1
|
McMinn RJ, Chacon A, Rückert C, Scorza V, Young MC, Worthington D, Lamb MM, Medrano RE, Harris EK, Arias K, Lopez MR, Asturias EJ, Foy BD, Stenglein MD, Olson D, Ebel GD. Evaluation of Vector-Enabled Xenosurveillance in Rural Guatemala. Am J Trop Med Hyg 2023; 109:1303-1310. [PMID: 37972312 DOI: 10.4269/ajtmh.22-0774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/02/2023] [Indexed: 11/19/2023] Open
Abstract
Surveillance methods that permit rapid detection of circulating pathogens in low-resource settings are desperately needed. In this study, we evaluated a mosquito bloodmeal-based surveillance method ("xenosurveillance") in rural Guatemala. Twenty households from two villages (Los Encuentros and Chiquirines) in rural southwest Guatemala were enrolled and underwent weekly prospective surveillance from August 2019 to December 2019 (16 weeks). When febrile illness was reported in a household, recently blood-fed mosquitoes were collected from within dwellings and blood samples taken from each member of the household. Mosquitoes were identified to species and blood sources identified by sequencing. Shotgun metagenomic sequencing was used to identify circulating viruses. Culex pipiens (60.9%) and Aedes aegypti (18.6%) were the most abundant mosquitoes collected. Bloodmeal sources were most commonly human (32.6%) and chicken (31.6%), with various other mammal and avian hosts detected. Several mosquito-specific viruses were detected, including Culex orthophasma virus. Human pathogens were not detected. Therefore, xenosurveillance may require more intensive sampling to detect human pathogens in Guatemala and ecologically similar localities in Central America.
Collapse
Affiliation(s)
- Rebekah J McMinn
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Andrea Chacon
- Fundacion para la Salud Integral de los Guatemaltecos, Retalhuleu, Guatemala
| | - Claudia Rückert
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Valeria Scorza
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Michael C Young
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Delaney Worthington
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Molly M Lamb
- Colorado School of Public Health, Aurora, Colorado
| | - Ramon E Medrano
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Emma K Harris
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Kareen Arias
- Center for Human Development, Retalhuleu, Guatemala
| | - Maria Renee Lopez
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Edwin J Asturias
- Colorado School of Public Health, Aurora, Colorado
- Center for Human Development, Retalhuleu, Guatemala
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Daniel Olson
- Colorado School of Public Health, Aurora, Colorado
- Center for Human Development, Retalhuleu, Guatemala
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
2
|
Campbell CL, Snell TK, Bennett S, Wyckoff JH, Heaslip D, Flatt J, Harris EK, Hartman DA, Lian E, Bird BH, Stenglein MD, Bowen RA, Kading RC. Safety study of Rift Valley Fever human vaccine candidate (DDVax) in mosquitoes. Transbound Emerg Dis 2022; 69:2621-2633. [PMID: 34890118 PMCID: PMC9788258 DOI: 10.1111/tbed.14415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne pathogen with significant human and veterinary health consequences that periodically emerges in epizootics. RVFV causes fetal loss and death in ruminants and in humans can lead to liver and renal disease, delayed-onset encephalitis, retinitis, and in some cases severe haemorrhagic fever. A live attenuated vaccine candidate (DDVax), was developed by the deletion of the virulence factors NSs and NSm from a clinical isolate, ZH501, and has proven safe and immunogenic in rodents, pregnant sheep and non-human primates. Deletion of NSm also severely restricted mosquito midgut infection and inhibited vector-borne transmission. To demonstrate environmental safety, this study investigated the replication, dissemination and transmission efficiency of DDVax in mosquitoes following oral exposure compared to RVFV strains MP-12 and ZH501. Infection and dissemination profiles were also measured in mosquitoes 7 days after they fed on goats inoculated with DDvax or MP-12. We hypothesized that DDVax would infect mosquitoes at significantly lower rates than other RVFV strains and, due to lack of NSm, be transmission incompetent. Exposure of Ae. aegypti and Cx. tarsalis to 8 log10 plaque forming units (PFU)/ml DDVax by artificial bloodmeal resulted in significantly reduced DDVax infection rates in mosquito bodies compared to controls. Plaque assays indicated negligible transmission of infectious DDVax in Cx. tarsalis saliva (1/140 sampled) and none in Ae. aegypti saliva (0/120). Serum from goats inoculated with DDVax or MP-12 did not harbour detectable infectious virus by plaque assay at 1, 2 or 3 days post-inoculation. Infectious virus was, however, recovered from Aedes and Culex bodies that fed on goats vaccinated with MP-12 (13.8% and 4.6%, respectively), but strikingly, DDvax-positive mosquito bodies were greatly reduced (4%, and 0%, respectively). Furthermore, DDVax did not disseminate to legs/wings in any of the goat-fed mosquitoes. Collectively, these results are consistent with a beneficial environmental safety profile.
