1
|
Gao X, Gao G, Zheng W, Liu H, Pan W, Xia X, Zhang D, Lin W, Wang Z, Feng B. PARylation of 14-3-3 proteins controls the virulence of Magnaporthe oryzae. Nat Commun 2024; 15:8047. [PMID: 39277621 PMCID: PMC11401899 DOI: 10.1038/s41467-024-51955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
Magnaporthe oryzae is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in M. oryzae remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in M. oryzae. M. oryzae Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by PARP1 knock-out or chemical inhibition reveals its involvement in M. oryzae virulence, particularly in appressorium formation. Furthermore, we identified two M. oryzae 14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of GRF1 or GRF2 results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in M. oryzae virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.
Collapse
Affiliation(s)
- Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gaigai Gao
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weifeng Zheng
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haibing Liu
- Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenbo Pan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xi Xia
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongmei Zhang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenwei Lin
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Baomin Feng
- Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Cruz-Mireles N, Osés-Ruiz M, Derbyshire P, Jégousse C, Ryder LS, Bautista MJA, Eseola A, Sklenar J, Tang B, Yan X, Ma W, Findlay KC, Were V, MacLean D, Talbot NJ, Menke FLH. The phosphorylation landscape of infection-related development by the rice blast fungus. Cell 2024; 187:2557-2573.e18. [PMID: 38729111 DOI: 10.1016/j.cell.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.
Collapse
Affiliation(s)
- Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Miriam Osés-Ruiz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clara Jégousse
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mark Jave A Bautista
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alice Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
3
|
Huang Z, Cao H, Wang H, Huang P, Wang J, Cai Y, Wang Q, Li Y, Wang J, Liu X, Lin F, Lu J. The triglyceride catabolism regulated by a serine/threonine protein phosphatase, Smek1, is required for development and plant infection in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2023; 24:1256-1272. [PMID: 37357820 PMCID: PMC10502837 DOI: 10.1111/mpp.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Magnaporthe oryzae is a pathogenic fungus that seriously harms rice production. Phosphatases and carbon metabolism play crucial roles in the growth and development of eukaryotes. However, it remains unclear how serine/threonine phosphatases regulate the catabolism of triglycerides, a major form of stored lipids. In this study, we identified a serine/threonine protein phosphatase regulatory subunit, Smek1, which is required for the growth, conidiation, and virulence of M. oryzae. Deletion of SMEK1 led to defects in the utilization of lipids, arabinose, glycerol, and ethanol. In glucose medium, the expression of genes involved in lipolysis, long-chain fatty acid degradation, β-oxidation, and the glyoxylate cycle increased in the Δsmek1 mutant, which is consistent with ΔcreA in which a carbon catabolite repressor CREA was deleted. In lipid medium, the expression of genes involved in long-chain fatty acid degradation, β-oxidation, the glyoxylate cycle, and utilization of arabinose, ethanol, or glycerol decreased in the Δsmek1 mutant, which is consistent with Δcrf1 in which a transcription activator CRF1 required for carbon metabolism was deleted. Lipase activity, however, increased in the Δsmek1 mutant in both glucose and lipid media. Moreover, Smek1 directly interacted with CreA and Crf1, and dephosphorylated CreA and Crf1 in vivo. The phosphatase Smek1 is therefore a dual-function regulator of the lipid and carbohydrate metabolism, and controls fungal development and virulence by coordinating the functions of CreA and Crf1 in carbon catabolite repression (CCR) and derepression (CCDR).
Collapse
Affiliation(s)
- Zhicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | | | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ying‐Ying Cai
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Qing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Yan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiao‐Hong Liu
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Fu‐Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Jianping Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
4
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Geographical Origin Differentiation of Rice by LC–MS-Based Non-Targeted Metabolomics. Foods 2022; 11:foods11213318. [DOI: 10.3390/foods11213318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Many factors, such as soil, climate, and water source in the planting area, can affect rice taste and quality. Adulterated rice is common in the market, which seriously damages the production and sales of high-quality rice. Traceability analysis of rice has become one of the important research fields of food safety management. In this study, LC–MS-based non-targeted metabolomics technology was used to trace four rice samples from Heilongjiang and Jiangsu Provinces, namely, Daohuaxiang (DH), Huaidao No. 5 (HD), Songjing (SJ), and Changlixiang (CL). Results showed that the discrimination accuracy of the partial least squares discriminant analysis (PLS-DA) model was as high as 100% with satisfactory prediction ability. A total of 328 differential metabolites were screened, indicating significant differences in rice metabolites from different origins. Pathway enrichment analysis was carried out on the four rice samples based on the KEGG database to determine the three metabolic pathways with the highest enrichment degree. The main biochemical metabolic pathways and signal transduction pathways involved in differential metabolites in rice were obtained. This study provides theoretical support for the geographical origins of rice and elucidates the change mechanism of rice metabolic pathways, which can shed light on improving rice quality control.
