1
|
Liu M, Li Q, Zhang J, Chen Y. Development and Validation of a Predictive Model Based on LASSO Regression: Predicting the Risk of Early Recurrence of Atrial Fibrillation after Radiofrequency Catheter Ablation. Diagnostics (Basel) 2023; 13:3403. [PMID: 37998538 PMCID: PMC10670080 DOI: 10.3390/diagnostics13223403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Although recurrence rates after radiofrequency catheter ablation (RFCA) in patients with atrial fibrillation (AF) remain high, there are a limited number of novel, high-quality mathematical predictive models that can be used to assess early recurrence after RFCA in patients with AF. PURPOSE To identify the preoperative serum biomarkers and clinical characteristics associated with post-RFCA early recurrence of AF and develop a novel risk model based on least absolute shrinkage and selection operator (LASSO) regression to select important variables for predicting the risk of early recurrence of AF after RFCA. METHODS This study collected a dataset of 136 atrial fibrillation patients who underwent RFCA for the first time at Peking University Shenzhen Hospital from May 2016 to July 2022. The dataset included clinical characteristics, laboratory results, medication treatments, and other relevant parameters. LASSO regression was performed on 100 cycles of data. Variables present in at least one of the 100 cycles were selected to determine factors associated with the early recurrence of AF. Then, multivariable logistic regression analysis was applied to build a prediction model introducing the predictors selected from the LASSO regression analysis. A nomogram model for early post-RFCA recurrence in AF patients was developed based on visual analysis of the selected variables. Internal validation was conducted using the bootstrap method with 100 resamples. The model's discriminatory ability was determined by calculating the area under the curve (AUC), and calibration analysis and decision curve analysis (DCA) were performed on the model. RESULTS In a 3-month follow-up of AF patients (n = 136) who underwent RFCA, there were 47 recurrences of and 89 non-recurrences of AF after RFCA. P, PLR, RDW, LDL, and CRI-II were associated with early recurrence of AF after RFCA in patients with AF (p < 0.05). We developed a predictive model using LASSO regression, incorporating four robust factors (PLR, RDW, LDL, CRI-II). The AUC of this prediction model was 0.7248 (95% CI 0.6342-0.8155), and the AUC of the internal validation using the bootstrap method was 0.8403 (95% CI 0.7684-0.9122). The model demonstrated a strong predictive capability, along with favorable calibration and clinical applicability. The Hosmer-Lemeshow test indicated that there was good consistency between the predicted and observed values. Additionally, DCA highlighted the model's advantages in terms of its clinical application. CONCLUSIONS We have developed and validated a risk prediction model for the early recurrence of AF after RFCA, demonstrating strong clinical applicability and diagnostic performance. This model plays a crucial role in guiding physicians in preoperative assessment and clinical decision-making. This novel approach also provides physicians with personalized management recommendations.
Collapse
Affiliation(s)
- Mengdie Liu
- Medicine School, Shenzhen University, Shenzhen 518000, China;
| | - Qianqian Li
- Department of Cardiovascular Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, China; (Q.L.); (J.Z.)
| | - Junbao Zhang
- Department of Cardiovascular Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, China; (Q.L.); (J.Z.)
| | - Yanjun Chen
- Department of Cardiovascular Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, China; (Q.L.); (J.Z.)
| |
Collapse
|
2
|
Wang X, Huang T, Jia J. Proteome-Wide Mendelian Randomization Analysis Identified Potential Drug Targets for Atrial Fibrillation. J Am Heart Assoc 2023; 12:e029003. [PMID: 37581400 PMCID: PMC10492951 DOI: 10.1161/jaha.122.029003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/27/2023] [Indexed: 08/16/2023]
Abstract
Background Finding effective and safe therapeutic drugs for atrial fibrillation (AF) is an important concern for clinicians. Proteome-wide Mendelian randomization analysis provides new ideas for finding potential drug targets. Methods and Results Using a proteome-wide Mendelian randomization approach, we assessed the genetic predictive causality between thousands of proteins and AF risk and found that genetically predicted plasma levels of phosphomevalonate kinase, tumor necrosis factor ligand superfamily member 12, sulfhydryl oxidase 2, interleukin-6 receptor subunit alpha, and low-affinity immunoglobulin gamma Fc region receptor II-b might decrease AF risk, while genetically predicted plasma levels of beta-mannosidase, collagen alpha-1(XV) chain, ANXA4 (annexin A4), COF2 (cofilin-2), and RAB1A (Ras-related protein Rab-1A) might increase AF risk (P<3.4×10-5). By using different Mendelian randomization methods and instrumental variable selection thresholds, we performed sensitivity analyses in 30 scenarios to test the robustness of positive findings. Replication analyses were also performed in independent samples to further avoid false-positive findings. Drugs targeting tumor necrosis factor ligand superfamily member 12, interleukin-6 receptor subunit alpha, low-affinity immunoglobulin gamma Fc region receptor II-b, and annexin A4 are approved or in development. The results of the phenome-wide Mendelian randomization analysis showed that changing the plasma levels of phosphomevalonate kinase, cofilin-2, annexin A4, Ras-related protein Rab-1A, sulfhydryl oxidase 2, and collagen alpha-1(XV) chain did not increase the risk of other diseases while decreasing the risk of AF. Conclusions We found a significant causal association between genetically predicted levels of 10 plasma proteins and AF risk. Four of these proteins have drugs targeting them that are approved or in development, and our results suggest the potential for these drugs to treat AF or cause AF. Sulfhydryl oxidase 2, low-affinity immunoglobulin gamma Fc region receptor II-b, and beta-mannosidase have not been suggested by previous laboratory or epidemiological studies to be associated with AF and may reveal new pathophysiological pathways as well as therapeutic targets for AF.
Collapse
Affiliation(s)
- Xinpei Wang
- Department of Biostatistics, School of Public Health Peking University Beijing China
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health Peking University Beijing China
- Center for Intelligent Public Health, Academy for Artificial Intelligence Peking University Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education Beijing China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health Peking University Beijing China
- Center for Statistical Science Peking University Beijing China
| |
Collapse
|
3
|
Wang MF, Xue C, Shi SY, Yang L, Zhu ZY, Li JJ. Gene Polymorphism and Recurrent Atrial Fibrillation after Catheter Ablation: A Comprehensive Review. Rev Cardiovasc Med 2023; 24:119. [PMID: 39076272 PMCID: PMC11273024 DOI: 10.31083/j.rcm2404119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 08/15/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most common cardiac arrhythmias, but its pathogenesis is still poorly understood. Catheter ablation is one of the most effective treatments for AF, but recurrence after ablation remains a challenge. There has been much research into the association of AF recurrence with several factors, including genetics. Over the past decade or so, significant advances have been made in the genetic architecture of atrial fibrillation. Genome-wide association studies (GWAS) have identified over 100 loci for genetic variants associated with atrial fibrillation. However, there is relatively little information on the systematic assessment of the genes related to AF recurrence after ablation. In this review article, we highlight the value of genetic polymorphisms in atrial fibrillation recurrence after catheter ablation and their potential mechanisms in the recurrence process to enhance our understanding of atrial fibrillation recurrence and contribute to individualized treatment strategies for patients with AF.
