1
|
Wang Q, Zhang X, Li B, Liu X, Li A, Li H, Shi X, Han J. Tumor-Derived Exosomes Promote Tumor Growth Through Modulating Microvascular Hemodynamics in a Human Ovarian Cancer Xenograft Model. Microcirculation 2024; 31:e12876. [PMID: 39005221 DOI: 10.1111/micc.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/27/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Abnormal tumor vascular network contributes to aberrant blood perfusion and reduced oxygenation in tumors, which lead to poor efficacy of chemotherapy and radiotherapy. We aimed to explore the effects of the tumor-derived exosomes (TDEs) and C188-9 (a small molecule inhibitor of signal transducer and activator of transcription 3, STAT3) on tumor microvascular hemodynamics and determine which blood flow oscillations for various frequency intervals are responsible for these changes. METHODS Microvascular hemodynamics parameters were recorded using a PeriFlux 6000 EPOS system in tumor surface in a nude mouse subcutaneous xenograft model. Oscillations of laser Doppler flowmetry (LDF) signal were investigated by wavelet transform analysis. RESULTS TDEs facilitated tumor growth at least partially was associated with increasing blood flow in smaller vessels with lower speed and decreasing the blood flow at larger vessels with higher speed. Lower oxyhemoglobin saturation (SO2) on tumor surface was aggravated by TDEs, and C188-9 treatment significantly alleviated this decrease. Wavelet transform spectral analysis revealed that TDEs increased the amplitude of oscillations in four frequency intervals related to endothelial (NO-dependent and -independent), myogenic and neurogenic activities, and C188-9 had no effect on this increase. CONCLUSIONS TDEs facilitated tumor growth partially was associated with increasing blood flow in distributing vessels, reducing blood perfusion in larger vessels, and lowering SO2 on tumor surface. Enhanced vascular smooth muscle, endothelial and neurogenic activities occurred in tumor superficial zone.
Collapse
Affiliation(s)
- Qin Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyan Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jianqun Han
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Wang Q, Pan M, Kreiss L, Samaei S, Carp SA, Johansson JD, Zhang Y, Wu M, Horstmeyer R, Diop M, Li DDU. A comprehensive overview of diffuse correlation spectroscopy: Theoretical framework, recent advances in hardware, analysis, and applications. Neuroimage 2024; 298:120793. [PMID: 39153520 DOI: 10.1016/j.neuroimage.2024.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Saeed Samaei
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Stefan A Carp
- Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States
| | | | - Yuanzhe Zhang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Mamadou Diop
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - David Day-Uei Li
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
3
|
Moore CH, Sunar U, Lin W. A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA. BIOSENSORS 2024; 14:384. [PMID: 39194613 DOI: 10.3390/bios14080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Diffuse correlation spectroscopy (DCS) is a non-invasive technology for the evaluation of blood perfusion in deep tissue. However, it requires high computational resources for data analysis, which poses challenges in its implementation for real-time applications. To address the unmet need, we developed a novel device-on-chip solution that fully integrates all the necessary computational components needed for DCS. It takes the output of a photon detector and determines the blood flow index (BFI). It is implemented on a field-programmable gate array (FPGA) chip including a multi-tau correlator for the calculation of the temporal light intensity autocorrelation function and a DCS analyzer to perform the curve fitting operation that derives the BFI at a rate of 6000 BFIs/s. The FPGA DCS system was evaluated against a lab-standard DCS system for both phantom and cuff ischemia studies. The results indicate that the autocorrelation of the light correlation and BFI from both the FPGA DCS and the reference DCS matched well. Furthermore, the FPGA DCS system was able to achieve a measurement rate of 50 Hz and resolve pulsatile blood flow. This can significantly lower the cost and footprint of the computational components of DCS and pave the way for portable, real-time DCS systems.
Collapse
Affiliation(s)
- Christopher H Moore
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ulas Sunar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wei Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Biswas A, Mohammad PPS, Moka S, Takshi A, Parthasarathy AB. Non-invasive low-cost deep tissue blood flow measurement with integrated Diffuse Speckle Contrast Spectroscopy. FRONTIERS IN NEUROERGONOMICS 2024; 4:1288922. [PMID: 38234484 PMCID: PMC10790947 DOI: 10.3389/fnrgo.2023.1288922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Diffuse Correlation Spectroscopy (DCS) is a widely used non-invasive measurement technique to quantitatively measure deep tissue blood flow. Conventional implementations of DCS use expensive single photon counters as detecting elements and optical probes with bulky fiber optic cables. In recent years, newer approaches to blood flow measurement such as Diffuse Speckle Contrast Analysis (DSCA) and Speckle Contrast Optical Spectroscopy (SCOS), have adapted speckle contrast analysis methods to simplify deep tissue blood flow measurements using cameras and single photon counting avalanche detector arrays as detectors. Here, we introduce and demonstrate integrated Diffuse Speckle Contrast Spectroscopy (iDSCS), a novel optical sensor setup which leverages diffuse speckle contrast analysis for probe-level quantitative measurement of tissue blood flow. iDSCS uses a standard photodiode configured in photovoltaic mode to integrate photon intensity fluctuations over multiple integration durations using a custom electronic circuit, as opposed to the high frequency sampling of photon counts with DCS. We show that the iDSCS device is sensitive to deep-tissue blood flow measurements with experiments on a human forearm and compare the sensitivity and dynamic range of the device to a conventional DCS instrument. The iDSCS device features a low-cost, low-power, small form factor instrument design that will enable wireless probe-level measurements of deep tissue blood flow.
Collapse
|
5
|
Barbour RL, Graber HL. Hemoglobin signal network mapping reveals novel indicators for precision medicine. Sci Rep 2023; 13:18257. [PMID: 37880310 PMCID: PMC10600136 DOI: 10.1038/s41598-023-43694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Precision medicine currently relies on a mix of deep phenotyping strategies to guide more individualized healthcare. Despite being widely available and information-rich, physiological time-series measures are often overlooked as a resource to extend insights gained from such measures. Here we have explored resting-state hemoglobin measures applied to intact whole breasts for two subject groups - women with confirmed breast cancer and control subjects - with the goal of achieving a more detailed assessment of the cancer phenotype from a non-invasive measure. Invoked is a novel ordinal partition network method applied to multivariate measures that generates a Markov chain, thereby providing access to quantitative descriptions of short-term dynamics in the form of several classes of adjacency matrices. Exploration of these and their associated co-dependent behaviors unexpectedly reveals features of structured dynamics, some of which are shown to exhibit enzyme-like behaviors and sensitivity to recognized molecular markers of disease. Thus, findings obtained strongly indicate that despite the use of a macroscale sensing method, features more typical of molecular-cellular processes can be identified. Discussed are factors unique to our approach that favor a deeper depiction of tissue phenotypes, its extension to other forms of physiological time-series measures, and its expected utility to advance goals of precision medicine.