Collapse
Affiliation(s)
- Corey L. Campbell
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Trey K. Snell
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Susi Bennett
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - John H. Wyckoff
- BioMARC, Infectious Diseases Research Center, Colorado State UniversityFort CollinsColorado
| | - Darragh Heaslip
- BioMARC, Infectious Diseases Research Center, Colorado State UniversityFort CollinsColorado
| | - Jordan Flatt
- BioMARC, Infectious Diseases Research Center, Colorado State UniversityFort CollinsColorado
| | - Emma K. Harris
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Daniel A. Hartman
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Elena Lian
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Brian H. Bird
- School of Veterinary MedicineOne Health InstituteUniversity of CaliforniaDavisCalifornia
| | - Mark D. Stenglein
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Richard A. Bowen
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Rebekah C. Kading
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| |
Collapse
|
3
|
Clarke LL, Mead DG, Ruder MG, Carter DL, Bloodgood J, Howerth E. Experimental Infection of Domestic Piglets (Sus scrofa) with Rift Valley Fever Virus. Am J Trop Med Hyg 2022; 106:182-186. [PMID: 34695799 PMCID: PMC8733486 DOI: 10.4269/ajtmh.21-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a mosquito-transmitted phlebovirus (Family: Phenuiviridae, Order: Bunyavirales) causing severe neonatal mortality and abortion primarily in domestic ruminants. The susceptibility of young domestic swine to RVFV and this species' role in geographic expansion and establishment of viral endemicity is unclear. Six commercially bred Landrace-cross piglets were inoculated subcutaneously with 105 plaque-forming units of RVFV ZH501 strain and two piglets received a sham inoculum. All animals were monitored for clinical signs, viremia, viral shedding, and antibody response for 14 days. Piglets did not develop evidence of clinical disease, become febrile, or experience decreased weight gain during the study period. A brief lymphopenia followed by progressive lymphocytosis was observed following inoculation in all piglets. Four piglets developed a brief viremia for 2 days post-inoculation and three of these had detectable virus in oronasal secretions three days post-inoculation. Primary inoculated piglets seroconverted and those that developed detectable viremias had the highest titers assessed by serum neutralization (1:64-1:256). Two viremic piglets had a lymphoplasmacytic encephalitis with glial nodules; RVFV was not detected by immunohistochemistry in these sections. While young piglets do not appear to readily develop clinical disease following RVFV infection, results suggest swine could be subclinically infected with RVFV.