Collapse
Affiliation(s)
- Meng-Fei Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Cong Xue
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Shun-Yi Shi
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Zhen-Yan Zhu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| |
Collapse
|
4
|
Shan L, Chen J, Sun Y, Pan Y, Wang C, Wang Y, Zhang Y. Advances of Liquid Biopsy for Diagnosis of Atrial Fibrillation and Its Recurrence After Ablation in Clinical Application. Methods Mol Biol 2023; 2695:351-365. [PMID: 37450131 DOI: 10.1007/978-1-0716-3346-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Atrial fibrillation (AF) is a common arrhythmia disease with high morbidity in clinical practice and leads to stroke, heart failure, peripheral embolism, and other severe complications. With aging of the society, AF has become one of the biggest public health challenges. Effective treatments including antiarrhythmic drugs, electrical cardioversion, and ablation (with or without catheters) can alleviate the symptoms of AF. Ablation is the most effective method for the treatment of persistent AF, but cannot cure all patients. Recurrence of AF is a realistic and unavoidable problem. For early predicting and warning of AF and its recurrence, liquid biopsy for accurate molecular analysis of biofluids is a new strategy with potential value and easy sampling and can detect genetic and epigenetic polymorphisms, especially microRNAs. In this review, liquid biopsy is constructed as a new powerful way for diagnosing AF and predicting its recurrence, contributing to the treatment of AF.
Collapse
Affiliation(s)
- Lingtong Shan
- Department of Thoracic Surgery, Sheyang County People's Hospital, Yancheng, Jiangsu, People's Republic of China
| | - Jiapeng Chen
- Xinglin College, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yangyang Sun
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yilin Pan
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Chong Wang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuliang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Sainz L, Riera P, Moya P, Bernal S, Casademont J, Díaz-Torné C, Millán AM, Park HS, Lasa A, Corominas H. Role of IL6R Genetic Variants in Predicting Response to Tocilizumab in Patients with Rheumatoid Arthritis. Pharmaceutics 2022; 14:pharmaceutics14091942. [PMID: 36145690 PMCID: PMC9501307 DOI: 10.3390/pharmaceutics14091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by chronic arthritis that may lead to irreversible joint damage and significant disability. Patients with RA are commonly treated with Tocilizumab (TCZ), an IL-6 receptor (IL-6R) antagonist, but many patients refractorily respond to this therapy. Identifying genetic biomarkers as predictors of TCZ response could be a key to providing a personalized medicine strategy. We aimed to evaluate whether functional single nucleotide polymorphisms (SNPs) in the IL6R gene could predict TCZ response in patients with RA. We retrospectively included 88 RA patients treated with TCZ. Six SNPs previously described in the IL6R gene (rs12083537, rs11265618, rs4329505, rs2228145, rs4537545, and rs4845625) were genotyped in DNA samples from these patients. Using parametric tests, we evaluated the association between these polymorphisms and clinicopathological features. Responses to treatments were assessed at six months using three variables: a quantitative improvement in Disease activity score including 28 joints (DAS28), a satisfactory European League Against Rheumatism (EULAR) response, and low disease activity (LDA) achievement. The three response variables studied were associated with genetic variant rs4845625, and no association was found with the other five SNPs. Our findings support the potential clinical value of SNPs in the IL6R gene as predictive biomarkers for TCZ response.
Collapse
Affiliation(s)
- Luis Sainz
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Pau Riera
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (P.R.); (H.C.)
| | - Patricia Moya
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Sara Bernal
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Jordi Casademont
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Cesar Díaz-Torné
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Ana Milena Millán
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Hye Sang Park
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Adriana Lasa
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Héctor Corominas
- Rheumatology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- Correspondence: (P.R.); (H.C.)
| |
Collapse
|
6
|
Pensa AV, Baman JR, Puckelwartz MJ, Wilcox JE. Genetically Based Atrial Fibrillation: Current Considerations for Diagnosis and Management. J Cardiovasc Electrophysiol 2022; 33:1944-1953. [PMID: 35262243 DOI: 10.1111/jce.15446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common atrial arrhythmia and is subcategorized into numerous clinical phenotypes. Given its heterogeneity, investigations into the genetic mechanisms underlying AF have been pursued in recent decades, with predominant analyses focusing on early onset or lone AF. Linkage analyses, genome wide association studies (GWAS), and single gene analyses have led to the identification of rare and common genetic variants associated with AF risk. Significant overlap with genetic variants implicated in dilated cardiomyopathy syndromes, including truncating variants of the sarcomere protein titin, have been identified through these analyses, in addition to other genes associated with cardiac structure and function. Despite this, widespread utilization of genetic testing in AF remains hindered by the unclear impact of genetic risk identification on clinical outcomes and the high prevalence of variants of unknown significance (VUS). However, genetic testing is a reasonable option for patients with early onset AF and in those with significant family history of arrhythmia. While many knowledge gaps remain, emerging data support genotyping to inform selection of AF therapeutics. In this review we highlight the current understanding of the complex genetic basis of AF and explore the overlap of AF with inherited cardiomyopathy syndromes. We propose a set of criteria for clinical genetic testing in AF patients and outline future steps for the integration of genetics into AF care. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anthony V Pensa
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jayson R Baman
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jane E Wilcox
- Department of Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
7
|
Kany S, Reissmann B, Metzner A, Kirchhof P, Darbar D, Schnabel RB. Genetics of atrial fibrillation-practical applications for clinical management: if not now, when and how? Cardiovasc Res 2021; 117:1718-1731. [PMID: 33982075 PMCID: PMC8208749 DOI: 10.1093/cvr/cvab153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence and economic burden of atrial fibrillation (AF) are predicted to more than double over the next few decades. In addition to anticoagulation and treatment of concomitant cardiovascular conditions, early and standardized rhythm control therapy reduces cardiovascular outcomes as compared with a rate control approach, favouring the restoration, and maintenance of sinus rhythm safely. Current therapies for rhythm control of AF include antiarrhythmic drugs (AADs) and catheter ablation (CA). However, response in an individual patient is highly variable with some remaining free of AF for long periods on antiarrhythmic therapy, while others require repeat AF ablation within weeks. The limited success of rhythm control therapy for AF is in part related to incomplete understanding of the pathophysiological mechanisms and our inability to predict responses in individual patients. Thus, a major knowledge gap is predicting which patients with AF are likely to respond to rhythm control approach. Over the last decade, tremendous progress has been made in defining the genetic architecture of AF with the identification of rare mutations in cardiac ion channels, signalling molecules, and myocardial structural proteins associated with familial (early-onset) AF. Conversely, genome-wide association studies have identified common variants at over 100 genetic loci and the development of polygenic risk scores has identified high-risk individuals. Although retrospective studies suggest that response to AADs and CA is modulated in part by common genetic variation, the development of a comprehensive clinical and genetic risk score may enable the translation of genetic data to the bedside care of AF patients. Given the economic impact of the AF epidemic, even small changes in therapeutic efficacy may lead to substantial improvements for patients and health care systems.