Collapse
|
6
|
Dai H, Zhang X, Zhao B, Shi J, Zhang C, Wang G, Yu N, Wang E. Colonization of Mutualistic Mycorrhizal and Parasitic Blast Fungi Requires OsRAM2-Regulated Fatty Acid Biosynthesis in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:178-186. [PMID: 34941378 DOI: 10.1094/mpmi-11-21-0270-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form a mutual association with the majority of land plants, including most angiosperms of the dicotyledon and monocotyledon lineages. The symbiosis is based upon bidirectional nutrient exchange between the host and symbiont that occurs between inner cortical cells of the root and branched AM hyphae called arbuscules that develop within these cells. Lipid transport and its regulation during the symbiosis have been intensively investigated in dicotyledon plants, especially legumes. Here, we characterize OsRAM2 and OsRAM2L, homologs of Medicago truncatula RAM2, and found that plants defective in OsRAM2 were unable to be colonized by AM fungi and showed impaired colonization by Magnaporthe oryzae. The induction of OsRAM2 and OsRAM2L is dependent on OsRAM1 and the common symbiosis signaling pathway pathway genes CCaMK and CYCLOPS, while overexpression of OsRAM1 results in increased expression of OsRAM2 and OsRAM2L. Collectively, our data show that the function and regulation of OsRAM2 is conserved in monocot and dicot plants and reveals that, similar to mutualistic fungi, pathogenic fungi have recruited RAM2-mediated fatty acid biosynthesis to facilitate invasion.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Huiling Dai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Boyu Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jincai Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Zhang T, Li YN, Li X, Gu W, Moeketsi EK, Zhou R, Zheng X, Zhang Z, Zhang H. The Peroxisomal-CoA Synthetase MoPcs60 Is Important for Fatty Acid Metabolism and Infectious Growth of the Rice Blast Fungus. FRONTIERS IN PLANT SCIENCE 2022; 12:811041. [PMID: 35154208 PMCID: PMC8826238 DOI: 10.3389/fpls.2021.811041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Fatty acid metabolism is important for the maintenance of fatty acid homeostasis. Free fatty acids, which are toxic in excess, are activated by esterification with coenzyme A (CoA) and then subjected to β-oxidization. Fatty acid β-oxidation-related genes play critical roles in the development and virulence of several phytopathogens. In this study, we identified and characterized a peroxisomal-CoA synthetase in the rice blast fungus Magnaporthe oryzae, MoPCS60, which is a homolog of PCS60 in budding yeast. MoPCS60 was highly expressed during the conidial and early infectious stages and was induced under oleate treatment. Targeted deletion of MoPCS60 resulted in a significant reduction in growth rate when oleate and olive oil were used as the sole carbon sources. Compared with the wild-type strain Guy11, the ΔMopcs60 mutant exhibited fewer peroxisomes, more lipid droplets, and decreased pathogenicity. The distribution of MoPcs60 varied among developmental stages and was mainly localized to peroxisomes in the hyphae, conidia, and appressoria when treated with oleate. Our results suggest that MoPcs60 is a key peroxisomal-CoA synthetase involved in fatty acid β-oxidation and pathogenicity in rice blast fungi.