Collapse
Affiliation(s)
- Lorelei L. Clarke
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia;,Address correspondence to Lorelei L. Clarke, Wisconsin Veterinary Diagnostic Laboratory, 445 Easterday Ln, Madison, WI 53706. E-mail:
| | - Daniel G. Mead
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Deborah L. Carter
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jennifer Bloodgood
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Elizabeth Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
4
|
A human-blood-derived microRNA facilitates flavivirus infection in fed mosquitoes. Cell Rep 2021; 37:110091. [PMID: 34910910 DOI: 10.1016/j.celrep.2021.110091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/28/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Hematophagous arthropods, such as mosquitoes, naturally carry and transmit hundreds of arboviruses to humans. Blood meal is a predominant physical interface that shapes cross-species communications among humans, bloodsuckers, and arboviruses. Here, we identify a human-blood-derived microRNA, hsa-miR-150-5p, that interferes with a mosquito antiviral system to facilitate flavivirus infection and transmission. hsa-miR-150-5p is acquired with a blood meal into the mosquito hemocoel and persists for a prolonged time there. The agomir of hsa-miR-150-5p enhances, whereas the antagomir represses flaviviral infection in mosquitoes and transmission from mice to mosquitoes. Mechanistic studies indicate that hsa-miR-150-5p hijacks the mosquito Argonaute-1-mediated RNA interference system to suppress the expression of some chymotrypsins with potent virucidal activity. Mosquito chymotrypsins are essential for resisting systemic flavivirus infection in hemocoel tissues. Chymotrypsin homologs potentially targeted by miR-150-5p are also found in other hematophagous arthropods, demonstrating a conserved miR-150-5p-mediated cross-species RNAi mechanism that might determine flaviviral transmissibility in nature.
Collapse
|
5
|
Vaughan JA, Hinson J, Andrews ES, Turell MJ. Pre-existing Microfilarial Infections of American Robins (Passeriformes: Turdidae) and Common Grackles (Passeriformes: Icteridae) Have Limited Impact on Enhancing Dissemination of West Nile Virus in Culex pipiens Mosquitoes (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1389-1397. [PMID: 33257996 PMCID: PMC8122231 DOI: 10.1093/jme/tjaa261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Microfilariae (MF) are the immature stages of filarial nematode parasites and inhabit the blood and dermis of all classes of vertebrates, except fish. Concurrent ingestion of MF and arboviruses by mosquitoes can enhance mosquito transmission of virus compared to when virus is ingested alone. Shortly after being ingested, MF penetrate the mosquito's midgut and may introduce virus into the mosquito's hemocoel, creating a disseminated viral infection much sooner than normal. This phenomenon is known as microfilarial enhancement. Both American Robins and Common Grackles harbor MF-that is, Eufilaria sp. and Chandlerella quiscali von Linstow (Spirurida: Onchocercidae), respectively. We compared infection and dissemination rates in Culex pipiens L. mosquitoes that fed on birds with and without MF infections that had been infected with West Nile virus (WNV). At moderate viremias, about 107 plaque-forming units (pfu)/ml of blood, there were no differences in infection or dissemination rates among mosquitoes that ingested viremic blood from a bird with or without microfilaremia. At high viremias, >108.5 pfu/ml, mosquitoes feeding on a microfilaremic Grackle with concurrent viremia had significantly higher infection and dissemination rates than mosquitoes fed on viremic Grackles without microfilaremia. Microfilarial enhancement depends on the specific virus, MF, and mosquito species examined. How virus is introduced into the hemocoel by MF differs between the avian/WNV systems described here (i.e., leakage) and various arboviruses with MF of the human filarid, Brugia malayi (Brug) (Spirurida: Onchocercidae) (i.e., cotransport). Additional studies are needed to determine if other avian species and their MF are involved in the microfilarial enhancement of WNV in nature.