Collapse
Affiliation(s)
- Shinwan Kany
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistraße 52, 20251 Hamburg, Hamburg, Germany
| | - Bruno Reissmann
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany
| | - Andreas Metzner
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistraße 52, 20251 Hamburg, Hamburg, Germany.,The Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston Birmingham B15 2TT, UK
| | - Dawood Darbar
- Division of Cardiology, Departments of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Administration, 840 South Wood Street, Suite 928 M/C 715, Chicago, IL 60612, USA
| | - Renate B Schnabel
- Department of Cardiology, University Heart and Vascular Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20251 Hamburg, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistraße 52, 20251 Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Meyre PB, Sticherling C, Spies F, Aeschbacher S, Blum S, Voellmin G, Madaffari A, Conen D, Osswald S, Kühne M, Knecht S. C-reactive protein for prediction of atrial fibrillation recurrence after catheter ablation. BMC Cardiovasc Disord 2020; 20:427. [PMID: 32993521 PMCID: PMC7526257 DOI: 10.1186/s12872-020-01711-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/22/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Inflammation plays an important role in the initiation and progression of atrial fibrillation (AF), but data about the relationship between subclinical inflammation and recurrence of AF after catheter ablation remains poorly studied. We aimed to assess whether plasma levels of C-reactive protein (CRP) are associated with long-term AF recurrence following catheter ablation. METHODS Prior to the intervention, plasma CRP concentrations were measured in patients who underwent first catheter ablation for AF. AF recurrence was evaluated after 12 months and defined as any AF episode longer than 30 s recorded on either 12-lead electrocardiogram, 24-h Holter or 7-day Holter monitoring. Multivariable adjusted Cox models were constructed to examine the association of CRP levels and AF recurrence. RESULTS Of the 711 patients (mean age: 61 years, 25% women) included in this study, 247 patients (35%) experienced AF recurrence after ablation. Patients who were in the highest CRP quartile had a higher rate of recurrent AF compared to those who were in the lowest quartile (53.4 vs. 33.1% at 1 year of follow-up; P = 0.004). The adjusted hazard ratios (aHR) of recurrent AF across increasing quartiles of CRP were 1.0 (reference), 1.26 (95% confidence interval [CI], 0.86-1.84), 1.15 (95% CI, 0.78-1.70) and 1.60 (95% CI, 1.10-2.34) (P trend = 0.015). A similar effect was observed when CRP was analyzed as continuous variable (aHR per unit increase, 1.21; 95% CI, 1.05-1.39; P = 0.009). When a predefined CRP cut-off of 3 mg/l was applied, patients with CRP levels of 3 mg/l or above had a higher risk of AF recurrence than those with levels below (aHR, 1.44; 95% CI, 1.06-1.95; P = 0.019). CONCLUSIONS Increasing pre-interventional CRP levels are associated with a higher risk of AF recurrence in patients undergoing catheter ablation for AF. TRAIL REGISTRATION ClinicalTrials.gov identifier, NCT03718364.
Collapse
Affiliation(s)
- Pascal B Meyre
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland.
| | - Christian Sticherling
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Florian Spies
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Stefanie Aeschbacher
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Steffen Blum
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Gian Voellmin
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Antonio Madaffari
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - David Conen
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Stefan Osswald
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Michael Kühne
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Sven Knecht
- Division of Cardiology, Department of Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Abstract
Susceptibility to atrial fibrillation (AF) is determined by well-recognized risk factors such as diabetes mellitus or hypertension, emerging risk factors such as sleep apnea or inflammation, and increasingly well-defined genetic variants. As discussed in detail in a companion article in this series, studies in families and in large populations have identified multiple genetic loci, specific genes, and specific variants increasing susceptibility to AF. Since it is becoming increasingly inexpensive to obtain genotype data and indeed whole genome sequence data, the question then becomes to define whether using emerging new genetics knowledge can improve care for patients both before and after development of AF. Examples of improvements in care could include identifying patients at increased risk for AF (and thus deploying increased surveillance or even low-risk preventive therapies should these be available), identifying patient subsets in whom specific therapies are likely to be effective or ineffective or in whom the driving biology could motivate the development of new mechanism-based therapies or identifying an underlying susceptibility to comorbid cardiovascular disease. While current guidelines for the care of patients with AF do not recommend routine genetic testing, this rapidly increasing knowledge base suggests that testing may now or soon have a place in the management of select patients. The opportunity is to generate, validate, and deploy clinical predictors (including family history) of AF risk, to assess the utility of incorporating genomic variants into those predictors, and to identify and validate interventions such as wearable or implantable device-based monitoring ultimately to intervene in patients with AF before they present with catastrophic complications like heart failure or stroke.