Collapse
|
8
|
Zuriegat Q, Zheng Y, Liu H, Wang Z, Yun Y. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2021; 22:882-895. [PMID: 33969616 PMCID: PMC8232035 DOI: 10.1111/mpp.13068] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 05/03/2023]
Abstract
Fusarium oxysporum is a well-known soilborne plant pathogen that causes severe vascular wilt in economically important crops worldwide. During the infection process, F. oxysporum not only secretes various virulence factors, such as cell wall-degrading enzymes (CWDEs), effectors, and mycotoxins, that potentially play important roles in fungal pathogenicity but it must also respond to extrinsic abiotic stresses from the environment and the host. Over 700 transcription factors (TFs) have been predicted in the genome of F. oxysporum, but only 26 TFs have been functionally characterized in various formae speciales of F. oxysporum. Among these TFs, a total of 23 belonging to 10 families are required for pathogenesis through various mechanisms and pathways, and the zinc finger TF family is the largest family among these 10 families, which consists of 15 TFs that have been functionally characterized in F. oxysporum. In this review, we report current research progress on the 26 functionally analysed TFs in F. oxysporum and sort them into four groups based on their roles in F. oxysporum pathogenicity. Furthermore, we summarize and compare the biofunctions, involved pathways, putative targets, and homologs of these TFs and analyse the relationships among them. This review provides a systematic analysis of the regulation of virulence-related genes and facilitates further mechanistic analysis of TFs important in F. oxysporum virulence.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuru Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Institute for Food and Drug Quality ControlFuzhouChina
| | - Hong Liu
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
9
|
Miao Y, Mei Q, Fu C, Liao M, Liu Y, Xu X, Li X, Zhao S, Xiang T. Genome-wide association and transcriptome studies identify candidate genes and pathways for feed conversion ratio in pigs. BMC Genomics 2021; 22:294. [PMID: 33888058 PMCID: PMC8063444 DOI: 10.1186/s12864-021-07570-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background The feed conversion ratio (FCR) is an important productive trait that greatly affects profits in the pig industry. Elucidating the genetic mechanisms underpinning FCR may promote more efficient improvement of FCR through artificial selection. In this study, we integrated a genome-wide association study (GWAS) with transcriptome analyses of different tissues in Yorkshire pigs (YY) with the aim of identifying key genes and signalling pathways associated with FCR. Results A total of 61 significant single nucleotide polymorphisms (SNPs) were detected by GWAS in YY. All of these SNPs were located on porcine chromosome (SSC) 5, and the covered region was considered a quantitative trait locus (QTL) region for FCR. Some genes distributed around these significant SNPs were considered as candidates for regulating FCR, including TPH2, FAR2, IRAK3, YARS2, GRIP1, FRS2, CNOT2 and TRHDE. According to transcriptome analyses in the hypothalamus, TPH2 exhibits the potential to regulate intestinal motility through serotonergic synapse and oxytocin signalling pathways. In addition, GRIP1 may be involved in glutamatergic and GABAergic signalling pathways, which regulate FCR by affecting appetite in pigs. Moreover, GRIP1, FRS2, CNOT2, and TRHDE may regulate metabolism in various tissues through a thyroid hormone signalling pathway. Conclusions Based on the results from GWAS and transcriptome analyses, the TPH2, GRIP1, FRS2, TRHDE, and CNOT2 genes were considered candidate genes for regulating FCR in Yorkshire pigs. These findings improve the understanding of the genetic mechanisms of FCR and may help optimize the design of breeding schemes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07570-w.
Collapse
Affiliation(s)
- Yuanxin Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.,Jingchu University of Technology, Jingmen, 448000, China
| | - Quanshun Mei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chuanke Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mingxing Liao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.,Agriculture and Rural Affairs Administration of Jingmen City, Jingmen, 448000, China
| | - Yan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Tao Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
10
|
Li X, Zhao H, Chen X. Screening of Marine Bioactive Antimicrobial Compounds for Plant Pathogens. Mar Drugs 2021; 19:69. [PMID: 33525648 PMCID: PMC7912171 DOI: 10.3390/md19020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Plant diseases have been threatening food production. Controlling plant pathogens has become an important strategy to ensure food security. Although chemical control is an effective disease control strategy, its application is limited by many problems, such as environmental impact and pathogen resistance. In order to overcome these problems, it is necessary to develop more chemical reagents with new functional mechanisms. Due to their special living environment, marine organisms have produced a variety of bioactive compounds with novel structures, which have the potential to develop new fungicides. In the past two decades, screening marine bioactive compounds to inhibit plant pathogens has been a hot topic. In this review, we summarize the screening methods of marine active substances from plant pathogens, the identification of marine active substances from different sources, and the structure and antibacterial mechanism of marine active natural products. Finally, the application prospect of marine bioactive substances in plant disease control was prospected.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Hong Y, Cai R, Guo J, Zhong Z, Bao J, Wang Z, Chen X, Zhou J, Lu GD. Carbon catabolite repressor MoCreA is required for the asexual development and pathogenicity of the rice blast fungus. Fungal Genet Biol 2020; 146:103496. [PMID: 33290821 DOI: 10.1016/j.fgb.2020.103496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
During the infection and colonization process, the rice blast fungus Magnaporthe oryzae faces various challenges from hostile environment, such as nutrient limitation and carbon stress, while carbon catabolite repression (CCR) mechanism would facilitate the fungus to shrewdly and efficiently utilize carbon nutrients under fickle nutritional conditions since it ensures the preferential utilization of most preferred carbon sources through repressing the expression of enzymes required for the utilization of less preferred carbon sources. Researches on M. oryzae CCR have made some progress, however the involved regulation mechanism is still largely obscured, especially, little is known about the key carbon catabolite repressor CreA. Here we identified and characterized the biological functions of the CreA homolog MoCreA in M. oryzae. MoCreA is constitutively expressed throughout all the life stages of the fungus, and it can shuttle between nucleus and cytoplasm which is induced by glucose. Following functional analyses of MoCreA suggested that it was required for the vegetative growth, conidiation, appressorium formation and pathogenicity of M. oryzae. Moreover, comparative transcriptomic analysis revealed that disruption of MoCreA resulted in the extensive gene expression variations, including a large number of carbon metabolism enzymes, transcription factors and pathogenicity-related genes. Taken together, our results demonstrated that, as a key regulator of CCR, MoCreA plays a vital role in precise regulation of the asexual development and pathogenicity of the rice blast fungus.