Collapse
Affiliation(s)
- Randall L Barbour
- Department of Pathology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA.
| | - Harry L Graber
- Department of Pathology, SUNY Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
- Photon Migration Technologies Corp, 15 Cherry Lane, Glen Head, NY, 11545, USA
| |
Collapse
|
6
|
Chen CT, Huang TW, Chou YS, Cheng CF, Wu HB, Hsu CH, Hsiu H. Effects of anthracycline chemotherapy and Kuan-Sin-Yin on the spectral indices of arterial pulse waveforms in breast cancer patients. Clin Hemorheol Microcirc 2023; 84:345-358. [PMID: 37334580 DOI: 10.3233/ch-221602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The vascular structure and function are potentially useful biomarkers for tumor detection. Treatment with chemotherapeutic agents may impair vascular function and increase the risk of cardiovascular disease. This study aimed to use noninvasive pulse waveform measurements to identify differences in the frequency-domain indices of the pulse waveform in breast-cancer patients following anthracycline chemotherapy between with (Group KSY) and without (Group NKSY) receiving Kuan-Sin-Yin (KSY) treatment.Radial blood pressure waveform (BPW) signals were measured noninvasively for 3 minutes in 31 patients, and the FACT-G, BFI-T, and EORTC QLQ-C30 questionnaires were administered. The following pulse indices were calculated for 10 harmonics: the amplitude proportion and its coefficient of variation, and the phase angle and its standard deviation.The changes in spectral BPW indices were more prominent in Group NKSY than in Group KSY, especially for the decreases in BPW variability indices. Scores on the FACT-G, BFI-T, and EORTC QLQ-C30 questionnaires suggested that the quality of life following chemotherapy was better in Group KSY.The identified decreases in pulse variability indices could be related to the greater impairment of regulatory activities in Group NKSY. The present findings may be meaningful in developing techniques with advantages such as being noninvasive and time-saving to evaluate the blood supply and physiological conditions following chemotherapy or other treatment strategies in cancer patients.
Collapse
Affiliation(s)
- Chao-Tsung Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Traditional Chinese Medicine, Taipei City Hospital RenAi Branch, Taipei, Taiwan
- General Education Center, University of Taipei, Taipei, Taiwan
| | - Tzu-Wei Huang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yi-Sheng Chou
- Department of Medicine, Division of Hematology and Oncology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Chi-Feng Cheng
- Department of Medicine, Division of Hematology and Oncology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Hung-Bo Wu
- Department of Medicine, Division of Hematology and Oncology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Hsin Hsiu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- Biomedical Engineering Research Center, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
7
|
Pavlov MV, Bavrina AP, Plekhanov VI, Golubyatnikov GY, Orlova AG, Subochev PV, Davydova DA, Turchin IV, Maslennikova AV. Changes in the tumor oxygenation but not in the tumor volume and tumor vascularization reflect early response of breast cancer to neoadjuvant chemotherapy. Breast Cancer Res 2023; 25:12. [PMID: 36717842 PMCID: PMC9887770 DOI: 10.1186/s13058-023-01607-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Breast cancer neoadjuvant chemotherapy (NACT) allows for assessing tumor sensitivity to systemic treatment, planning adjuvant treatment and follow-up. However, a sufficiently large number of patients fail to achieve the desired level of pathological tumor response while optimal early response assessment methods have not been established now. In our study, we simultaneously assessed the early chemotherapy-induced changes in the tumor volume by ultrasound (US), the tumor oxygenation by diffuse optical spectroscopy imaging (DOSI), and the state of the tumor vascular bed by Doppler US to elaborate the predictive criteria of breast tumor response to treatment. METHODS A total of 133 patients with a confirmed diagnosis of invasive breast cancer stage II to III admitted to NACT following definitive breast surgery were enrolled, of those 103 were included in the final analysis. Tumor oxygenation by DOSI, tumor volume by US, and tumor vascularization by Doppler US were determined before the first and second cycle of NACT. After NACT completion, patients underwent surgery followed by pathological examination and assessment of the pathological tumor response. On the basis of these, data regression predictive models were created. RESULTS We observed changes in all three parameters 3 weeks after the start of the treatment. However, a high predictive potential for early assessment of tumor sensitivity to NACT demonstrated only the level of oxygenation, ΔStO2, (ρ = 0.802, p ≤ 0.01). The regression model predicts the tumor response with a high probability of a correct conclusion (89.3%). The "Tumor volume" model and the "Vascularization index" model did not accurately predict the absence of a pathological tumor response to treatment (60.9% and 58.7%, respectively), while predicting a positive response to treatment was relatively better (78.9% and 75.4%, respectively). CONCLUSIONS Diffuse optical spectroscopy imaging appeared to be a robust tool for early predicting breast cancer response to chemotherapy. It may help identify patients who need additional molecular genetic study of the tumor in order to find the source of resistance to treatment, as well as to correct the treatment regimen.