Collapse
Affiliation(s)
- M. Benjamin Shoemaker
- Department of Medicine (Cardiovascular Medicine), Vanderbilt University Medical Center, Nashville, TN
| | - Rajan L. Shah
- Department of Medicine (Cardiovascular Medicine), Stanford University Medical Center, Palo Alto, CA
| | - Dan M. Roden
- Departments of Medicine (Cardiovascular Medicine and Clinical Pharmacology), Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Marco V. Perez
- Stanford Center for Inherited Cardiovascular Diseases, Stanford University, Palo Alto, CA
| |
Collapse
|
10
|
Shoemaker MB, Husser D, Roselli C, Al Jazairi M, Chrispin J, Kühne M, Neumann B, Knight S, Sun H, Mohanty S, Shaffer C, Thériault S, Rinke LL, Siland JE, Crawford DM, Ueberham L, Zardkoohi O, Büttner P, Geelhoed B, Blum S, Aeschbacher S, Smith JD, Van Wagoner DR, Freudling R, Müller-Nurasyid M, Montgomery J, Yoneda Z, Wells Q, Issa T, Weeke P, Jacobs V, Van Gelder IC, Hindricks G, Barnard J, Calkins H, Darbar D, Michaud G, Kääb S, Ellinor P, Natale A, Chung M, Nazarian S, Cutler MJ, Sinner MF, Conen D, Rienstra M, Bollmann A, Roden DM, Lubitz S. Genetic Susceptibility for Atrial Fibrillation in Patients Undergoing Atrial Fibrillation Ablation. Circ Arrhythm Electrophysiol 2020; 13:e007676. [PMID: 32078373 DOI: 10.1161/circep.119.007676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ablation is a widely used therapy for atrial fibrillation (AF); however, arrhythmia recurrence and repeat procedures are common. Studies examining surrogate markers of genetic susceptibility to AF, such as family history and individual AF susceptibility alleles, suggest these may be associated with recurrence outcomes. Accordingly, the aim of this study was to test the association between AF genetic susceptibility and recurrence after ablation using a comprehensive polygenic risk score for AF. METHODS Ten centers from the AF Genetics Consortium identified patients who had undergone de novo AF ablation. AF genetic susceptibility was measured using a previously described polygenic risk score (N=929 single-nucleotide polymorphisms) and tested for an association with clinical characteristics and time-to-recurrence with a 3 month blanking period. Recurrence was defined as >30 seconds of AF, atrial flutter, or atrial tachycardia. Multivariable analysis adjusted for age, sex, height, body mass index, persistent AF, hypertension, coronary disease, left atrial size, left ventricular ejection fraction, and year of ablation. RESULTS Four thousand two hundred seventy-six patients were eligible for analysis of baseline characteristics and 3259 for recurrence outcomes. The overall arrhythmia recurrence rate between 3 and 12 months was 44% (1443/3259). Patients with higher AF genetic susceptibility were younger (P<0.001) and had fewer clinical risk factors for AF (P=0.001). Persistent AF (hazard ratio [HR], 1.39 [95% CI, 1.22-1.58]; P<0.001), left atrial size (per cm: HR, 1.32 [95% CI, 1.19-1.46]; P<0.001), and left ventricular ejection fraction (per 10%: HR, 0.88 [95% CI, 0.80-0.97]; P=0.008) were associated with increased risk of recurrence. In univariate analysis, higher AF genetic susceptibility trended towards a higher risk of recurrence (HR, 1.08 [95% CI, 0.99-1.18]; P=0.07), which became less significant in multivariable analysis (HR, 1.06 [95% CI, 0.98-1.15]; P=0.13). CONCLUSIONS Higher AF genetic susceptibility was associated with younger age and fewer clinical risk factors but not recurrence. Arrhythmia recurrence after AF ablation may represent a genetically different phenotype compared to AF susceptibility.
Collapse
Affiliation(s)
- M Benjamin Shoemaker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Daniela Husser
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - Carolina Roselli
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Program in Medical and Population Genetics, Cambridge, MA (C.R., P.E., S.L.)
| | - Meelad Al Jazairi
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Jonathan Chrispin
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (J.C., H.C.)
| | - Michael Kühne
- University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.)
| | - Benjamin Neumann
- Department of Medicine, University Hospital Munich, Ludwig Maximilians University of Munich, Germany (B.N., R.F., S. Kääb, M.F.S.)
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Medical Center, Murray (S. Knight, V.J.).,Department of Medicine, University of Utah, Salt Lake City (S. Knight)
| | - Han Sun
- Department of Quantitative Health Sciences (H.S., J.B.), Lerner Research Institute, Cleveland Clinic, OH
| | - Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, Austin, TX (S.M., A.N.).,Department of Internal Medicine, Dell Medical School, Austin, TX (S.M., A.N.)
| | - Christian Shaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada (S.T., D.C.).,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada (S.T.)
| | - Lauren Lee Rinke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Joylene E Siland
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Diane M Crawford
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Laura Ueberham
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - Omeed Zardkoohi
- Departments of Cardiovascular Medicine and Molecular Cardiology, Heart and Vascular Institute (O.Z., M.C.), Lerner Research Institute, Cleveland Clinic, OH
| | - Petra Büttner
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - Bastiaan Geelhoed
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Steffen Blum
- University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.)
| | - Stefanie Aeschbacher
- University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.)
| | - Jonathan D Smith
- Department of Cellular and Molecular Medicine (J.D.S.), Lerner Research Institute, Cleveland Clinic, OH
| | - David R Van Wagoner
- Department of Molecular Cardiology (D.R.V.W.), Lerner Research Institute, Cleveland Clinic, OH
| | - Rebecca Freudling
- Department of Medicine, University Hospital Munich, Ludwig Maximilians University of Munich, Germany (B.N., R.F., S. Kääb, M.F.S.).,Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg (R.F., M.M.-N.)
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg (R.F., M.M.-N.).,German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Germany (M.M.-N., S. Kääb, M.F.S.)
| | - Jay Montgomery
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Zachary Yoneda
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Quinn Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Tariq Issa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Peter Weeke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Victoria Jacobs
- Intermountain Heart Institute, Intermountain Medical Center, Murray (S. Knight, V.J.)
| | - Isabelle C Van Gelder
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Gerhard Hindricks
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - John Barnard
- Department of Quantitative Health Sciences (H.S., J.B.), Lerner Research Institute, Cleveland Clinic, OH
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (J.C., H.C.)
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois Health, Chicago (D.D.)
| | - Greg Michaud
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.B.S., C.S., L.L.R., D.M.C., J.M., Z.Y., Q.W., T.I., P.W., G.M.)
| | - Stefan Kääb
- Department of Medicine, University Hospital Munich, Ludwig Maximilians University of Munich, Germany (B.N., R.F., S. Kääb, M.F.S.).,German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Germany (M.M.-N., S. Kääb, M.F.S.)
| | - Patrick Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Program in Medical and Population Genetics, Cambridge, MA (C.R., P.E., S.L.).,Massachusetts General Hospital, Cardiac Arrhythmia Service, Boston (P.E., S.L.)
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, Austin, TX (S.M., A.N.).,Department of Internal Medicine, Dell Medical School, Austin, TX (S.M., A.N.).,Scripps Clinic, Interventional Electrophysiology, San Diego, CA (A.N.).,Division of Cardiology, Stanford University, Palo Alto, CA (A.N.).,Case Western University, Cleveland, OH (A.N.)
| | - Mina Chung
- Departments of Cardiovascular Medicine and Molecular Cardiology, Heart and Vascular Institute (O.Z., M.C.), Lerner Research Institute, Cleveland Clinic, OH
| | - Saman Nazarian
- Division of Cardiology, University of Pennsylvania Perelman School of Medicine, Philadelphia (S.N.)
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT (M.J.C.)
| | - Moritz F Sinner
- Department of Medicine, University Hospital Munich, Ludwig Maximilians University of Munich, Germany (B.N., R.F., S. Kääb, M.F.S.).,German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Germany (M.M.-N., S. Kääb, M.F.S.)
| | - David Conen
- University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Cardiovascular Research Institute Basel, University Hospital Basel, Switzerland (M.K., S.B., S.A., D.C.).,Population Health Research Institute, McMaster University, Hamilton, ON, Canada (S.T., D.C.)