Collapse
Affiliation(s)
- Yonghe Hong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renli Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiandong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Fatty Acid Synthase Beta Dehydratase in the Lipid Biosynthesis Pathway Is Required for Conidiogenesis, Pigmentation and Appressorium Formation in Magnaporthe oryzae S6. Int J Mol Sci 2020; 21:ijms21197224. [PMID: 33007862 PMCID: PMC7582888 DOI: 10.3390/ijms21197224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023] Open
Abstract
Lipid biosynthesis produces glycerol, which is important in fueling turgor pressure necessary for germination and penetration of plant host by fungi. As the relationship between pathogenicity and the lipid biosynthetic pathway is not fully understood, we have elucidated the role of the fatty acid synthase beta subunit dehydratase (FAS1) gene in lipid biosynthesis. The FAS1 gene was silenced through homologous double crossover in Magnaporthe oryzae strain S6 to study the effect on lipid biosynthesis. The vegetative growth of Δfas1 mutants show the highest drop on oleic acid (between 10 and 50%), while the mycelial dry weight of mutants dropped significantly on all media. Conidiation of FAS1 mutants show a ~10- and ~5-fold reduction on oatmeal and Potato Dextrose Agar (PDA), respectively. Mutants formed mycelium that were mildly pigmented, indicating that the deletion of FAS1 may have affected melanin biosynthesis. Biochemical and gene expression studies concluded that the fatty acid degradation pathway might have been interrupted by FAS1 deletion. FAS1 mutants showed no enzyme activity on glucose or olive oil, suggesting that the mutants may lack functional peroxisomes and be defective in β-oxidation of fatty acids, hence explaining the reduced lipid deposits in the spores.
Collapse
|
13
|
Wang ZL, Pan HB, Huang J, Yu XP. The zinc finger transcription factors Bbctf1α and Bbctf1β regulate the expression of genes involved in lipid degradation and contribute to stress tolerance and virulence in a fungal insect pathogen. PEST MANAGEMENT SCIENCE 2020; 76:2589-2600. [PMID: 32077581 DOI: 10.1002/ps.5797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND To initiate insect infection, entomopathogenic fungi produce diverse cuticle-degrading enzymes. Of those, lipolytic enzymes participate in epicuticular lipid hydrolysis and thus facilitate fungal penetration through the outermost cuticular barrier of the insect host. The Far/CTF1-type zinc finger transcription factors play an important role in the regulation of lipolytic activity and fungal pathogenicity in plant pathogens but remain functionally unknown in fungal insect pathogens. RESULTS Two Far/CTF1-type transcription factor Bbctf1α and Bbctf1β, which are essential for differential expression of genes involved in the fungal lipid degradation, were identified and functionally characterized in a fungal entomopathogen Beauveria bassiana. Disruption of each gene led to drastic losses of extracellular lipolytic activities under lipidic substrate-inducing conditions, followed by remarkable phenotypic defects associated with the fungal biocontrol potential. These defects mainly included severe impairments of mycelial growth and conidium formation, and drastic losses of tolerance to the stresses of oxidation and cell wall perturbation during colony growth under either normal or induction conditions. Bioassays showed that the virulence of each disruption mutant on the greater wax moth was remarkably attenuated in topical immersion. However, there was no significant difference in intrahemolymph injection when the cuticle penetration process was bypassed. CONCLUSIONS Bbctf1α and Bbctf1β are multifunctional transcription factors that play vital roles in the regulation of fungal lipid utilization and contribute to the vegetative growth, sporulation capacity, environmental fitness and pest control potential in B. bassiana. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Jue Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| |
Collapse
|
14
|
Kuroki M, Shiga Y, Narukawa-Nara M, Arazoe T, Kamakura T. Extremely Low Concentrations of Acetic Acid Stimulate Cell Differentiation in Rice Blast Fungus. iScience 2019; 23:100786. [PMID: 31901638 PMCID: PMC6941858 DOI: 10.1016/j.isci.2019.100786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/12/2019] [Accepted: 12/13/2019] [Indexed: 01/19/2023] Open
Abstract
Metabolic switching and rewiring play a dynamic role in programmed cell differentiation. Many pathogenic microbes need to survive in nutrient-deficient conditions and use the glyoxylate cycle, an anaplerotic pathway of the tricarboxylic acid cycle, to produce carbohydrates. The plant pathogenic fungus Magnaporthe oryzae (Pyricularia oryzae) has a unique chitin deacetylase, Cbp1. The spatiotemporal activity of this protein is required for modification of the M. oryzae wall and for cell differentiation into the specialized infection structure (appressorium). Here we show that acetic acid, another product released by the Cbp1-catalyzed conversion of chitin into chitosan, induces appressorium formation. An extremely low concentration (fM) of acetic acid restored cell differentiation in a Δcbp1 mutant possibly through the glyoxylate cycle. Acidification occurred by chitin deacetylase activity during cell differentiation Extremely low concentrations of exogenous acetic acid stimulated cell differentiation Exogenous acetic acid induced ICL1 expression, a member of the glyoxylate cycle Deletion of ICL1 inhibited acetic acid-mediated cell differentiation