Collapse
Affiliation(s)
| | - Juanita Hinson
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Elizabeth S Andrews
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Michael J Turell
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| |
Collapse
|
6
|
Cameron MM, Ramesh A. The use of molecular xenomonitoring for surveillance of mosquito-borne diseases. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190816. [PMID: 33357052 PMCID: PMC7776931 DOI: 10.1098/rstb.2019.0816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 11/12/2022] Open
Abstract
The scientific community recognizes that molecular xenomonitoring (MX) can allow infected mosquitoes to serve as a proxy for human infection in vector-borne disease surveillance, but developing reliable MX systems for programmatic use has been challenging. The primary aim of this article is to examine the available evidence to recommend how MX can best be used for various purposes. Although much of the literature published within the last 20 years focuses on using MX for lymphatic filariasis elimination, a growing body of evidence supports its use in early warning systems for emerging infectious diseases (EIDs). An MX system design must consider the goal and target (e.g. diseases targeted for elimination versus EIDs), mosquito and pathogen characteristics, and context (e.g. setting and health system). MX is currently used as a 'supplement' to human surveillance and will not be considered as a 'replacement' until the correlation between pathogen-infection rates in human and mosquito populations is better understood. Establishing such relationships may not be feasible in elimination scenarios, due to increasingly dwindling human infection prevalence after successful control, but may still be possible for EIDs and in integrated disease surveillance systems. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Mary M. Cameron
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Anita Ramesh
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
7
|
Drummond C, Gebhardt ME, Sáenz Robles MT, Carpi G, Hoyer I, Pastusiak A, Reddy MR, Norris DE, Pipas JM, Jackson EK. Stability and detection of nucleic acid from viruses and hosts in controlled mosquito blood feeds. PLoS One 2020; 15:e0231061. [PMID: 32525960 PMCID: PMC7289426 DOI: 10.1371/journal.pone.0231061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/23/2020] [Indexed: 12/29/2022] Open
Abstract
Monitoring the presence and spread of pathogens in the environment is of critical importance. Rapid detection of infectious disease outbreaks and prediction of their spread can facilitate early responses of health agencies and reduce the severity of outbreaks. Current sampling methods are sorely limited by available personnel and throughput. For instance, xenosurveillance utilizes captured arthropod vectors, such as mosquitoes, as sampling tools to access blood from a wide variety of vertebrate hosts. Next generation sequencing (NGS) of nucleic acid from individual blooded mosquitoes can be used to identify mosquito and host species, and microorganisms including pathogens circulating within either host. However, there are practical challenges to collecting and processing mosquitoes for xenosurveillance, such as the rapid metabolization or decay of microorganisms within the mosquito midgut. This particularly affects pathogens that do not replicate in mosquitoes, preventing their detection by NGS or other methods. Accordingly, we performed a series of experiments to establish the windows of detection for DNA or RNA from human blood and/or viruses present in mosquito blood meals. Our results will contribute to the development of xenosurveillance techniques with respect to optimal timing of sample collection and NGS processing and will also aid trap design by demonstrating the stabilizing effect of temperature control on viral genome recovery from blood-fed mosquitoes.
Collapse
Affiliation(s)
- Coyne Drummond
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary E. Gebhardt
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Maria Teresa Sáenz Robles
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Isaiah Hoyer
- Health Futures, Microsoft Research, Redmond, Washington, United States of America
| | - Andrzej Pastusiak
- Health Futures, Microsoft Research, Redmond, Washington, United States of America
| | - Michael R. Reddy
- Health Futures, Microsoft Research, Redmond, Washington, United States of America
- * E-mail:
| | - Douglas E. Norris
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ethan K. Jackson
- Health Futures, Microsoft Research, Redmond, Washington, United States of America
| |
Collapse
|
8
|
Comparative Pathology of West Nile Virus in Humans and Non-Human Animals. Pathogens 2020; 9:pathogens9010048. [PMID: 31935992 PMCID: PMC7168622 DOI: 10.3390/pathogens9010048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) continues to be a major cause of human arboviral neuroinvasive disease. Susceptible non-human vertebrates are particularly diverse, ranging from commonly affected birds and horses to less commonly affected species such as alligators. This review summarizes the pathology caused by West Nile virus during natural infections of humans and non-human animals. While the most well-known findings in human infection involve the central nervous system, WNV can also cause significant lesions in the heart, kidneys and eyes. Time has also revealed chronic neurologic sequelae related to prior human WNV infection. Similarly, neurologic disease is a prominent manifestation of WNV infection in most non-human non-host animals. However, in some avian species, which serve as the vertebrate host for WNV maintenance in nature, severe systemic disease can occur, with neurologic, cardiac, intestinal and renal injury leading to death. The pathology seen in experimental animal models of West Nile virus infection and knowledge gains on viral pathogenesis derived from these animal models are also briefly discussed. A gap in the current literature exists regarding the relationship between the neurotropic nature of WNV in vertebrates, virus propagation and transmission in nature. This and other knowledge gaps, and future directions for research into WNV pathology, are addressed.