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands (M.A.J., J.E.S., B.G., I.C.V.G., M.R.)
| | - Andreas Bollmann
- Heart Center Leipzig, Department of Electrophysiology, Leipzig Heart Institute, University of Leipzig, Germany (D.H., L.U., P.B., G.H., A.B.)
| | - Dan M Roden
- Animal, Dairy, and Veterinary Sciences, Utah State University, Logan (D.M.R.)
| | - Steven Lubitz
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Program in Medical and Population Genetics, Cambridge, MA (C.R., P.E., S.L.).,Massachusetts General Hospital, Cardiac Arrhythmia Service, Boston (P.E., S.L.)
| |
Collapse
|
11
|
Abstract
OBJECTIVE This study investigated the potential microRNAs (miRNAs) having a diagnostic value in atrial fibrillation (AF). METHODS The miRNA and mRNA expression profiles of atrial tissue from healthy individuals and patients with AF were downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs/mRNAs (DEMis/DEMs) were identified in patients with AF. Furthermore, an interaction network between DEMis and DMEs was constructed. The biological processes, molecular functions, and signaling pathways of DEMs were enriched. Then, the diagnostic values of candidate DECs among healthy individuals and patients with AF were preliminarily evaluated in the GSE101586, GSEE101684, and GSE112214 datasets. RESULTS Twenty DEMis were identified in patients with AF, including seven upregulated and 13 downregulated DEMis. Furthermore, 2,307 DEMs were identified in patients with AF. In the DEMi-DEM interaction network, downregulated miR-193b and upregulated miR-16 interacted with the most targeted DEMs, which interacted with 72 and 65 targeted DEMs, respectively. The targeted DEMs were significantly enriched in biological functions including apoptosis and the PI3K-Akt, mTOR, Hippo, HIF-1, and ErbB signaling pathways. Four of the 20 DEMis (i.e., miR-490-3p, miR-630, miR-146b-5p, and miR-367) had a potential value to distinguish patients with AF from healthy individuals in the GSE68475, GSE70887, and GSE28954 datasets. The area under the curve values for those four DEMis were 0.751, 0.719, 0.709, and 0.7, respectively. CONCLUSION DEMis might play key roles in AF progression through the mTOR and Hippo signaling pathways. miR-409-3p, miR-630, miR-146b-5p, and miR-367 had a potential diagnostic value to discriminate patients with AF from healthy controls in this study.
Collapse
|
12
|
Rosa M, Chignon A, Li Z, Boulanger MC, Arsenault BJ, Bossé Y, Thériault S, Mathieu P. A Mendelian randomization study of IL6 signaling in cardiovascular diseases, immune-related disorders and longevity. NPJ Genom Med 2019; 4:23. [PMID: 31552141 PMCID: PMC6754413 DOI: 10.1038/s41525-019-0097-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that inflammation is a significant contributor to different cardiovascular diseases (CVDs). Mendelian randomization (MR) was performed to assess the causal inference between plasma soluble IL6 receptor (sIL6R), a negative regulator of IL6 signaling, and different cardiovascular and immune-related disorders. Cis-MR with multiple instrumental variables showed an inverse association of sIL6R with rheumatoid arthritis, atrial fibrillation, stroke, coronary artery disease, and abdominal aortic aneurysm. However, genetically-determined sIL6R level was positively associated with atopic dermatitis and asthma. Also, sIL6R level was associated with longevity, as evaluated by parental age at death, a heritable trait. Gene-based association analysis with S-PrediXcan by using tissues from GTExV7 showed that IL6R tissue expression-disease pair associations were consistent with the directional effect of IL6 signaling identified in MR. Genetically-determined reduced IL6 signaling lowers the risk of multiple CVDs and is associated with increased longevity, but at the expense of higher atopic risk.
Collapse
Affiliation(s)
- Mickael Rosa
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Arnaud Chignon
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Zhonglin Li
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| | | | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, Canada
| |
Collapse
|
13
|
Johner N, Namdar M, Shah DC. Individualised Approaches for Catheter Ablation of AF: Patient Selection and Procedural Endpoints. Arrhythm Electrophysiol Rev 2019; 8:184-190. [PMID: 31463056 PMCID: PMC6702473 DOI: 10.15420/aer.2019.33.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pulmonary vein isolation (PVI) is the cornerstone of AF ablation, but studies have reported improved efficacy with high rates of repeat procedures. Because of the large interindividual variability in the underlying electrical and anatomical substrate, achieving optimal outcomes requires an individualised approach. This includes optimal candidate selection as well as defined ablation strategies with objective procedure endpoints beyond PVI. Candidate selection is traditionally based on coarse and sometimes arbitrary clinical stratification such as AF type, but finer predictors of treatment efficacy including biomarkers, advanced imaging and electrocardiographic parameters have shown promise. Numerous ancillary ablation strategies beyond PVI have been investigated, but the absence of a clear mechanistic and evidence-based endpoint, unlike in other arrhythmias, has remained a universal limitation. Potential endpoints include functional ones such as AF termination or non-inducibility and substrate-based endpoints such as isolation of low-voltage areas. This review summarises the relevant literature and proposes guidance for clinical practice and future research.
Collapse
Affiliation(s)
- Nicolas Johner
- Cardiology Division, University Hospital of Geneva Geneva, Switzerland
| | - Mehdi Namdar
- Cardiology Division, University Hospital of Geneva Geneva, Switzerland
| | - Dipen C Shah
- Cardiology Division, University Hospital of Geneva Geneva, Switzerland
| |
Collapse
|
14
|
Value of cystatin C in predicting atrial fibrillation recurrence after radiofrequency catheter ablation. J Geriatr Cardiol 2018; 15:725-731. [PMID: 30675144 PMCID: PMC6330269 DOI: 10.11909/j.issn.1671-5411.2018.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUD Recent studies have demonstrated that cystatin C is a valuable risk marker for cardiovascular disease morbidity and mortality. Therefore, we hypothesized that the pre-ablation cystatin C level was associated with post-ablation atrial fibrillation (AF) recurrence. METHODS 207 patients were enrolled and completed in this prospective observational study. Patients with AF scheduled for receive radiofrequency catheter ablation (RFCA) therapy were screened for the study. Before ablation therapy, electrocardiogram, 24 h holter monitor, transesophageal echocardiography, serum cystatin C, high-sensitivity C-reactive protein, creatinine levels, and routine blood examinations were examined. After ablation, patients were followed up every week for the first month, and then at 2, 3, 6, 9, and 12 months. Thereafter, patients came back to out-patient clinic every six months regularly. Electrocardiogram or 24 h holter monitor were repeated if the patient experienced palpitations or every six months. AF recurrence was defined as atrial fibrillation/atrial flutter or atrial tachycardia lasting ≥ 30 seconds within three months after therapy. RESULTS Compared to patients with no AF recurrence, patients with recurrence had longer AF history (P = 0.007), more early recurrence (P = 0.000), a larger left atrium (P = 0.004), and higher pre-ablation cystatin C levels (P = 0.000). Multivariate regression analysis revealed that cystatin C and left atria (LA) diameter were risk factors for AF recurrence. After adjusting for LA diameter, the risk of AF recurrence increased 30% with every milligram cystatin C elevation (95% CI: 1.117-1.523). CONCLUSIONS Pre-ablation cystatin C levels were associated with AF recurrence after RFCA therapy, an optimal cut-off value of 1.190 mg/L (sensitivity = 0.576; specificity = 0.851).