Collapse
Affiliation(s)
- Misa Kuroki
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuriko Shiga
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Megumi Narukawa-Nara
- Osaka University, Research Institute for Microbial Diseases, Department of Molecular Microbiology, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takayuki Arazoe
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Kamakura
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
15
|
Cao H, Huang P, Yan Y, Shi Y, Dong B, Liu X, Ye L, Lin F, Lu J. The basic helix-loop-helix transcription factor Crf1 is required for development and pathogenicity of the rice blast fungus by regulating carbohydrate and lipid metabolism. Environ Microbiol 2018; 20:3427-3441. [PMID: 30126031 DOI: 10.1111/1462-2920.14387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 08/12/2018] [Accepted: 08/12/2018] [Indexed: 01/22/2023]
Abstract
Pyricularia oryzae is a plant pathogen causing rice blast, a serious disease spreading in cultivated rice globally. Transcription factors play important regulatory roles in fungal development and pathogenicity. Here, we characterized the biological functions of Crf1, a basic helix-loop-helix (bHLH) transcription factor, in the development and pathogenicity of P. oryzae with functional genetics, molecular and biochemical approaches. We found that CRF1 is necessary for virulence and plays an indispensable role in the regulation of carbohydrate and lipid metabolism in P. oryzae. Deletion of CRF1 led to defects in utilization of lipids, ethanol, glycerol and L-arabinose, and down-regulation of many important genes in lipolysis, β-oxidation, gluconeogenesis, as well as glycerol and arabinose metabolism. CRF1 is also essential for peroxisome and vacuole function, and conidial cell death during appressorium formation. The appressorium turgor, penetration ability and virulence in Δcrf1 were restored by supplementation of exogenous glucose. The virulence of Crf1 mutant was also recovered by adding exogenous D-xylose, but not by addition of ethanol, pyruvate, leucine or L-arabinose. These data showed that Crf1 plays an important role in the complex regulatory network of carbohydrate and lipid metabolism that governs fungal development and pathogenicity.
Collapse
Affiliation(s)
- Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| |
Collapse
|
16
|
Narasimhan A, Greiner R, Bathe OF, Baracos V, Damaraju S. Differentially expressed alternatively spliced genes in skeletal muscle from cancer patients with cachexia. J Cachexia Sarcopenia Muscle 2018; 9:60-70. [PMID: 28984045 PMCID: PMC5803615 DOI: 10.1002/jcsm.12235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is a post-transcriptional gene regulatory mechanism that contributes to proteome diversity. Aberrant splicing mechanisms contribute to various cancers and muscle-related conditions such as Duchenne muscular dystrophy. However, dysregulation of AS in cancer cachexia (CC) remains unexplored. Our objectives were (i) to profile alternatively spliced genes (ASGs) on a genome-wide scale and (ii) to identify differentially expressed alternatively spliced genes (DASGs) associated with CC. METHODS Rectus abdominis muscle biopsies obtained from cancer patients were stratified into cachectic cases (n = 21, classified based on International consensus diagnostic framework for CC) and non-cachectic controls (n = 19, weight stable cancer patients). Human transcriptome array 2.0 was used for profiling ASGs using the total RNA isolated from muscle biopsies. Representative DASG signatures were validated using semi-quantitative RT-PCR. RESULTS We identified 8960 ASGs, of which 922 DASGs (772 up-regulated and 150 down-regulated) were identified at ≥1.4 fold-change and P < 0.05. Representative DASGs validated by semi-quantitative RT-PCR confirmed the primary findings from the human transcriptome arrays. Identified DASGs were associated with myogenesis, adipogenesis, protein ubiquitination, and inflammation. Up to 10% of the DASGs exhibited cassette exon (exon included or skipped) as a predominant form of AS event. We also observed other forms of AS events such as intron retention, alternate promoters. CONCLUSIONS Overall, we have, for the first time, conducted global profiling of muscle tissue to identify DASGs associated with CC. The mechanistic roles of the identified DASGs in CC pathophysiology using model systems is warranted, as well as replication of findings in independent cohorts.