Collapse
|
9
|
Fagre AC, Kading RC. Can Bats Serve as Reservoirs for Arboviruses? Viruses 2019; 11:E215. [PMID: 30832426 PMCID: PMC6466281 DOI: 10.3390/v11030215] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022] Open
Abstract
Bats are known to harbor and transmit many emerging and re-emerging viruses, many of which are extremely pathogenic in humans but do not cause overt pathology in their bat reservoir hosts: henipaviruses (Nipah and Hendra), filoviruses (Ebola and Marburg), and coronaviruses (SARS-CoV and MERS-CoV). Direct transmission cycles are often implicated in these outbreaks, with virus shed in bat feces, urine, and saliva. An additional mode of virus transmission between bats and humans requiring further exploration is the spread of disease via arthropod vectors. Despite the shared ecological niches that bats fill with many hematophagous arthropods (e.g. mosquitoes, ticks, biting midges, etc.) known to play a role in the transmission of medically important arboviruses, knowledge surrounding the potential for bats to act as reservoirs for arboviruses is limited. To this end, a comprehensive literature review was undertaken examining the current understanding and potential for bats to act as reservoirs for viruses transmitted by blood-feeding arthropods. Serosurveillance and viral isolation from either free-ranging or captive bats are described in relation to four arboviral groups (Bunyavirales, Flaviviridae, Reoviridae, Togaviridae). Further, ecological associations between bats and hematophagous viral vectors are characterized (e.g. bat bloodmeals in mosquitoes, ingestion of mosquitoes by bats, etc). Lastly, knowledge gaps related to hematophagous ectoparasites (bat bugs and bed bugs (Cimicidae) and bat flies (Nycteribiidae and Streblidae)), in addition to future directions for characterization of bat-vector-virus relationships are described.
Collapse
Affiliation(s)
- Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Rebekah C Kading
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
10
|
Robb LL, Hartman DA, Rice L, deMaria J, Bergren NA, Borland EM, Kading RC. Continued Evidence of Decline in the Enzootic Activity of Western Equine Encephalitis Virus in Colorado. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:584-588. [PMID: 30535264 DOI: 10.1093/jme/tjy214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 06/09/2023]
Abstract
Western equine encephalitis (WEE) was once prevalent and routinely isolated from mosquitoes in Colorado; however, isolations of Western equine encephalitis virus (WEEV) have not been reported from mosquito pools since the early 1990s. The objective of the present study was to test pools of Culex tarsalis (Coquillett) mosquitoes sampled from Weld County, CO, in 2016 for evidence of WEEV infection. Over 7,000 mosquitoes were tested, but none were positive for WEEV RNA. These data indicate that WEEV either was not circulating enzootically in Northern Colorado, was very rare, and would require much more extensive mosquito sampling to detect, or was heterogeneously distributed spatially and temporally and happened to not be present in the area sampled during 2016. Even though the reported incidence of WEE remains null, screening for WEEV viral RNA in mosquito vectors offers forewarning toward the detection and prevention of future outbreaks.