Collapse
|
15
|
Yao C, Veleva T, Scott L, Cao S, Li L, Chen G, Jeyabal P, Pan X, Alsina KM, Abu-Taha I, Ghezelbash S, Reynolds CL, Shen YH, LeMaire SA, Schmitz W, Müller FU, El-Armouche A, Eissa NT, Beeton C, Nattel S, Wehrens XH, Dobrev D, Li N. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation 2018; 138:2227-2242. [PMID: 29802206 PMCID: PMC6252285 DOI: 10.1161/circulationaha.118.035202] [Citation(s) in RCA: 419] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is frequently associated with enhanced inflammatory response. The NLRP3 (NACHT, LRR, and PYD domain containing protein 3) inflammasome mediates caspase-1 activation and interleukin-1β release in immune cells but is not known to play a role in cardiomyocytes (CMs). Here, we assessed the role of CM NLRP3 inflammasome in AF. METHODS NLRP3 inflammasome activation was assessed by immunoblot in atrial whole-tissue lysates and CMs from patients with paroxysmal AF or long-standing persistent (chronic) AF. To determine whether CM-specific activation of NLPR3 is sufficient to promote AF, a CM-specific knockin mouse model expressing constitutively active NLRP3 (CM-KI) was established. In vivo electrophysiology was used to assess atrial arrhythmia vulnerability. To evaluate the mechanism of AF, electric activation pattern, Ca2+ spark frequency, atrial effective refractory period, and morphology of atria were evaluated in CM-KI mice and wild-type littermates. RESULTS NLRP3 inflammasome activity was increased in the atrial CMs of patients with paroxysmal AF and chronic AF. CM-KI mice developed spontaneous premature atrial contractions and inducible AF, which was attenuated by a specific NLRP3 inflammasome inhibitor, MCC950. CM-KI mice exhibited ectopic activity, abnormal sarcoplasmic reticulum Ca2+ release, atrial effective refractory period shortening, and atrial hypertrophy. Adeno-associated virus subtype-9-mediated CM-specific knockdown of Nlrp3 suppressed AF development in CM-KI mice. Finally, genetic inhibition of Nlrp3 prevented AF development in CREM transgenic mice, a well-characterized mouse model of spontaneous AF. CONCLUSIONS Our study establishes a novel pathophysiological role for CM NLRP3 inflammasome signaling, with a mechanistic link to the pathogenesis of AF, and establishes the inhibition of NLRP3 as a potential novel AF therapy approach.
Collapse
Affiliation(s)
- Chunxia Yao
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan, Hebei Province, China
| | - Tina Veleva
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Larry Scott
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Shuyi Cao
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Gong Chen
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Prince Jeyabal
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Xiaolu Pan
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Katherina M. Alsina
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Corey L. Reynolds
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, TX, USA
| | - Ying H. Shen
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Scott A. LeMaire
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Wilhelm Schmitz
- Department of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank U. Müller
- Department of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | - N. Tony Eissa
- Department of Medicine (Pulmonary), Baylor College of Medicine, Houston, TX, USA
| | - Christine Beeton
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Na Li
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Shen XB, Zhang SH, Li HY, Chi XD, Jiang L, Huang QL, Xu SH. Rs12976445 Polymorphism Is Associated with Post-Ablation Recurrence of Atrial Fibrillation by Modulating the Expression of MicroRNA-125a and Interleukin-6R. Med Sci Monit 2018; 24:6349-6358. [PMID: 30203815 PMCID: PMC6145598 DOI: 10.12659/msm.908555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND This study aimed to identify the relationship between miR-125a polymorphism rs12976445 and the post-ablation recurrence of atrial fibrillation (AF), as well as to explore the underlying mechanism of miR-125a in AF recurrence. MATERIAL AND METHODS Microarray analysis was performed to search for miRNAs potentially involved in the regulation of AF recurrence, while real-time PCR (polymerase chain reaction) and Western blot analyses were carried out to study the expression of miR-125a (microRNA-125a), IL-6R (interleukin-6 receptor), and IL-16 (interleukin-16) in different experimental groups, so as to understand the regulatory relationships among miR-125a, IL-6R, and IL-16. Subsequently, a logistic regression analysis was utilized to investigate the survival status of recurrent AF in subjects harboring different genotypes of rs12976445. RESULTS The subjects in the GG and GC/CC groups of miR-125a polymorphism rs12976445 showed no obvious difference regarding all demographic characteristics that were collected in this study. In addition, 19 miRNAs were identified as potentially involved in the regulation of AF recurrence. Among these miRNAs, 6 were upregulated and 13 were downregulated in the group with early recurrence. According to real-time PCR results, the expression of miR-125a was dramatically upregulated in LRAF (late recurrence of atrial fibrillation) as well as in subjects harboring the GG genotype. On the contrary, the level of IL-6R mRNA was dramatically downregulated in LRAF and subjects harboring the GG genotype. Furthermore, IL-6R was confirmed as a candidate target of miR-125a by a luciferase reporter assay. CONCLUSIONS MicroRNA-125a polymorphism rs12976445 plays a role in AF recurrence via the regulation of IL-6R.