Collapse
Affiliation(s)
- Ashok Narasimhan
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABT6G 1Z2Canada
| | - Russell Greiner
- Department of Computing SciencesUniversity of AlbertaEdmontonABT6G 2E8Canada
| | - Oliver F. Bathe
- Departments of Surgery and OncologyUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Vickie Baracos
- Department of OncologyUniversity of AlbertaEdmontonABT6G 1Z2Canada
- Cross Cancer InstituteEdmontonABT6G 1Z2Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABT6G 1Z2Canada
- Cross Cancer InstituteEdmontonABT6G 1Z2Canada
| |
Collapse
|
17
|
Daguerre Y, Levati E, Ruytinx J, Tisserant E, Morin E, Kohler A, Montanini B, Ottonello S, Brun A, Veneault-Fourrey C, Martin F. Regulatory networks underlying mycorrhizal development delineated by genome-wide expression profiling and functional analysis of the transcription factor repertoire of the plant symbiotic fungus Laccaria bicolor. BMC Genomics 2017; 18:737. [PMID: 28923004 PMCID: PMC5604158 DOI: 10.1186/s12864-017-4114-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ectomycorrhizal (ECM) fungi develop a mutualistic symbiotic interaction with the roots of their host plants. During this process, they undergo a series of developmental transitions from the running hyphae in the rhizosphere to the coenocytic hyphae forming finger-like structures within the root apoplastic space. These transitions, which involve profound, symbiosis-associated metabolic changes, also entail a substantial transcriptome reprogramming with coordinated waves of differentially expressed genes. To date, little is known about the key transcriptional regulators driving these changes, and the aim of the present study was to delineate and functionally characterize the transcription factor (TF) repertoire of the model ECM fungus Laccaria bicolor. RESULTS We curated the L. bicolor gene models coding for transcription factors and assessed their expression and regulation in Poplar and Douglas fir ectomycorrhizae. We identified 285 TFs, 191 of which share a significant similarity with known transcriptional regulators. Expression profiling of the corresponding transcripts identified TF-encoding fungal genes differentially expressed in the ECM root tips of both host plants. The L. bicolor core set of differentially expressed TFs consists of 12 and 22 genes that are, respectively, upregulated and downregulated in symbiotic tissues. These TFs resemble known fungal regulators involved in the control of fungal invasive growth, fungal cell wall integrity, carbon and nitrogen metabolism, invasive stress response and fruiting-body development. However, this core set of mycorrhiza-regulated TFs seems to be characteristic of L. bicolor and our data suggest that each mycorrhizal fungus has evolved its own set of ECM development regulators. A subset of the above TFs was functionally validated with the use of a heterologous, transcription activation assay in yeast, which also allowed the identification of previously unknown, transcriptionally active yet secreted polypeptides designated as Secreted Transcriptional Activator Proteins (STAPs). CONCLUSIONS Transcriptional regulators required for ECM symbiosis development in L. bicolor have been uncovered and classified through genome-wide analysis. This study also identifies the STAPs as a new class of potential ECM effectors, highly expressed in mycorrhizae, which may be involved in the control of the symbiotic root transcriptome.
Collapse
Affiliation(s)
- Y Daguerre
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
- Present address: Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umea, Sweden
| | - E Levati
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - J Ruytinx
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
- Present address: Hasselt University, Centre for Environmental Sciences, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - E Tisserant
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - E Morin
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - A Kohler
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - B Montanini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - S Ottonello
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - A Brun
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| | - C Veneault-Fourrey
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France.