Collapse
Affiliation(s)
- Mikhail V. Pavlov
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Anna P. Bavrina
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950
| | - Vladimir I. Plekhanov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - German Yu. Golubyatnikov
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna G. Orlova
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Pavel V. Subochev
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Diana A. Davydova
- Nizhny Novgorod Regional Clinical Oncology Dispensary, Delovaya St., 11/1, Nizhny Novgorod, Russia 603126
| | - Ilya V. Turchin
- grid.410472.40000 0004 0638 0147Institute of Applied Physics RAS, Ul’yanov Street, 46, Nizhny Novgorod, Russia 603950
| | - Anna V. Maslennikova
- grid.416347.30000 0004 0386 1631Privolzhsky Research Medical University, Minina Square, 10/1, Nizhny Novgorod, Russia 603950 ,grid.28171.3d0000 0001 0344 908XNational Research Lobachevsky State University of Nizhny Novgorod, Gagarin Ave., 23, Nizhny Novgorod, Russia 603022
| |
Collapse
|
8
|
Feng S, Gui Z, Zhang X, Shang Y. Collimating micro-lens fiber array for noncontact near-infrared diffuse correlation tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:1467-1481. [PMID: 33796366 PMCID: PMC7984780 DOI: 10.1364/boe.413734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 06/01/2023]
Abstract
Near-infrared diffuse correlation spectroscopy/tomography (DCS/DCT) has recently emerged as a noninvasive measurement/imaging technology for tissue blood flow. In DCT studies, the high-dense collection of light temporal autocorrelation curves (g 2(τ)) via fiber array are critical for image reconstruction of blood flow. Previously, the camera-based fiber array limits the field of view (FOV), precluding its applications on large-size human tissues. The line-shape fiber probe based on lens combination, which is predominantly used in current DCT studies, requires rotated-scanning over the surface of target tissue, substantially prolonging the measurement time and increasing the system instability. In this study, we design a noncontact optical probe for DCT based on collimating micro-lens fiber array, termed as FA-nc-DCT system. For each source/detector fiber, a single optical path was collimated by coupling with one micro-lens in the fiber array that is integrated in a square-shape base. Additionally, an 8×8 optical switch is used to share the hardware laser and detectors without spatial scanning. The FA-nc approach for the precise collection of g 2(τ) curves was validated through a speed-varied phantom experiment and the human experiments of cuff occlusion, from which the expected value of the blood flow index (BFI) was obtained. Furthermore, the flow anomaly in the phantom and the ischemic muscle in human were accurately reconstructed from the FA-nc-DCT system, which is combined with the imaging framework based on the Nth-order linear algorithm that we recently created. Those outcomes demonstrated the great potential of FA-nc-DCT technology for fast and robust imaging of various diseases such as human breast cancers.
Collapse
|
9
|
Ling H, Gui Z, Hao H, Shang Y. Enhancement of diffuse correlation spectroscopy tissue blood flow measurement by acoustic radiation force. BIOMEDICAL OPTICS EXPRESS 2020; 11:301-315. [PMID: 32010518 PMCID: PMC6968737 DOI: 10.1364/boe.381757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 05/03/2023]
Abstract
The current research on acousto-optic effects focuses on the interactions of acoustic waves with static optical properties rather than dynamic features such as tissue blood flow. Diffuse correlation spectroscopy (DCS) is an emerging technology capable of direct measurements of tissue blood flow by probing the movements of red blood cells (RBCs). In this article, we investigated the relations between the acoustic radiation force (ARF) and ultrasonic patterns by the finite element simulations. Based on the outcomes, we experimentally explored how the ultrasound-generated ARF enhance the DCS data as well as the blood flow measurements. The results yield the optimal pattern to generate ARF and elucidate the relations between the ultrasonic emission and flow elevations. The flow modality combing the DCS with ARF modulations, which was proposed in this study for the first time, would promote disease diagnosis and therapeutic assessment in the situation wherein the blood flow contrast between healthy and pathological tissues is insufficient.
Collapse
Affiliation(s)
- Hao Ling
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| | - Zhiguo Gui
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| | - Huiyan Hao
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| | - Yu Shang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| |
Collapse
|
10
|
Broadband Time Domain Diffuse Optical Reflectance Spectroscopy: A Review of Systems, Methods, and Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review presents recent developments and a wide overview of broadband time domain diffuse optical spectroscopy (TD-DOS). Various topics including physics of photon migration, advanced instrumentation, methods of analysis, applications covering multiple domains (tissue chromophore, in vivo studies, food, wood, pharmaceutical industry) are elaborated. The key role of standardization and recent studies in that direction are discussed. Towards the end, a brief outlook is presented on the current status and future trends in broadband TD-DOS.
Collapse
|
11
|
Ávila‐Gálvez MÁ, García‐Villalba R, Martínez‐Díaz F, Ocaña‐Castillo B, Monedero‐Saiz T, Torrecillas‐Sánchez A, Abellán B, González‐Sarrías A, Espín JC. Metabolic Profiling of Dietary Polyphenols and Methylxanthines in Normal and Malignant Mammary Tissues from Breast Cancer Patients. Mol Nutr Food Res 2019; 63:e1801239. [DOI: 10.1002/mnfr.201801239] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Indexed: 12/22/2022]
Affiliation(s)
- María Ángeles Ávila‐Gálvez
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| | - Rocío García‐Villalba
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| | - Francisco Martínez‐Díaz
- Reina Sofía University HospitalService of Anatomical Pathology Avda. Intendente Jorge Palacios s/n 30003 Murcia Spain
| | - Beatriz Ocaña‐Castillo
- Reina Sofía University HospitalService of Anatomical Pathology Avda. Intendente Jorge Palacios s/n 30003 Murcia Spain
| | - Tamara Monedero‐Saiz
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| | - Adela Torrecillas‐Sánchez
- Reina Sofía University HospitalService of Breast Unit Avda. Intendente Jorge Palacios s/n 30003 Murcia Spain
| | - Beatriz Abellán
- Reina Sofía University HospitalService of Surgery Avda. Intendente Jorge Palacios s/n 30003 Murcia Spain
| | - Antonio González‐Sarrías
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| | - Juan Carlos Espín
- Laboratory of Food & HealthResearch Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS‐CSICCampus de Espinardo 30100 Murcia Spain
| |
Collapse
|
12
|
Chen CT, Hsu CH, Liu JR, Wu HB, Chou YS, Hsiu H. Comparison of complexity and spectral indices of skin-surface laser-doppler signals in patients with breast cancer receiving chemotherapy and Kuan-Sin-Yin. Clin Hemorheol Microcirc 2019; 73:553-563. [PMID: 31156144 DOI: 10.3233/ch-190569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study tested the hypothesis that measuring and analyzing skin-surface blood flow dynamics can be used to noninvasively discriminate the different microcirculatory and physiological function states of breast-cancer patients with chemotherapy between receiving and not receiving Kuan-Sin-Yin (KSY) treatment. The 17 included patients were assigned randomly to 2 comparison groups: Group K (n = 10) received KSY treatment, while Group NK (n = 7) did not receive KSY treatment. Beat-to-beat, spectral, and approximate-entropy (ApEn) analyses were applied to the 20-minute laser-Doppler sequences. The self-reported quality of life and cancer-related symptoms of patients were also investigated. In posttests, Group NK had a significantly larger ApEn ratio than that in Group K, significantly smaller values of laser-Doppler-flowmetry variability indices, and a slightly higher relative energy contribution of the neural-related frequency band compared to those in the pretests. Almost all cancer-related symptoms showed improvements in Group K compared to in Group NK. The present findings indicated that the present analysis can be used to detect the significantly different responses in the laser-Doppler indices between taking and not taking KSY. The KSY effect was also noted to be accompanied with improvement of EORTC QLQ-C30 scores. These could lead to a rapid, inexpensive, and objective technique for enhancing clinical applications in quality-of-life monitoring of breast cancer therapy.