Collapse
Affiliation(s)
- Xue-Bin Shen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China (mainland)
| | - Shao-Hong Zhang
- Department of Medical Laboratory Medicine, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China (mainland)
| | - Hai-Yang Li
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China (mainland)
| | - Xi-Di Chi
- Department of Medical Laboratory Medicine, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China (mainland)
| | - Ling Jiang
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China (mainland)
| | - Qi-Lei Huang
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China (mainland)
| | - Shang-Hua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China (mainland)
| |
Collapse
|
17
|
Mehra R. Sleep Apnea and Nocturnal Cardiac Arrhythmia: Understanding Differences Across Ethnicity. J Clin Sleep Med 2017; 13:1229-1231. [PMID: 29065964 DOI: 10.5664/jcsm.6784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 11/13/2022]
Affiliation(s)
- Reena Mehra
- Center for Sleep Disorders, Neurological Institute, Cleveland Clinic, Cleveland, Ohio; Respiratory Institute, Cleveland Clinic, Cleveland, Ohio; Heart and Vascular Institute, Cleveland, Ohio; Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
18
|
Husser D, Ueberham L, Hindricks G, Büttner P, Ingram C, Weeke P, Shoemaker MB, Adams V, Arya A, Sommer P, Darbar D, Roden DM, Bollmann A. Rare variants in genes encoding the cardiac sodium channel and associated compounds and their impact on outcome of catheter ablation of atrial fibrillation. PLoS One 2017; 12:e0183690. [PMID: 28837624 PMCID: PMC5570360 DOI: 10.1371/journal.pone.0183690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022] Open
Abstract
Aim Rare variants of genes encoding the cardiac sodium channel and associated compounds have been linked with atrial fibrillation (AF). Nevertheless, current expert consensus does not support genetic testing in AF, which is in part based on the fact that “there is no therapeutic impact derived from AF genetic test results”. However, there are no studies available supporting this recommendation. Consequently, this study analyzed the impact of rare variants affecting the cardiac sodium channel on rhythm outcome of AF catheter ablation. Methods and results In 137 consecutive patients with lone AF enrolled in the Leipzig Heart Center AF ablation registry, screening for mutations in SCN5A, SCN1B – 4B, CAV3, GPD1L, SNTA1 and MOG1 was performed. We identified 3 rare non-synonymous variants in SCN5A, 5 in SCN1B, 1 in SCN4B, 1 in CAV3, 6 in GPD1L, 3 in SNTA1 and 3 in MOG1 (16%). Variant carriers were otherwise comparable with non-variant carriers. Analysis of AF recurrence rates after radiofrequency AF catheter ablation by serial 7-day Holter ECG monitoring between 3 and 12 months revealed no difference between groups, i.e. 45% in variant carriers vs. 49% in non-variant carriers. Conclusions Rare variants in genes encoding the cardiac sodium channel and associated compounds are frequently found in lone AF but were not found to impact the outcome of AF catheter ablation. This finding supports current recommendations not to screen for rare variants for the ablation outcome in AF. Nevertheless, it may at least be helpful for understanding AF mechanisms and larger studies are needed to further explore the possible association between genotype and response to AF therapies.
Collapse
Affiliation(s)
- Daniela Husser
- Department of Electrophysiology, University of Leipzig, Heart Center, Germany
- * E-mail:
| | - Laura Ueberham
- Department of Electrophysiology, University of Leipzig, Heart Center, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, University of Leipzig, Heart Center, Germany
| | - Petra Büttner
- Department of Electrophysiology, University of Leipzig, Heart Center, Germany
| | - Christie Ingram
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Peter Weeke
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, DK
| | - M. Benjamin Shoemaker
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Volker Adams
- Department of Electrophysiology, University of Leipzig, Heart Center, Germany
| | - Arash Arya
- Department of Electrophysiology, University of Leipzig, Heart Center, Germany
| | - Philipp Sommer
- Department of Electrophysiology, University of Leipzig, Heart Center, Germany
| | - Dawood Darbar
- Division of Cardiology, University of Illinois, Chicago, IL, United States of America
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Andreas Bollmann
- Department of Electrophysiology, University of Leipzig, Heart Center, Germany
| |
Collapse
|
19
|
Arguinano AA, Naderi E, Ndiaye NC, Stathopoulou M, Dadé S, Alizadeh B, Visvikis-Siest S. IL6R haplotype rs4845625*T/rs4537545*C is a risk factor for simultaneously high CRP, LDL and ApoB levels. Genes Immun 2017; 18:163-169. [PMID: 28769070 DOI: 10.1038/gene.2017.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/10/2017] [Accepted: 06/22/2017] [Indexed: 11/09/2022]
Abstract
Interleukin 6 receptor (IL-6R), mediating IL-6's biological functions, plays an important role in different diseases such as diabetes, obesity and cardio-vascular diseases. In this study, we investigated the effects of two single nucleotide polymorphisms (SNPs), within the IL-6R loci, previously associated with C-reactive protein (CRP) and coronary heart diseases risk, and with controversial effects on lipids traits: SNP rs4845625 and SNP rs4537545. The results showed that both investigated SNPs were antagonistically related with CRP levels; the minor rs4845625*T allele was associated with increased CRP levels (P-value=0.011), while the minor rs4537545*T allele was associated with decreased CRP levels (P-value=0.009). Interestingly, the minor rs4845625*T allele was significantly associated with higher low-density lipoprotein cholesterol (LDL-C) and ApoB levels (P=0.007 and P=0.009 respectively). Haplotype analysis showed that the TC haplotype, having the minor rs4845625*T allele, was related simultaneously with increased levels of CRP, LDL-C and ApoB levels, thus could be considered as a risk factor. Our investigation detects for the first time an independent effect of rs4845625 on LDL-C and ApoB traits, explaining an important range of those traits variability (3.49 and 5.57% respectively). Our findings might be of high clinical significance in pharmacogenomics studies of tocilizumab for which IL-6R is target.
Collapse
Affiliation(s)
- A A Arguinano
- INSERM UMR U1122; IGE-PCV 'Interactions Gène-Environnement en Physiopathologie Cardio-vasculaire', Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - E Naderi
- INSERM UMR U1122; IGE-PCV 'Interactions Gène-Environnement en Physiopathologie Cardio-vasculaire', Faculté de Pharmacie, Université de Lorraine, Nancy, France.,Department of Epidemiology, University Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - N C Ndiaye
- INSERM UMR U1122; IGE-PCV 'Interactions Gène-Environnement en Physiopathologie Cardio-vasculaire', Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - M Stathopoulou
- INSERM UMR U1122; IGE-PCV 'Interactions Gène-Environnement en Physiopathologie Cardio-vasculaire', Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - S Dadé
- INSERM UMR U1122; IGE-PCV 'Interactions Gène-Environnement en Physiopathologie Cardio-vasculaire', Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - B Alizadeh
- INSERM UMR U1122; IGE-PCV 'Interactions Gène-Environnement en Physiopathologie Cardio-vasculaire', Faculté de Pharmacie, Université de Lorraine, Nancy, France.,Department of Epidemiology, University Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S Visvikis-Siest
- INSERM UMR U1122; IGE-PCV 'Interactions Gène-Environnement en Physiopathologie Cardio-vasculaire', Faculté de Pharmacie, Université de Lorraine, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Rue du Morvan, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
20
|
Association of SCN10A Polymorphisms with the Recurrence of Atrial Fibrillation after Catheter Ablation in a Chinese Han Population. Sci Rep 2017; 7:44003. [PMID: 28281580 PMCID: PMC5345091 DOI: 10.1038/srep44003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/02/2017] [Indexed: 11/08/2022] Open
Abstract
The nonsynonymous SCN10A single nucleotide polymorphism (SNP) rs6795970 has been reported to associate with PR interval and atrial fibrillation (AF) and in strong linkage disequilibrium (LD) with the AF-associated SNP rs6800541. In this study, we investigated whether rs6795970 polymorphisms are associated with AF recurrence after catheter ablation. A total of 502 consecutive patients with AF who underwent catheter ablation were included. AF recurrence was defined as a documented episode of any atrial arrhythmias lasting ≥30 s after a blanking period of 3 months. AF recurrence was observed between 3 and 12 months after catheter ablation in 24.5% of the patients. There was a significant difference in the allele distribution (p = 7.86 × 10−5) and genotype distribution (p = 1.42 × 10−5) of rs6795970 between the AF recurrence and no recurrence groups. In a multivariate analysis, we identified the following independent predictors of AF recurrence: the rs6795970 genotypes in an additive model (OR 0.36, 95%CI 0.22~0.60, p = 7.04 × 10−5), a history of AF ≥36 months (OR 3.57, 95%CI 2.26~5.63, p = 4.33 × 10−8) and left atrial diameter (LAD) ≥40 mm (OR 1.85, 95%CI 1.08~3.19, p = 0.026). These data suggest that genetic variation in SCN10A may play an important role in predicting AF recurrence after catheter ablation in the Chinese Han population.