Collapse
Affiliation(s)
- Lucy L Robb
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel A Hartman
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lauren Rice
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin deMaria
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicholas A Bergren
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Erin M Borland
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Rebekah C Kading
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Nascimento J, Sampaio VS, Karl S, Kuehn A, Almeida A, Vitor-Silva S, de Melo GC, Baia da Silva DC, C. P. Lopes S, Fé NF, Lima JBP, Guerra MGB, Pimenta PFP, Bassat Q, Mueller I, Lacerda MVG, Monteiro WM. Use of anthropophilic culicid-based xenosurveillance as a proxy for Plasmodium vivax malaria burden and transmission hotspots identification. PLoS Negl Trop Dis 2018; 12:e0006909. [PMID: 30418971 PMCID: PMC6258424 DOI: 10.1371/journal.pntd.0006909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/26/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Vector-borne diseases account for more than 17% of all infectious diseases, causing more than one million deaths annually. Malaria remains one of the most important public health problems worldwide. These vectors are bloodsucking insects, which can transmit disease-producing microorganisms during a blood meal. The contact of culicids with human populations living in malaria-endemic areas suggests that the identification of Plasmodium genetic material in the blood present in the gut of these mosquitoes may be possible. The process of assessing the blood meal for the presence of pathogens is termed 'xenosurveillance'. In view of this, the present work investigated the relationship between the frequency with which Plasmodium DNA is found in culicids and the frequency with which individuals are found to be carrying malaria parasites. A cross-sectional study was performed in a peri-urban area of Manaus, in the Western Brazilian Amazon, by simultaneously collecting human blood samples and trapping culicids from households. A total of 875 individuals were included in the study and a total of 13,374mosquito specimens were captured. Malaria prevalence in the study area was 7.7%. The frequency of households with at least one culicid specimen carrying Plasmodium DNA was 6.4%. Plasmodium infection incidence was significantly related to whether any Plasmodium positive blood-fed culicid was found in the same household [IRR 3.49 (CI95% 1.38-8.84); p = 0.008] and for indoor-collected culicids [IRR 4.07 (CI95%1.25-13.24); p = 0.020]. Furthermore, the number of infected people in the house at the time of mosquito collection was related to whether there were any positive blood-fed culicid mosquitoes in that household for collection methods combined [IRR 4.48 (CI95%2.22-9.05); p<0.001] or only for indoor-collected culicids [IRR 4.88 (CI95%2.01-11.82); p<0.001]. Our results suggest that xenosurveillance can be used in endemic tropical regions in order to estimate the malaria burden and identify transmission foci in areas where Plasmodium vivax is predominant.
Collapse
Affiliation(s)
- Joabi Nascimento
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Vanderson S. Sampaio
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Stephan Karl
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Entomology Section, Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Papua, New Guinea
- Department of Medical Biology, University of Melbourne, Australia
| | - Andrea Kuehn
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Anne Almeida
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Sheila Vitor-Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Gisely Cardoso de Melo
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Djane C. Baia da Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
| | | | - Nelson F. Fé
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
| | - José B. Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Maria G. Barbosa Guerra
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Paulo F. P. Pimenta
- Laboratório de Entomologia Médica, Centro de Pesquisas René Rachou (Fiocruz), Belo Horizonte, MG, Brazil
| | - Quique Bassat
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| | - Ivo Mueller
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Australia
- Parasites & Hosts Unit, Institut Pasteur, Paris, France
| | - Marcus V. G. Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, AM, Brazil
| | - Wuelton M. Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
- * E-mail:
| |
Collapse
|
12
|
Ramírez AL, van den Hurk AF, Meyer DB, Ritchie SA. Searching for the proverbial needle in a haystack: advances in mosquito-borne arbovirus surveillance. Parasit Vectors 2018; 11:320. [PMID: 29843778 PMCID: PMC5975710 DOI: 10.1186/s13071-018-2901-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023] Open
Abstract
Surveillance is critical for the prevention and control of mosquito-borne arboviruses. Detection of elevated or emergent virus activity serves as a warning system to implement appropriate actions to reduce outbreaks. Traditionally, surveillance of arboviruses has relied on the detection of specific antibodies in sentinel animals and/or detection of viruses in pools of mosquitoes collected using a variety of sampling methods. These methods, although immensely useful, have limitations, including the need for a cold chain for sample transport, cross-reactivity between related viruses in serological assays, the requirement for specialized equipment or infrastructure, and overall expense. Advances have recently been made on developing new strategies for arbovirus surveillance. These strategies include sugar-based surveillance, whereby mosquitoes are collected in purpose-built traps and allowed to expectorate on nucleic acid preservation cards which are submitted for virus detection. New diagnostic approaches, such as next-generation sequencing, have the potential to expand the genetic information obtained from samples and aid in virus discovery. Here, we review the advancement of arbovirus surveillance systems over the past decade. Some of the novel approaches presented here have already been validated and are currently being integrated into surveillance programs. Other strategies are still at the experimental stage, and their feasibility in the field is yet to be evaluated.