Collapse
Affiliation(s)
- Chao-Tsung Chen
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Traditional Chinese Medicine, Taipei City Hospital RenAi Branch, Taipei, Taiwan
- General Education Center, University of Taipei, Taipei, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
- Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Jyh-Rou Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hung-Bo Wu
- Division of Hematology and Oncology, Department of Medicine, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Yi-Sheng Chou
- Division of Hematology and Oncology, Department of Medicine, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Hsin Hsiu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- Biomedical Engineering Research Center, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
13
|
Cochran JM, Busch DR, Lin L, Minkoff DL, Schweiger M, Arridge S, Yodh AG. Hybrid time-domain and continuous-wave diffuse optical tomography instrument with concurrent, clinical magnetic resonance imaging for breast cancer imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 30680976 PMCID: PMC6345326 DOI: 10.1117/1.jbo.24.5.051409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 05/10/2023]
Abstract
Diffuse optical tomography has demonstrated significant potential for clinical utility in the diagnosis and prognosis of breast cancer, and its use in combination with other structural imaging modalities improves lesion localization and the quantification of functional tissue properties. Here, we introduce a hybrid diffuse optical imaging system that operates concurrently with magnetic resonance imaging (MRI) in the imaging suite, utilizing commercially available MR surface coils. The instrument acquires both continuous-wave and time-domain diffuse optical data in the parallel-plate geometry, permitting both absolute assignment of tissue optical properties and three-dimensional tomography; moreover, the instrument is designed to incorporate diffuse correlation spectroscopic measurements for probing tissue blood flow. The instrument is described in detail here. Image reconstructions of a tissue phantom are presented as an initial indicator of the system's ability to accurately reconstruct optical properties and the concrete benefits of the spatial constraints provided by concurrent MRI. Last, we briefly discuss how various data combinations that the instrument could facilitate, including tissue perfusion, can enable more comprehensive assessment of lesion physiology.
Collapse
Affiliation(s)
- Jeffrey M. Cochran
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to Jeffrey M. Cochran, E-mail:
| | - David R. Busch
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- University of Texas Southwestern Medical Center, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Department of Neurology and Neurotherapeutics, Dallas, Texas, United States
- Children’s Hospital of Philadelphia, Department of Neurology, Philadelphia, Pennsylvania, United States
| | - Li Lin
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- California Institute of Technology, Department of Medical Engineering, Pasadena, California, United States
| | - David L. Minkoff
- Emory University, Department of Medicine, Atlanta, Georgia, United States
| | - Martin Schweiger
- University College London, Centre for Medical Image Computing, London, United Kigdom
| | - Simon Arridge
- University College London, Centre for Medical Image Computing, London, United Kigdom
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| |
Collapse
|
14
|
Zhang P, Gui Z, Guo G, Shang Y. Approaches to denoise the diffuse optical signals for tissue blood flow measurement. BIOMEDICAL OPTICS EXPRESS 2018; 9:6170-6185. [PMID: 31065421 PMCID: PMC6490982 DOI: 10.1364/boe.9.006170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 05/03/2023]
Abstract
Various diseases are relevant to the abnormal blood flow in tissue. Diffuse correlation spectroscopy (DCS) is an emerging technology to extract the blood flow index (BFI) from light electric field temporal autocorrelation data. To account for tissue heterogeneity and irregular geometry, we developed an innovative DCS algorithm (i.e., the Nth order linear algorithm, or simply the NL algorithm) previously, in which the DCS signals are fully utilized through iterative linear regressions. Under the framework of NL algorithm, the BFI to be extracted is significantly influenced by the linear regression approach adopted. In this study, three approaches were proposed and evaluated for performing the iterative linear regressions, in order to understand what are the appropriate regression methods for BFI estimation. The three methods are least-squared minimization (L2 norm), least-absolute minimization (L1 norm) and support vector regression (SVR), where L2 norm is a conventional approach to perform linear regression. L1 norm and SVR are the approaches newly introduced here to process the DCS data. Computer simulations and the autocorrelation data collected from liquid phantom and human tissues are utilized to evaluate the three approaches. The results show that the best performance is achieved by the SVR approach in extracting the BFI values, with an error rate of 2.23% at 3.0 cm source-detector separation. The L1 norm method gives a medium error of 2.81%. In contrast, the L2 norm method leads to the largest error (3.93%) in extracting the BFI values. The outcomes derived from this study will be very helpful for the tissue blood flow measurements, which is critical for translating the DCS technology to the clinic.
Collapse
Affiliation(s)
- Peng Zhang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| | - Zhiguo Gui
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| | - GuoDong Guo
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV26506, USA
| | - Yu Shang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No. 3 Xueyuan Road, Taiyuan 030051, China
| |
Collapse
|
15
|
Vavadi H, Mostafa A, Zhou F, Uddin KMS, Althobaiti M, Xu C, Bansal R, Ademuyiwa F, Poplack S, Zhu Q. Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-9. [PMID: 30350491 PMCID: PMC6197842 DOI: 10.1117/1.jbo.24.2.021203] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/19/2018] [Indexed: 05/02/2023]
Abstract
Near-infrared diffuse optical tomography (DOT) has demonstrated a great potential as an adjunct modality for differentiation of malignant and benign breast lesions and for monitoring treatment response in patients with locally advanced breast cancers. The path toward commercialization of DOT techniques depends upon the improvement of robustness and user-friendliness of this technique in hardware and software. In this study, we introduce our recently developed ultrasound-guided DOT system, which has been improved in system compactness, robustness, and user-friendliness by custom-designed electronics, automated data preprocessing, and implementation of a new two-step reconstruction algorithm. The system performance has been tested with several sets of solid and blood phantoms and the results show accuracy in reconstructed absorption coefficients as well as blood oxygen saturation. A clinical example of a breast cancer patient, who was undergoing neoadjuvant chemotherapy, is given to demonstrate the system performance.
