision, hearing, digestion, the CNS and limb development. CONCLUSIONS The elucidation of opossum transcriptomes provides an out-group for better understanding the distinct characteristics associated with the evolution of mammalian species. This study provides the first transcriptome sequences and catalogue of genes for a marsupial species at different neonatal stages, allowing the study of the mechanisms involved in organogenesis.
Collapse
Affiliation(s)
- Íria Gabriela Dias dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Amanda Maria Sena Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | | | - Patricia Dayane Carvalho Schaker
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Roberto Hirochi Herai
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | | | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo Brazil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| |
Collapse
|
12
|
Myllykoski M, Eichel MA, Jung RB, Kelm S, Werner HB, Kursula P. High-affinity heterotetramer formation between the large myelin-associated glycoprotein and the dynein light chain DYNLL1. J Neurochem 2018; 147:764-783. [PMID: 30261098 DOI: 10.1111/jnc.14598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/21/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Abstract
The close association of myelinated axons and their myelin sheaths involves numerous intercellular molecular interactions. For example, myelin-associated glycoprotein (MAG) mediates myelin-to-axon adhesion and signalling via molecules on the axonal surface. However, knowledge about intracellular binding partners of myelin proteins, including MAG, has remained limited. The two splice isoforms of MAG, S- and L-MAG, display distinct cytoplasmic domains and spatiotemporal expression profiles. We used yeast two-hybrid screening to identify interaction partners of L-MAG and found the dynein light chain DYNLL1 (also termed dynein light chain 8). DYNLL1 homodimers are known to facilitate dimerization of target proteins. L-MAG and DYNLL1 associate with high affinity, as confirmed with recombinant proteins in vitro. Structural analyses of the purified complex indicate that the DYNLL1-binding segment is localized close to the L-MAG C terminus, next to the Fyn kinase Tyr phosphorylation site. The crystal structure of the complex between DYNLL1 and its binding segment on L-MAG shows 2 : 2 binding in a parallel arrangement, indicating a heterotetrameric complex. The homology between L-MAG and previously characterized DYNLL1-ligands is limited, and some details of binding site interactions are unique for L-MAG. The structure of the complex between the entire L-MAG cytoplasmic domain and DYNLL1, as well as that of the extracellular domain of MAG, were modelled based on small-angle X-ray scattering data, allowing structural insights into L-MAG interactions on both membrane surfaces. Our data imply that DYNLL1 dimerizes L-MAG, but not S-MAG, through the formation of a specific 2 : 2 heterotetramer. This arrangement is likely to affect, in an isoform-specific manner, the functions of MAG in adhesion and myelin-to-axon signalling. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Read the Editorial Highlight for this article on page 712.
Collapse
Affiliation(s)
- Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Georg August University School of Science, University of Göttingen, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Bremen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
14
|
Barnett GJ, Barnett IJ, Wilson SR, Smith PC. Comparison of 6 Injectable Anesthetic Regimens and Isoflurane in Gray Short-tailed Opossums ( Monodelphis domestica). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2017; 56:544-549. [PMID: 28903826 PMCID: PMC5605179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/21/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Gray short-tailed opossums are used in a wide variety of research in the areas of developmental biology, oncology, immunology, and comparative biology. Despite many frequent experimental manipulations of these animals under anesthesia, few studies to date have characterized the effects of anesthesia in this species. Our aim was to identify safe and effective injectable anesthetic combinations using ketamine and xylazine or ketamine and dexmedetomidine at doses of 40 mg/kg to 100 mg/kg for ketamine, 5 mg/kg to 10 mg/kg for xylazine, and 0.05 mg/kg to 0.1 mg/kg for dexmedetomidine. Effects of the proposed regimens ranged from light sedation to surgical anesthesia, but only 100 mg/kg ketamine + 0.1 mg/kg dexmedetomidine induced surgical anesthesia in all opossums, with a mean duration of 25.4 min. The 2 lowest doses of ketamine and xylazine (40 mg/kg ketamine + 5 mg/kg xylazine and 40 mg/kg ketamine + 10 mg/kg xylazine) achieved sedation to light anesthesia in all animals but did not produce a surgical plane of anesthesia in any animal. All regimens that induced a surgical plane of anesthesia caused bradycardia and bradypnea, and 75 mg/kg ketamine + 10 mg/kg xylazine and 100 mg/kg ketamine + 0.1 mg/kg dexmedetomidine caused the greatest decreases in SpO2. Except for one opossum that died of unknown causes, all animals remained healthy and apparently free of anesthetic complications. Among all treatments, isoflurane delivered by a precision vaporizer provided the most consistent and reliable anesthesia; therefore, we recommend inhalant anesthesia over the injectable combinations used in this study.