Collapse
|
21
|
Good responders to catheter ablation for long-standing persistent atrial fibrillation: Clinical and genetic characteristics. J Cardiol 2017; 69:584-590. [DOI: 10.1016/j.jjcc.2016.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 02/03/2023]
|
22
|
Husser D, Büttner P, Ueberham L, Dinov B, Sommer P, Arya A, Hindricks G, Bollmann A. Genomic Contributors to Rhythm Outcome of Atrial Fibrillation Catheter Ablation - Pathway Enrichment Analysis of GWAS Data. PLoS One 2016; 11:e0167008. [PMID: 27870913 PMCID: PMC5117760 DOI: 10.1371/journal.pone.0167008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/07/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Left atrial enlargement and persistent atrial fibrillation (AF) are well-known predictors for arrhythmia recurrence after AF catheter ablation (LRAF). In this study, by using pathway enrichment analysis of GWAS data, we tested the hypothesis that genetic pathways associated with these phenotypes are also associated with LRAF. METHODS Samples from 660 patients with paroxysmal (n = 370) or persistent AF (n = 290) undergoing de-novo AF catheter ablation were genotyped for ~1,000,000 SNPs. SNPs found to be significantly associated with left atrial diameter (LAD) or AF type were used for gene-based association tests in a systematic biological Knowledge-based mining system for Genome-wide Genetic studies (KGG). Associated genes were tested for pathway enrichment using WEB-based Gene SeT AnaLysis Toolkit (WebGestalt), the Gene Annotation Tool to Help Explain Relationships (GATHER) and the databases provided by Kyoto Encyclopedia of Genes and Genomes (KEGG). In a second step, the association of consistently enriched pathways and LRAF was tested. RESULTS By using sequential 7-day Holter ECGs, LRAF between 3 and 12 months was observed in 48% and was associated with LAD (B = 1.801, 95% CI 0.760-2.841, p = 1.0E-3) and persistent AF (OR = 2.1; 95% CI 1.567-2.931, p = 2.0E-6). WebGestalt (adj. p = 2.7E-22) and GATHER (adj. p = 5.2E-3) identified the calcium signaling pathway (hsa04020) as the only consistently enriched pathway for LAD, while the extracellular matrix (ECM) -receptor interaction pathway (hsa04512) was the only consistently enriched pathway for AF type (adj. p = 2.1E-15 in WebGestalt; adj. p = 9.3E-4 in GATHER). Both calcium signaling (adj. p = 2.2E-17 in WebGestalt; adj. p = 2.9E-2 in GATHER) and ECM-receptor interaction (adj. p = 1.2E-10 in WebGestalt; adj. p = 2.9E-2 in GATHER) were significantly associated with LRAF. CONCLUSIONS Calcium signaling and ECM-receptor interaction pathways are associated with LAD and AF type and, in turn, with LRAF. Future and larger studies are necessary to replicate and apply these findings.
Collapse
Affiliation(s)
- Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
- * E-mail:
| | - Petra Büttner
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Laura Ueberham
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Philipp Sommer
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Arash Arya
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany
| |
Collapse
|
23
|
Wu G, Wang S, Cheng M, Peng B, Liang J, Huang H, Jiang X, Zhang L, Yang B, Cha Y, Jiang H, Huang C. The serum matrix metalloproteinase-9 level is an independent predictor of recurrence after ablation of persistent atrial fibrillation. Clinics (Sao Paulo) 2016; 71:251-6. [PMID: 27276393 PMCID: PMC4874263 DOI: 10.6061/clinics/2016(05)02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES This study investigated whether the serum matrix metalloproteinase-9 level is an independent predictor of recurrence after catheter ablation for persistent atrial fibrillation. METHODS Fifty-eight consecutive patients with persistent atrial fibrillation were enrolled and underwent catheter ablation. The serum matrix metalloproteinase-9 level was detected before ablation and its relationship with recurrent arrhythmia was analyzed at the end of the follow-up. RESULTS After a mean follow-up of 12.1±7.2 months, 21 (36.2%) patients had a recurrence of their arrhythmia after catheter ablation. At baseline, the matrix metalloproteinase-9 level was higher in the patients with recurrence than in the non-recurrent group (305.77±88.90 vs 234.41±93.36 ng/ml, respectively, p=0.006). A multivariate analysis showed that the matrix metalloproteinase-9 level was an independent predictor of arrhythmia recurrence, as was a history of atrial fibrillation and the diameter of the left atrium. CONCLUSION The serum matrix metalloproteinase-9 level is an independent predictor of recurrent arrhythmia after catheter ablation in patients with persistent atrial fibrillation.
Collapse
Affiliation(s)
- Gang Wu
- Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Department of Cardiology, Wuhan, Hubei, China
- Mayo Clinic, Department of Medicine, Division of Cardiovascular Diseases, Rochester, MN, USA
- E-mail:
| | - Shun Wang
- Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Department of Cardiology, Wuhan, Hubei, China
| | - Mian Cheng
- Huazhong University of Science and Technology, Tongji Medical College, Tongji Hospital, Department of Geriatrics, Wuhan, Hubei, China
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Bin Peng
- Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Department of Cardiology, Wuhan, Hubei, China
| | - Jingjun Liang
- Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Department of Cardiology, Wuhan, Hubei, China
| | - He Huang
- Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Department of Cardiology, Wuhan, Hubei, China
| | - Xuejun Jiang
- Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Department of Cardiology, Wuhan, Hubei, China
| | - Lizhi Zhang
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Bo Yang
- Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Department of Cardiology, Wuhan, Hubei, China
| | - Yongmei Cha
- Mayo Clinic, Department of Medicine, Division of Cardiovascular Diseases, Rochester, MN, USA
| | - Hong Jiang
- Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Department of Cardiology, Wuhan, Hubei, China
| | - Congxin Huang
- Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Department of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Liu P, Jiang Y, Meng J. Clinical Association of Cystatin C and Atrial Fibrillation in Chinese Elderly. INT J GERONTOL 2015. [DOI: 10.1016/j.ijge.2015.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|