Collapse
Affiliation(s)
- Hamed Vavadi
- University of Connecticut, BME and ECE Departments, Connecticut, United States
| | - Atahar Mostafa
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Feifei Zhou
- University of Connecticut, BME and ECE Departments, Connecticut, United States
| | - K. M. Shihab Uddin
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Murad Althobaiti
- University of Connecticut, BME and ECE Departments, Connecticut, United States
| | - Chen Xu
- New York City College of Technology, Brooklyn, New York, United States
| | - Rajeev Bansal
- University of Connecticut, BME and ECE Departments, Connecticut, United States
| | - Foluso Ademuyiwa
- Washington University School of Medicine, Department of Medical Oncology, St. Louis, Missouri, United States
| | - Steven Poplack
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Quing Zhu
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Address all correspondence to: Quing Zhu, E-mail:
| |
Collapse
|
16
|
Hsiu H, Chen CT, Hung SH, Chen GZ, Huang YL. Differences in time-domain and spectral indexes of skin-surface laser-Doppler signals between controls and breast-cancer subjects. Clin Hemorheol Microcirc 2018; 69:371-381. [DOI: 10.3233/ch-170295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hsin Hsiu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chao-Tsung Chen
- Department of Traditional Chinese Medicine, Taipei City Hospital RenAi Branch, Taipei, Taiwan
| | - Shuo-Hui Hung
- Department of Surgery, Taipei City Hospital RenAi Branch, Taipei, Taiwan
| | - Guan-Zhang Chen
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Ling Huang
- Department of Traditional Chinese Medicine, Taipei City Hospital RenAi Branch, Taipei, Taiwan
| |
Collapse
|
17
|
Busch DR, Davis J, Kogler A, Galler RM, Parthasarathy AB, Yodh AG, Floyd TF. Laser safety in fiber-optic monitoring of spinal cord hemodynamics: a preclinical evaluation. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29923371 PMCID: PMC8357330 DOI: 10.1117/1.jbo.23.6.065003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/30/2018] [Indexed: 05/02/2023]
Abstract
The prevention and treatment of spinal cord injury are focused upon the maintenance of spinal cord blood flow, yet no technology exists to monitor spinal cord ischemia. We recently demonstrated continuous monitoring of spinal cord ischemia with diffuse correlation and optical spectroscopies using an optical probe. Prior to clinical translation of this technology, it is critically important to demonstrate the safety profile of spinal cord exposure to the required light. To our knowledge, this is the first report of in situ safety testing of such a monitor. We expose the spinal cord to laser light utilizing a custom fiber-optic epidural probe in a survival surgery model (11 adult Dorset sheep). We compare the tissue illumination from our instrument with the American National Standards Institute maximum permissible exposures. We experimentally evaluate neurological and pathological outcomes of the irradiated sheep associated with prolonged exposure to the laser source and evaluate heating in ex vivo spinal cord samples. Spinal cord tissue was exposed to light levels at ∼18 × the maximum permissible exposure for the eye and ∼ ( 1 / 3 ) × for the skin. Multidisciplinary testing revealed no functional neurological sequelae, histopathologic evidence of laser-related injury to the spinal cord, or significant temperature changes in ex vivo samples. Low tissue irradiance and the lack of neurological, pathological, and temperature changes upon prolonged exposure to the laser source offer evidence that spinal cord tissues can be monitored safely with near-infrared optical probes placed within the epidural space.
Collapse
Affiliation(s)
- David R. Busch
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas Texas, United States
- University of Texas Southwestern, Department of Neurology and Neurotherapeutics, Dallas, Texas, United States
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to: David R. Busch, E-mail: ; Thomas F. Floyd, E-mail:
| | - James Davis
- Stony Brook University Medical Center, Department of Pathology, Stony Brook, New York, United States
| | - Angela Kogler
- Stony Brook University Medical Center, Department of Anesthesiology, Stony Brook, New York, United States
- Stony Brook University, Department of Biomedical Engineering, Stony Brook, New York, United States
| | - Robert M. Galler
- Stony Brook University Medical Center, Department of Neurosurgery, Stony Brook, New York, United States
| | - Ashwin B. Parthasarathy
- University of South Florida, Department of Electrical Engineering, Tampa, Florida, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Thomas F. Floyd
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas Texas, United States
- Address all correspondence to: David R. Busch, E-mail: ; Thomas F. Floyd, E-mail:
| |
Collapse
|
18
|
Characteristics of spectral indexes of the blood pressure waveform in patients with breast cancer. Blood Press Monit 2017; 22:217-220. [DOI: 10.1097/mbp.0000000000000260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Farzam P, Johansson J, Mireles M, Jiménez-Valerio G, Martínez-Lozano M, Choe R, Casanovas O, Durduran T. Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics. BIOMEDICAL OPTICS EXPRESS 2017; 8:2563-2582. [PMID: 28663891 PMCID: PMC5480498 DOI: 10.1364/boe.8.002563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 05/20/2023]
Abstract
The longitudinal effect of an anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody (DC 101) therapy on a xenografted renal cell carcinoma (RCC) mouse model was monitored using hybrid diffuse optics. Two groups of immunosuppressed male nude mice (seven treated, seven controls) were measured. Tumor microvascular blood flow, total hemoglobin concentration and blood oxygenation were investigated as potential biomarkers for the monitoring of the therapy effect twice a week and were related to the final treatment outcome. These hemodynamic biomarkers have shown a clear differentiation between two groups by day four. Moreover, we have observed that pre-treatment values and early changes in hemodynamics are highly correlated with the therapeutic outcome demonstrating the potential of diffuse optics to predict the therapy response at an early time point.
Collapse
Affiliation(s)
- Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129,
USA
| | - Johannes Johansson
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Department of Biomedical Engineering, Linköping University, 58185 Linköping,
Sweden
| | - Miguel Mireles
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
| | - Gabriela Jiménez-Valerio
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Mar Martínez-Lozano
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627,
USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627,
USA
| | - Oriol Casanovas
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Bellvitge Biomedical Research Institute – IDIBELL, 08908, L’Hospitalet de Llobregat (Barcelona),
Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Sciences and Technology, 08860, Castelldefels (Barcelona),
Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08015, Barcelona,
Spain
| |
Collapse
|
20
|
Cochran JM, Chung SH, Leproux A, Baker WB, Busch DR, DeMichele AM, Tchou J, Tromberg BJ, Yodh AG. Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy. Phys Med Biol 2017; 62:4637-4653. [PMID: 28402286 DOI: 10.1088/1361-6560/aa6cef] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We measure tissue blood flow markers in breast tumors during neoadjuvant chemotherapy and investigate their correlation to pathologic complete response in a pilot longitudinal patient study (n = 4). Tumor blood flow is quantified optically by diffuse correlation spectroscopy (DCS), and tissue optical properties, blood oxygen saturation, and total hemoglobin concentration are derived from concurrent diffuse optical spectroscopic imaging (DOSI). The study represents the first longitudinal DCS measurement of neoadjuvant chemotherapy in humans over the entire course of treatment; it therefore offers a first correlation between DCS flow indices and pathologic complete response. The use of absolute optical properties measured by DOSI facilitates significant improvement of DCS blood flow calculation, which typically assumes optical properties based on literature values. Additionally, the combination of the DCS blood flow index and the tissue oxygen saturation from DOSI permits investigation of tissue oxygen metabolism. Pilot results from four patients suggest that lower blood flow in the lesion-bearing breast is correlated with pathologic complete response. Both absolute lesion blood flow and lesion flow relative to the contralateral breast exhibit potential for characterization of pathological response. This initial demonstration of the combined optical approach for chemotherapy monitoring provides incentive for more comprehensive studies in the future and can help power those investigations.