Collapse
Affiliation(s)
- Grace J Barnett
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut;,
| | - Ian J Barnett
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Steven R Wilson
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Peter C Smith
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Saunders NR, Dziegielewska KM, Whish SC, Hinds LA, Wheaton BJ, Huang Y, Henry S, Habgood MD. A bipedal mammalian model for spinal cord injury research: The tammar wallaby. F1000Res 2017; 6:921. [PMID: 28721206 PMCID: PMC5497825 DOI: 10.12688/f1000research.11712.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Most animal studies of spinal cord injury are conducted in quadrupeds, usually rodents. It is unclear to what extent functional results from such studies can be translated to bipedal species such as humans because bipedal and quadrupedal locomotion involve very different patterns of spinal control of muscle coordination. Bipedalism requires upright trunk stability and coordinated postural muscle control; it has been suggested that peripheral sensory input is less important in humans than quadrupeds for recovery of locomotion following spinal injury. Methods: We used an Australian macropod marsupial, the tammar wallaby
(Macropuseugenii), because tammars exhibit an upright trunk posture, human-like alternating hindlimb movement when swimming and bipedal over-ground locomotion. Regulation of their muscle movements is more similar to humans than quadrupeds. At different postnatal (P) days (P7–60) tammars received a complete mid-thoracic spinal cord transection. Morphological repair, as well as functional use of hind limbs, was studied up to the time of their pouch exit. Results: Growth of axons across the lesion restored supraspinal innervation in animals injured up to 3 weeks of age but not in animals injured after 6 weeks of age. At initial pouch exit (P180), the young injured at P7-21 were able to hop on their hind limbs similar to age-matched controls and to swim albeit with a different stroke. Those animals injured at P40-45 appeared to be incapable of normal use of hind limbs even while still in the pouch. Conclusions: Data indicate that the characteristic over-ground locomotion of tammars provides a model in which regrowth of supraspinal connections across the site of injury can be studied in a bipedal animal. Forelimb weight-bearing motion and peripheral sensory input appear not to compensate for lack of hindlimb control, as occurs in quadrupeds. Tammars may be a more appropriate model for studies of therapeutic interventions relevant to humans.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Katarzyna M Dziegielewska
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Sophie C Whish
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lyn A Hinds
- Health and Biosecurity Business Unit, Commonwealth Science and Industrial Research Organisation (CSIRO), Canberra, ACT, 2601, Australia
| | - Benjamin J Wheaton
- Centre for Evolutionary and Theoretical Immunology, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yifan Huang
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Steve Henry
- Health and Biosecurity Business Unit, Commonwealth Science and Industrial Research Organisation (CSIRO), Canberra, ACT, 2601, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
16
|
Li X, Floriddia EM, Toskas K, Fernandes KJL, Guérout N, Barnabé-Heider F. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time. EBioMedicine 2016; 13:55-65. [PMID: 27818039 PMCID: PMC5264475 DOI: 10.1016/j.ebiom.2016.10.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Stem cells have a high therapeutic potential for the treatment of spinal cord injury (SCI). We have shown previously that endogenous stem cell potential is confined to ependymal cells in the adult spinal cord which could be targeted for non-invasive SCI therapy. However, ependymal cells are an understudied cell population. Taking advantage of transgenic lines, we characterize the appearance and potential of ependymal cells during development. We show that spinal cord stem cell potential in vitro is contained within these cells by birth. Moreover, juvenile cultures generate more neurospheres and more oligodendrocytes than adult ones. Interestingly, juvenile ependymal cells in vivo contribute to glial scar formation after severe but not mild SCI, due to a more effective sealing of the lesion by other glial cells. This study highlights the importance of the age-dependent potential of stem cells and post-SCI environment in order to utilize ependymal cell's regenerative potential.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elisa M Floriddia
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Karl J L Fernandes
- Department of Neurosciences, Research Center of the University of Montreal Hospital (CRCHUM), QC H2X 0A9 Montreal, Canada
| | - Nicolas Guérout
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; Normandie Université, UNIROUEN, EA3830-GRHV, 76000 Rouen, France; Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France.