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France.
| | - F Martin
- INRA, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, 54280, Champenoux, France
- Université de Lorraine, UMR 1136, INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, F-54500 Vandoeuvre-lès-, Nancy, France
| |
Collapse
|
18
|
Galhano R, Illana A, Ryder LS, Rodríguez-Romero J, Demuez M, Badaruddin M, Martinez-Rocha AL, Soanes DM, Studholme DJ, Talbot NJ, Sesma A. Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathog 2017; 13:e1006516. [PMID: 28742127 PMCID: PMC5542705 DOI: 10.1371/journal.ppat.1006516] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/03/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
The establishment of polarity is a critical process in pathogenic fungi, mediating infection-related morphogenesis and host tissue invasion. Here, we report the identification of TPC1 (Transcription factor for Polarity Control 1), which regulates invasive polarized growth in the rice blast fungus Magnaporthe oryzae. TPC1 encodes a putative transcription factor of the fungal Zn(II)2Cys6 family, exclusive to filamentous fungi. Tpc1-deficient mutants show severe defects in conidiogenesis, infection-associated autophagy, glycogen and lipid metabolism, and plant tissue colonisation. By tracking actin-binding proteins, septin-5 and autophagosome components, we show that Tpc1 regulates cytoskeletal dynamics and infection-associated autophagy during appressorium-mediated plant penetration. We found that Tpc1 interacts with Mst12 and modulates its DNA-binding activity, while Tpc1 nuclear localisation also depends on the MAP kinase Pmk1, consistent with the involvement of Tpc1 in this signalling pathway, which is critical for appressorium development. Importantly, Tpc1 directly regulates NOXD expression, the p22phox subunit of the fungal NADPH oxidase complex via an interaction with Mst12. Tpc1 therefore controls spatial and temporal regulation of cortical F-actin through regulation of the NADPH oxidase complex during appressorium re-polarisation. Consequently, Tpc1 is a core developmental regulator in filamentous fungi, linking the regulated synthesis of reactive oxygen species and the Pmk1 pathway, with polarity control during host invasion. Cellular polarity is an intrinsic feature of filamentous fungal growth and pathogenesis. In this study, we identified a gene required for fungal polar growth and virulence in the rice blast fungus Magnaporthe oryzae. This gene has been named TPC1 (Transcription factor for Polarity Control 1). The Tpc1 protein belongs to the fungal Zn(II)2Cys6 binuclear cluster family. This DNA-binding motif is present exclusively in the fungal kingdom. We have characterised defects associated with lack of Tpc1 in M. oryzae. We show that Tpc1 is involved in polarised growth and virulence. The M. oryzae Δtpc1 mutant shows a delay in glycogen and lipid metabolism, and infection-associated autophagy–processes that regulate appressorium-mediated M. oryzae plant infection. The saprophytic fungus Neurospora crassa contains a Tpc1 homolog (NcTpc1) involved in vegetative growth and sustained tip elongation, suggesting that Tpc1-like proteins act as core regulators of polarised growth and development in filamentous fungi. A comparative transcriptome analysis has allowed us to identify genes regulated by Tpc1 in M. oryzae including NoxD, an important component of the fungal NADPH complex. Significantly, Tpc1 interacts with Mst12, a component of the Pmk1 signalling pathway essential for appressorium development, and modulates Mst12 binding affinity to NOXD promoter region. We conclude that Tpc1 is a key regulator of polarity in M. oryzae that regulates growth, autophagy and septin-mediated reorientation of the F-actin cytoskeleton to facilitate plant cell invasion.
Collapse
Affiliation(s)
- Rita Galhano
- Disease & Stress Biology Dept. John Innes Centre, Norwich, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Adriana Illana
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Lauren S. Ryder
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Marie Demuez
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Muhammad Badaruddin
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | | | - Darren M. Soanes
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - David J. Studholme
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Ane Sesma
- Disease & Stress Biology Dept. John Innes Centre, Norwich, United Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
- * E-mail:
| |
Collapse
|
19
|
Characterization of the Far Transcription Factor Family in Aspergillus flavus. G3-GENES GENOMES GENETICS 2016; 6:3269-3281. [PMID: 27534569 PMCID: PMC5068947 DOI: 10.1534/g3.116.032466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolism of fatty acids is a critical requirement for the pathogenesis of oil seed pathogens including the fungus Aspergillus flavus Previous studies have correlated decreased ability to grow on fatty acids with reduced virulence of this fungus on host seed. Two fatty acid metabolism regulatory transcription factors, FarA and FarB, have been described in other filamentous fungi. Unexpectedly, we find A. flavus possesses three Far homologs, FarA, FarB, and FarC, with FarA and FarC showing a greater protein similarity to each other than FarB. farA and farB are located in regions of colinearity in all Aspergillus spp. sequenced to date, whereas farC is limited to a subset of species where it is inserted in an otherwise colinear region in Aspergillus genomes. Deletion and overexpression (OE) of farA and farB, but not farC, yielded mutants with aberrant growth patterns on specific fatty acids as well as altered expression of genes involved in fatty acid metabolism. Marked differences included significant growth defects of both ∆farA and ∆farB on medium-chain fatty acids and decreased growth of OE::farA on unsaturated fatty acids. Loss of farA diminished expression of mitochondrial β-oxidation genes whereas OE::farA inhibited expression of genes involved in unsaturated fatty acid catabolism. FarA also positively regulated the desaturase genes required to generate polyunsaturated fatty acids. Aflatoxin production on toxin-inducing media was significantly decreased in the ∆farB mutant and increased in the OE::farB mutant, with gene expression data supporting a role for FarB in tying β-oxidation processes with aflatoxin accumulation.