Collapse
Affiliation(s)
- J M Cochran
- Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, Philadelphia, PA 19104, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yazdi HS, O’Sullivan TD, Leproux A, Hill B, Durkin A, Telep S, Lam J, Yazdi SS, Police AM, Carroll RM, Combs FJ, Strömberg T, Yodh AG, Tromberg BJ. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:45003. [PMID: 28384703 PMCID: PMC5381696 DOI: 10.1117/1.jbo.22.4.045003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/13/2017] [Indexed: 05/18/2023]
Abstract
Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, ? a , and reduced scattering, ? s ? ) and blood flow (blood flow index, BFI), respectively. DOSI-derived ? a values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin ( HbO 2 , HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 ?? mm ? 1 (37%) in ? s ? and 0.003 ?? mm ? 1 (33%) in ? a lead to ? 53 % and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and
Collapse
MESH Headings
- Adult
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/drug therapy
- Diffusion
- Female
- Hemoglobins/analysis
- Humans
- Lipids/blood
- Models, Theoretical
- Neoadjuvant Therapy
- Oxyhemoglobins/analysis
- Phantoms, Imaging
- Spectrophotometry/methods
- Spectroscopy, Near-Infrared/methods
- Tomography, Optical/methods
Collapse
Affiliation(s)
- Hossein S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Anais Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Brian Hill
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Amanda Durkin
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Seraphim Telep
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Jesse Lam
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Siavash S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Alice M. Police
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Robert M. Carroll
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Freddie J. Combs
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Tomas Strömberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
22
|
Shang Y, Li T, Yu G. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging. Physiol Meas 2017; 38:R1-R26. [PMID: 28199219 PMCID: PMC5726862 DOI: 10.1088/1361-6579/aa60b7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. APPROACH Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). MAIN RESULTS This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. SIGNIFICANCE Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring.
Collapse
Affiliation(s)
- Yu Shang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, No.3 Xueyuan Road, Taiyuan, Shanxi 030051, China
| | - Ting Li
- State Key Lab Elect Thin Film & Integrated Device, University of Electronic Science & Technology of China, Chengdu, Sichuan 610054, China
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, 514C RMB, 143 Graham Avenue, Lexington, KY 40506-0108, USA
| |
Collapse
|
23
|
Konugolu Venkata Sekar S, Pagliazzi M, Negredo E, Martelli F, Farina A, Dalla Mora A, Lindner C, Farzam P, Pérez-Álvarez N, Puig J, Taroni P, Pifferi A, Durduran T. In Vivo, Non-Invasive Characterization of Human Bone by Hybrid Broadband (600-1200 nm) Diffuse Optical and Correlation Spectroscopies. PLoS One 2016; 11:e0168426. [PMID: 27997565 PMCID: PMC5172608 DOI: 10.1371/journal.pone.0168426] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/30/2016] [Indexed: 11/19/2022] Open
Abstract
Non-invasive in vivo diffuse optical characterization of human bone opens a new possibility of diagnosing bone related pathologies. We present an in vivo characterization performed on seventeen healthy subjects at six different superficial bone locations: radius distal, radius proximal, ulna distal, ulna proximal, trochanter and calcaneus. A tailored diffuse optical protocol for high penetration depth combined with the rather superficial nature of considered tissues ensured the effective probing of the bone tissue. Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS) to assess mean absorption and reduced scattering spectra in the 600-1200 nm range and Diffuse Correlation Spectroscopy (DCS) to monitor microvascular blood flow. Significant variations among tissue constituents were found between different locations; with radius distal rich of collagen, suggesting it as a prominent location for bone related measurements, and calcaneus bone having highest blood flow among the body locations being considered. By using TRS and DCS together, we are able to probe the perfusion and oxygen consumption of the tissue without any contrast agents. Therefore, we predict that these methods will be able to evaluate the impairment of the oxygen metabolism of the bone at the point-of-care.
Collapse
Affiliation(s)
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Eugènia Negredo
- Lluita contra la Sida Foundation, Germans Trias i Pujol University Hospital, Badalona, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya, Vic, Barcelona, Spain
| | - Fabrizio Martelli
- Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino, Firenze, Italy
| | - Andrea Farina
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
- Consiglio Nazionale delle Ricerche - Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | | | - Claus Lindner
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Parisa Farzam
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Núria Pérez-Álvarez
- Lluita contra la Sida Foundation, Germans Trias i Pujol University Hospital, Badalona, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
- Statistics and Operations Research Department, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Jordi Puig
- Lluita contra la Sida Foundation, Germans Trias i Pujol University Hospital, Badalona, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paola Taroni
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
24
|
Busch DR, Rusin CG, Miller-Hance W, Kibler K, Baker WB, Heinle JS, Fraser CD, Yodh AG, Licht DJ, Brady KM. Continuous cerebral hemodynamic measurement during deep hypothermic circulatory arrest. BIOMEDICAL OPTICS EXPRESS 2016; 7:3461-3470. [PMID: 27699112 PMCID: PMC5030024 DOI: 10.1364/boe.7.003461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 05/03/2023]
Abstract
While survival of children with complex congenital heart defects has improved in recent years, roughly half suffer neurological deficits suspected to be related to cerebral ischemia. Here we report the first demonstration of optical diffuse correlation spectroscopy (DCS) for continuous and non-invasive monitoring of cerebral microvascular blood flow during complex human neonatal or cardiac surgery. Comparison between DCS and Doppler ultrasound flow measurements during deep hypothermia, circulatory arrest, and rewarming were in good agreement. Looking forward, DCS instrumentation, alone and with NIRS, could provide access to flow and metabolic biomarkers needed by clinicians to adjust neuroprotective therapy during surgery.