Collapse
Affiliation(s)
- Ana L Ramírez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Dagmar B Meyer
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.,Astralian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.,Astralian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| |
Collapse
|
13
|
Bergren NA, Miller MR, Monath TP, Kading RC. Assessment of the ability of V920 recombinant vesicular stomatitis-Zaire ebolavirus vaccine to replicate in relevant arthropod cell cultures and vector species. Hum Vaccin Immunother 2018; 14:994-1002. [PMID: 29206076 PMCID: PMC5893201 DOI: 10.1080/21645515.2017.1412898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
V920, rVSVΔG-ZEBOV-GP, is a recombinant vesicular stomatitis-Zaire ebolavirus vaccine which has shown an acceptable safety profile and provides a protective immune response against Ebola virus disease (EVD) induced by Zaire ebolavirus in humans. The purpose of this study was to determine whether the V920 vaccine is capable of replicating in arthropod cell cultures of relevant vector species and of replicating in live mosquitoes. While the V920 vaccine replicated well in Vero cells, no replication was observed in Anopheles or Aedes mosquito, Culicoides biting midge, or Lutzomyia sand fly cells, nor in live Culex or Aedes mosquitoes following exposure through intrathoracic inoculation or feeding on a high-titer infectious blood meal. The insect taxa selected for use in this study represent actual and potential epidemic vectors of VSV. V920 vaccine inoculated into Cx. quinquefasciatus and Ae. aegypti mosquitoes demonstrated persistence of replication-competent virus following inoculation, consistent with the recognized biological stability of the vaccine, but no evidence for active virus replication in live mosquitoes was observed. Following administration of an infectious blood meal to Ae. aegypti and Cx. quinquefasciatus mosquitoes at a titer several log10 PFU more concentrated than would be observed in vaccinated individuals, no infection or dissemination of V920 was observed in either mosquito species. In vitro and in vivo data gathered during this study support minimal risk of the vector-borne potential of the V920 vaccine.
Collapse
Affiliation(s)
- Nicholas A Bergren
- a Arthropod-borne Infectious Diseases Laboratory, Department of Microbiology , Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Megan R Miller
- a Arthropod-borne Infectious Diseases Laboratory, Department of Microbiology , Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| | - Thomas P Monath
- b BioProtection Systems, New Link Genetics Corporation , Ames , IA , USA
| | - Rebekah C Kading
- a Arthropod-borne Infectious Diseases Laboratory, Department of Microbiology , Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
14
|
Fauver JR, Gendernalik A, Weger-Lucarelli J, Grubaugh ND, Brackney DE, Foy BD, Ebel GD. The Use of Xenosurveillance to Detect Human Bacteria, Parasites, and Viruses in Mosquito Bloodmeals. Am J Trop Med Hyg 2017; 97:324-329. [PMID: 28722623 DOI: 10.4269/ajtmh.17-0063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infectious disease surveillance is hindered by several factors, including limited infrastructure and geographic isolation of many resource-poor regions. In addition, the complexities of sample acquisition, processing, and analysis, even in developed regions, can be rate limiting. Therefore, new strategies to survey human populations for emerging pathogens are necessary. Xenosurveillance is a method that utilizes mosquitoes as sampling devices to search for genetic signatures of pathogens in vertebrates. Previously we demonstrated that xenosurveillance can detect viral RNA in both laboratory and field settings. However, its ability to detect bacteria and parasites remains to be assessed. Accordingly, we fed Anopheles gambiae mosquitoes blood that contained Trypanosoma brucei gambiense and Bacillus anthracis. In addition, we determined whether two additional emerging viruses, Middle East Respiratory Syndrome Coronavirus and Zika virus could be detected by this method. Pathogen-specific real-time reverse transcription polymerase chain reaction was used to evaluate the sensitivity of xenosurveillance across multiple pathogen taxa and over time. We detected RNA from all pathogens at clinically relevant concentrations from mosquitoes processed up to 1 day postbloodfeeding. These results demonstrate that xenosurveillance may be used as a tool to expand surveillance for viral, parasitic, and bacterial pathogens in resource-limited areas.