| | | |
Collapse
|
17
|
Koehn LM, Noor NM, Dong Q, Er SY, Rash LD, King GF, Dziegielewska KM, Saunders NR, Habgood MD. Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Res 2016; 5:1822. [PMID: 28105306 PMCID: PMC5200949 DOI: 10.12688/f1000research.9094.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Tissue loss after spinal trauma is biphasic, with initial mechanical/haemorrhagic damage at the time of impact being followed by gradual secondary expansion into adjacent, previously unaffected tissue. Limiting the extent of this secondary expansion of tissue damage has the potential to preserve greater residual spinal cord function in patients. The acute tissue hypoxia resulting from spinal cord injury (SCI) activates acid-sensing ion channel 1a (ASIC1a). We surmised that antagonism of this channel should provide neuroprotection and functional preservation after SCI. We show that systemic administration of the spider-venom peptide PcTx1, a selective inhibitor of ASIC1a, improves locomotor function in adult Sprague Dawley rats after thoracic SCI. The degree of functional improvement correlated with the degree of tissue preservation in descending white matter tracts involved in hind limb locomotor function. Transcriptomic analysis suggests that PcTx1-induced preservation of spinal cord tissue does not result from a reduction in apoptosis, with no evidence of down-regulation of key genes involved in either the intrinsic or extrinsic apoptotic pathways. We also demonstrate that trauma-induced disruption of blood-spinal cord barrier function persists for at least 4 days post-injury for compounds up to 10 kDa in size, whereas barrier function is restored for larger molecules within a few hours. This temporary loss of barrier function provides a “
treatment window” through which systemically administered drugs have unrestricted access to spinal tissue in and around the sites of trauma. Taken together, our data provide evidence to support the use of ASIC1a inhibitors as a therapeutic treatment for SCI. This study also emphasizes the importance of objectively grading the functional severity of initial injuries (even when using standardized impacts) and we describe a simple scoring system based on hind limb function that could be adopted in future studies.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Natassya M Noor
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Qing Dong
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Sing-Yan Er
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Lachlan D Rash
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Glenn F King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | - Norman R Saunders
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| |
Collapse
|
18
|
Koehn LM, Noor NM, Dong Q, Er SY, Rash LD, King GF, Dziegielewska KM, Saunders NR, Habgood MD. Selective inhibition of ASIC1a confers functional and morphological neuroprotection following traumatic spinal cord injury. F1000Res 2016; 5:1822. [PMID: 28105306 PMCID: PMC5200949 DOI: 10.12688/f1000research.9094.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 11/10/2023] Open
Abstract
Tissue loss after spinal trauma is biphasic, with initial mechanical/haemorrhagic damage at the time of impact being followed by gradual secondary expansion into adjacent, previously unaffected tissue. Limiting the extent of this secondary expansion of tissue damage has the potential to preserve greater residual spinal cord function in patients. The acute tissue hypoxia resulting from spinal cord injury (SCI) activates acid-sensing ion channel 1a (ASIC1a). We surmised that antagonism of this channel should provide neuroprotection and functional preservation after SCI. We show that systemic administration of the spider-venom peptide PcTx1, a selective inhibitor of ASIC1a, improves locomotor function in adult Sprague Dawley rats after thoracic SCI. The degree of functional improvement correlated with the degree of tissue preservation in descending white matter tracts involved in hind limb locomotor function. Transcriptomic analysis suggests that PcTx1-induced preservation of spinal cord tissue does not result from a reduction in apoptosis, with no evidence of down-regulation of key genes involved in either the intrinsic or extrinsic apoptotic pathways. We also demonstrate that trauma-induced disruption of blood-spinal cord barrier function persists for at least 4 days post-injury for compounds up to 10 kDa in size, whereas barrier function is restored for larger molecules within a few hours. This temporary loss of barrier function provides a " treatment window" through which systemically administered drugs have unrestricted access to spinal tissue in and around the sites of trauma. Taken together, our data provide evidence to support the use of ASIC1a inhibitors as a therapeutic treatment for SCI. This study also emphasizes the importance of objectively grading the functional severity of initial injuries (even when using standardized impacts) and we describe a simple scoring system based on hind limb function that could be adopted in future studies.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Natassya M Noor
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Qing Dong
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Sing-Yan Er
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Lachlan D Rash
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Glenn F King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | | | - Norman R Saunders
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Mark D Habgood
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol Cell Proteomics 2015; 15:394-408. [PMID: 26695766 DOI: 10.1074/mcp.r115.053751] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system.
Collapse
Affiliation(s)
- Erna A van Niekerk
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093;
| | - Mark H Tuszynski
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Paul Lu
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Jennifer N Dulin
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
20
|
|