Collapse
Affiliation(s)
- David R. Busch
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig G. Rusin
- Departments of Pediatrics and Cardiology, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Wanda Miller-Hance
- Department of Pediatric Cardiovascular Anesthesiology, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Kathy Kibler
- Department of Pediatrics, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Wesley B. Baker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey S. Heinle
- Department of Surgery, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Charles D. Fraser
- Department of Surgery, Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Licht
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kenneth M. Brady
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
25
|
Wilson RH, Vishwanath K, Mycek MA. Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications. ADVANCES IN PHYSICS 2016; 1:523-543. [PMID: 28824194 PMCID: PMC5560608 DOI: 10.1080/23746149.2016.1221739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present an overview of quantitative and label-free optical methods used to characterize living biological tissues, with an emphasis on emerging applications in clinical tissue diagnostics. Specifically, this review focuses on diffuse optical spectroscopy, imaging, and tomography, optical coherence-based techniques, and non-linear optical methods for molecular imaging. The potential for non- or minimally-invasive assessment, quantitative diagnostics, and continuous monitoring enabled by these tissue-optics technologies provides significant promise for continued clinical translation.
Collapse
Affiliation(s)
- Robert H. Wilson
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, USA
| | | | - Mary-Ann Mycek
- Department of Biomedical Engineering, Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Wang D, Parthasarathy AB, Baker WB, Gannon K, Kavuri V, Ko T, Schenkel S, Li Z, Li Z, Mullen MT, Detre JA, Yodh AG. Fast blood flow monitoring in deep tissues with real-time software correlators. BIOMEDICAL OPTICS EXPRESS 2016; 7:776-97. [PMID: 27231588 PMCID: PMC4866455 DOI: 10.1364/boe.7.000776] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 05/19/2023]
Abstract
We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 - 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance.
Collapse
Affiliation(s)
- Detian Wang
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900,
China
| | | | - Wesley B. Baker
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Kimberly Gannon
- Div. of Stroke and Neurocritical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Venki Kavuri
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Tiffany Ko
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Steven Schenkel
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Zhe Li
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072,
China
| | - Zeren Li
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900,
China
| | - Michael T. Mullen
- Div. of Stroke and Neurocritical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
USA
| | - John A. Detre
- Div. of Stroke and Neurocritical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Arjun G. Yodh
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| |
Collapse
|
27
|
Lindner C, Mora M, Farzam P, Squarcia M, Johansson J, Weigel UM, Halperin I, Hanzu FA, Durduran T. Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies. PLoS One 2016; 11:e0147851. [PMID: 26815533 PMCID: PMC4731400 DOI: 10.1371/journal.pone.0147851] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
The in vivo optical and hemodynamic properties of the healthy (n = 22) and pathological (n = 2) human thyroid tissue were measured non-invasively using a custom time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) system. Medical ultrasound was used to guide the placement of the hand-held hybrid optical probe. TRS measured the absorption and reduced scattering coefficients (μa, μs′) at three wavelengths (690, 785 and 830 nm) to derive total hemoglobin concentration (THC) and oxygen saturation (StO2). DCS measured the microvascular blood flow index (BFI). Their dependencies on physiological and clinical parameters and positions along the thyroid were investigated and compared to the surrounding sternocleidomastoid muscle. The THC in the thyroid ranged from 131.9 μM to 144.8 μM, showing a 25–44% increase compared to the surrounding sternocleidomastoid muscle tissue. The blood flow was significantly higher in the thyroid (BFIthyroid = 16.0 × 10-9 cm2/s) compared to the muscle (BFImuscle = 7.8 × 10-9 cm2/s), while StO2 showed a small (StO2, muscle = 63.8% to StO2, thyroid = 68.4%), yet significant difference. Two case studies with thyroid nodules underwent the same measurement protocol prior to thyroidectomy. Their THC and BFI reached values around 226.5 μM and 62.8 × 10-9 cm2/s respectively showing a clear contrast to the nodule-free thyroid tissue as well as the general population. The initial characterization of the healthy and pathologic human thyroid tissue lays the ground work for the future investigation on the use of diffuse optics in thyroid cancer screening.
Collapse
Affiliation(s)
- Claus Lindner
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- * E-mail:
| | - Mireia Mora
- Department of Endocrinology and Nutrition, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Parisa Farzam
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | | | - Johannes Johansson
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Udo M. Weigel
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Hemophotonics S.L., Mediterranean Technology Park, Castelldefels (Barcelona), Spain
| | - Irene Halperin
- Department of Endocrinology and Nutrition, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Felicia A. Hanzu
- Department of Endocrinology and Nutrition, Hospital Clínic, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
28
|
Huang C, Lin Y, He L, Irwin D, Szabunio MM, Yu G. Alignment of sources and detectors on breast surface for noncontact diffuse correlation tomography of breast tumors. APPLIED OPTICS 2015; 54:8808-16. [PMID: 26479823 PMCID: PMC4801123 DOI: 10.1364/ao.54.008808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Noncontact diffuse correlation tomography (ncDCT) is an emerging technology for 3D imaging of deep tissue blood flow distribution without distorting hemodynamic properties. To adapt the ncDCT for imaging in vivo breast tumors, we designed a motorized ncDCT probe to scan over the breast surface. A computer-aided design (CAD)-based approach was proposed to create solid volume mesh from arbitrary breast surface obtained by a commercial 3D camera. The sources and detectors of ncDCT were aligned on the breast surface through ray tracing to mimic the ncDCT scanning with CAD software. The generated breast volume mesh along with the boundary data of ncDCT at the aligned source and detector pairs were used for finite-element-method-based flow image reconstruction. We evaluated the accuracy of source alignments on mannequin and human breasts; largest alignment errors were less than 10% in both tangential and radial directions of scanning. The impact of alignment errors (assigned 10%) on the tumor reconstruction was estimated using computer simulations. The deviations of simulated tumor location and blood flow contrast resulted from the alignment errors were 0.77 mm (less than the node distance of 1 mm) and 1%, respectively, which result in minor impact on flow image reconstruction. Finally, a case study on a human breast tumor was conducted and a tumor-to-normal flow contrast was reconstructed, demonstrating the feasibility of ncDCT in clinical application.