Collapse
Affiliation(s)
- Joseph R Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Alex Gendernalik
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Nathan D Grubaugh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California.,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Doug E Brackney
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Brian D Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
15
|
Viral Metagenomics on Blood-Feeding Arthropods as a Tool for Human Disease Surveillance. Int J Mol Sci 2016; 17:ijms17101743. [PMID: 27775568 PMCID: PMC5085771 DOI: 10.3390/ijms17101743] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 11/17/2022] Open
Abstract
Surveillance and monitoring of viral pathogens circulating in humans and wildlife, together with the identification of emerging infectious diseases (EIDs), are critical for the prediction of future disease outbreaks and epidemics at an early stage. It is advisable to sample a broad range of vertebrates and invertebrates at different temporospatial levels on a regular basis to detect possible candidate viruses at their natural source. However, virus surveillance systems can be expensive, costly in terms of finances and resources and inadequate for sampling sufficient numbers of different host species over space and time. Recent publications have presented the concept of a new virus surveillance system, coining the terms "flying biological syringes", "xenosurveillance" and "vector-enabled metagenomics". According to these novel and promising surveillance approaches, viral metagenomics on engorged mosquitoes might reflect the viral diversity of numerous mammals, birds and humans, combined in the mosquitoes' blood meal during feeding on the host. In this review article, we summarize the literature on vector-enabled metagenomics (VEM) techniques and its application in disease surveillance in humans. Furthermore, we highlight the combination of VEM and "invertebrate-derived DNA" (iDNA) analysis to identify the host DNA within the mosquito midgut.
Collapse
|
16
|
Grubaugh ND, Sharma S, Krajacich BJ, Fakoli III LS, Bolay FK, Diclaro II JW, Johnson WE, Ebel GD, Foy BD, Brackney DE. Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape. PLoS Negl Trop Dis 2015; 9:e0003628. [PMID: 25775236 PMCID: PMC4361501 DOI: 10.1371/journal.pntd.0003628] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Globally, regions at the highest risk for emerging infectious diseases are often the ones with the fewest resources. As a result, implementing sustainable infectious disease surveillance systems in these regions is challenging. The cost of these programs and difficulties associated with collecting, storing and transporting relevant samples have hindered them in the regions where they are most needed. Therefore, we tested the sensitivity and feasibility of a novel surveillance technique called xenosurveillance. This approach utilizes the host feeding preferences and behaviors of Anopheles gambiae, which are highly anthropophilic and rest indoors after feeding, to sample viruses in human beings. We hypothesized that mosquito bloodmeals could be used to detect vertebrate viral pathogens within realistic field collection timeframes and clinically relevant concentrations. METHODOLOGY/PRINCIPAL FINDINGS To validate this approach, we examined variables influencing virus detection such as the duration between mosquito blood feeding and mosquito processing, the pathogen nucleic acid stability in the mosquito gut and the pathogen load present in the host's blood at the time of bloodmeal ingestion using our laboratory model. Our findings revealed that viral nucleic acids, at clinically relevant concentrations, could be detected from engorged mosquitoes for up to 24 hours post feeding by qRT-PCR. Subsequently, we tested this approach in the field by examining blood from engorged mosquitoes from two field sites in Liberia. Using next-generation sequencing and PCR we were able to detect the genetic signatures of multiple viral pathogens including Epstein-Barr virus and canine distemper virus. CONCLUSIONS/SIGNIFICANCE Together, these data demonstrate the feasibility of xenosurveillance and in doing so validated a simple and non-invasive surveillance tool that could be used to complement current biosurveillance efforts.
Collapse
Affiliation(s)
- Nathan D. Grubaugh
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Supriya Sharma
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Benjamin J. Krajacich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Fatorma K. Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | - W. Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian D. Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Doug E. Brackney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|