Collapse
|
20
|
Li Y, Zhu J, Hu J, Meng X, Zhang Q, Zhu K, Chen X, Chen X, Li G, Wang Z, Lu G. Functional characterization of electron-transferring flavoprotein and its dehydrogenase required for fungal development and plant infection by the rice blast fungus. Sci Rep 2016; 6:24911. [PMID: 27113712 PMCID: PMC4845064 DOI: 10.1038/srep24911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
Electron-transferring flavoprotein (ETF) and its dehydrogenase (ETFDH) are highly conserved electron carriers which mainly function in mitochondrial fatty acid β oxidation. Here, we report the identification and characterization of ETF α and β subunit encoding genes (ETFA and ETFB) and ETFDH encoding gene (ETFDH) in the rice blast fungus Magnaporthe oryzae. It was demonstrated that, by impacting fatty acid metabolism, ETF and ETFDH mutations led to severe growth and conidiation defects, which could be largely rescued by exogenous acetate or carbonate. Furthermore, although conidium germination and appressorium formation appeared to be normal in ETF and ETFDH mutants, most appressoria failed to penetrate the host epidermis due to low turgor pressure. The few appressoria that succeeded in penetration were severely restricted in invasive growth and consequently failed to cause disease. Moreover, ETF mutant etfb(-) induced ROS accumulation in infected host cells and exogenous antioxidant GSH accelerated mutant invading growth without increasing the penetration rate. In addition, mutant etfb(-) displayed elevated lipid body accumulation and reduced ATP synthesis. Taken together, ETF and ETFDH play an important role in fungal development and plant infection in M. oryzae by regulation of fatty acid metabolism, turgor establishment and induction of host ROS accumulation.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jindong Zhu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiexiong Hu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiuli Meng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qi Zhang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kunpeng Zhu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaomin Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xuehang Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zonghua Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Guodong Lu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
21
|
Wang C, Zheng Y, Zhao Y, Zhao Y, Li J, Guo Y. SCAB3 Is Required for Reorganization of Actin Filaments during Light Quality Changes. J Genet Genomics 2015; 42:161-8. [PMID: 25953354 DOI: 10.1016/j.jgg.2015.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/05/2023]
Abstract
The stomatal closure-related actin binding protein (SCAB) family is plant-specific, and its members all contain a novel actin binding domain. Here, we report that SCAB3, a homolog of SCAB1, binds, stabilizes and bundles actin filaments. The SCAB3 promoter contains a cis-element which could be bound by the FHY3/FAR1 transcription factors. Consistently, the expression of SCAB3 is induced when plants were transferred from white light to far red light (T-Far Red) conditions. The scab3 mutants show defects in the control of hypocotyl elongation under T-Far Red condition, which may result from an impaired reorganization of actin filaments. Together, our results suggest that SCAB3 plays an important role in plant growth under changes of light conditions possibly by regulating actin filament dynamics.
Collapse
Affiliation(s)
- Chongwu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Zheng
- School of Life Science & Technology, Nanyang Normal University, Nanyang 473061, China
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Jeena V, Robinson RS. The ‘Ireland’ one-pot alcohol oxidation coupling reactions: celebrating 30 years of diverse synthesis. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01308a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ireland one-pot oxidative coupling reaction is reviewed on the occasion of its 30th anniversary.
Collapse
Affiliation(s)
- Vineet Jeena
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Pietermaritzburg
- South Africa
| | - Ross S. Robinson
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Pietermaritzburg
- South Africa
| |
Collapse
|