Collapse
Affiliation(s)
- Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Yu Lin
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Lian He
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Irwin
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
- Corresponding author:
| |
Collapse
|
29
|
He L, Lin Y, Huang C, Irwin D, Szabunio MM, Yu G. Noncontact diffuse correlation tomography of human breast tumor. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:86003. [PMID: 26259706 PMCID: PMC4688914 DOI: 10.1117/1.jbo.20.8.086003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/09/2015] [Indexed: 05/19/2023]
Abstract
Our first step to adapt our recently developed noncontact diffuse correlation tomography (ncDCT) system for three-dimensional (3-D) imaging of blood flow distribution in human breast tumors is reported. A commercial 3-D camera was used to obtain breast surface geometry, which was then converted to a solid volume mesh. An ncDCT probe scanned over a region of interest on the mesh surface and the measured boundary data were combined with a finite element framework for 3-D image reconstruction of blood flow distribution. This technique was tested in computer simulations and in vivo human breasts with low-grade carcinoma. Results from computer simulations suggest that relatively high accuracy can be achieved when the entire tumor is within the sensitive region of diffuse light. Image reconstruction with a priori knowledge of the tumor volume and location can significantly improve the accuracy in recovery of tumor blood flow contrasts. In vivo imaging results from two breast carcinomas show higher average blood flow contrasts (5.9- and 10.9-fold) in the tumor regions compared to the surrounding tissues, which are comparable with previous findings using diffuse correlation spectroscopy. The ncDCT system has the potential to image blood flow distributions in soft and vulnerable tissues without distorting tissue hemodynamics
Collapse
Affiliation(s)
- Lian He
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Yu Lin
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Chong Huang
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Daniel Irwin
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
| | - Margaret M. Szabunio
- University of Kentucky, Markey Cancer Center, Division of Women’s Radiology, 800 Rose Street, Lexington, Kentucky 40536, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, 143 Graham Avenue, Lexington, Kentucky 40506, United States
- Address all correspondence to: Guoqiang Yu, E-mail:
| |
Collapse
|
30
|
Chung SH, Feldman MD, Martinez D, Kim H, Putt ME, Busch DR, Tchou J, Czerniecki BJ, Schnall MD, Rosen MA, DeMichele A, Yodh AG, Choe R. Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures. Breast Cancer Res 2015; 17:72. [PMID: 26013572 PMCID: PMC4487833 DOI: 10.1186/s13058-015-0578-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/11/2015] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Non-invasive diffuse optical tomography (DOT) and diffuse correlation spectroscopy (DCS) can detect and characterize breast cancer and predict tumor responses to neoadjuvant chemotherapy, even in patients with radiographically dense breasts. However, the relationship between measured optical parameters and pathological biomarker information needs to be further studied to connect information from optics to traditional clinical cancer biology. Thus we investigate how optically measured physiological parameters in malignant tumors such as oxy-, deoxy-hemoglobin concentration, tissue blood oxygenation, and metabolic rate of oxygen correlate with microscopic histopathological biomarkers from the same malignant tumors, e.g., Ki67 proliferation markers, CD34 stained vasculature markers and nuclear morphology. METHODS In this pilot study, we investigate correlations of macroscopic physiological parameters of malignant tumors measured by diffuse optical technologies with microscopic histopathological biomarkers of the same tumors, i.e., the Ki67 proliferation marker, the CD34 stained vascular properties marker, and nuclear morphology. RESULTS The tumor-to-normal relative ratio of Ki67-positive nuclei is positively correlated with DOT-measured relative tissue blood oxygen saturation (R = 0.89, p-value: 0.001), and lower tumor-to-normal deoxy-hemoglobin concentration is associated with higher expression level of Ki67 nuclei (p-value: 0.01). In a subset of the Ki67-negative group (defined by the 15 % threshold), an inverse correlation between Ki67 expression level and mammary metabolic rate of oxygen was observed (R = -0.95, p-value: 0.014). Further, CD34 stained mean-vessel-area in tumor is positively correlated with tumor-to-normal total-hemoglobin and oxy-hemoglobin concentration. Finally, we find that cell nuclei tend to have more elongated shapes in less oxygenated DOT-measured environments. CONCLUSIONS Collectively, the pilot data are consistent with the notion that increased blood is supplied to breast cancers, and it also suggests that less conversion of oxy- to deoxy-hemoglobin occurs in more proliferative cancers. Overall, the observations corroborate expectations that macroscopic measurements of breast cancer physiology using DOT and DCS can reveal microscopic pathological properties of breast cancer and hold potential to complement pathological biomarker information.
Collapse
Affiliation(s)
- So Hyun Chung
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Daniel Martinez
- Pathology Core Laboratory, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Helen Kim
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
| | - Mary E Putt
- Department of Biostatistics and Epidemiology, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| | - David R Busch
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
- Division of Neurology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Julia Tchou
- Department of Surgery, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Brian J Czerniecki
- Department of Surgery, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Mitchell D Schnall
- Department of Radiology, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Mark A Rosen
- Department of Radiology, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Angela DeMichele
- Department of Medicine, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, 209 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA.
| |
Collapse
|
31
|
Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer. PLoS One 2015; 10:e0117322. [PMID: 25781469 PMCID: PMC4363570 DOI: 10.1371/journal.pone.0117322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022] Open
Abstract
This study reports the optical characterization and quantitative oximetry of human breast cancer using spectrally-resolved images collected with a broadband, continuous-wave optical mammography instrument. On twenty-six cancer patients, we collected two-dimensional optical mammograms and created maps of the concentrations of hemoglobin, water, and lipids, as well as the oxygen saturation of hemoglobin. For each cancerous breast, we analyzed the difference between the tumor region (as identified by x-ray and optical mammography) and the remainder of breast tissue. With respect to the surrounding tissue, we found that cancer regions have significantly higher concentrations of total hemoglobin (+2.4±0.4 μM) and water (+7±1% v/v), and significantly lower lipid concentration (8±2% v/v) and oxygen saturation of hemoglobin (5±1%). We also found a significant correlation between the tumor optical contrast and the grade of breast cancer as quantified by the Nottingham histologic score; this demonstrates how optical signatures may be representative of metabolic and morphological features, as well as the aggressive potential of the tumor.
Collapse
|
32
|
Baker WB, Parthasarathy AB, Busch DR, Mesquita RC, Greenberg JH, Yodh AG. Modified Beer-Lambert law for blood flow. BIOMEDICAL OPTICS EXPRESS 2014; 5:4053-75. [PMID: 25426330 PMCID: PMC4242038 DOI: 10.1364/boe.5.004053] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 05/18/2023]
Abstract
We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.
Collapse
Affiliation(s)
- Wesley B. Baker
- Dept. Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104,
USA
| | | | - David R. Busch
- Dept. Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104,
USA
- Div. of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104,
USA
| | - Rickson C. Mesquita
- Institute of Physics, University of Campinas, Campinas, SP 13083-859,
Brazil
| | - Joel H. Greenberg
- Dept. Neurology, University of Pennsylvania, Philadelphia, PA 19104,
USA
| | - A. G. Yodh
- Dept. Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104,
USA
| |
Collapse
|