1
|
Allam AM, Elbayoumy MK, Ghazy AA. Perspective vaccines for emerging viral diseases in farm animals. Clin Exp Vaccine Res 2023; 12:179-192. [PMID: 37599803 PMCID: PMC10435774 DOI: 10.7774/cevr.2023.12.3.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
The world has watched the emergence of numerous animal viruses that may threaten animal health which were added to the perpetual growing list of animal pathogens. This emergence drew the attention of the experts and animal health groups to the fact that it has become necessary to work on vaccine development. The current review aims to explore the perspective vaccines for emerging viral diseases in farm animals. This aim was fulfilled by focusing on modern technologies as well as next generation vaccines that have been introduced in the field of vaccines, either in clinical developments pending approval, or have already come to light and have been applied to animals with acceptable results such as viral-vectored vaccines, virus-like particles, and messenger RNA-based platforms. Besides, it shed the light on the importance of differentiation of infected from vaccinated animals technology in eradication programs of emerging viral diseases. The new science of nanomaterials was explored to elucidate its role in vaccinology. Finally, the role of Bioinformatics or Vaccinomics and its assist in vaccine designing and developments were discussed. The reviewing of the published manuscripts concluded that the use of conventional vaccines is considered an out-of-date approach in eliminating emerging diseases. However, these types of vaccines are considered the suitable plan especially in countries with few resources and capabilities. Piloted vaccines that rely on genetic-based technologies with continuous analyses of current viruses should be the aim of future vaccinology. Smart genomics of emerging viruses will be the gateway to choosing appropriate vaccines, regardless of the evolutionary rates of viruses.
Collapse
Affiliation(s)
- Ahmad Mohammad Allam
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed Karam Elbayoumy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Alaa Abdelmoneam Ghazy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Abd-Eldaim M, Maarouf M, Potgieter L, Kania SA. Amino Acid Variations of The Immuno-Dominant Domain of Respiratory Syncytial Virus Attachment Glycoprotein (G) Affect the Antibody Responses In BALB/c Mice. J Virol Methods 2023; 316:114712. [PMID: 36958697 DOI: 10.1016/j.jviromet.2023.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of respiratory illness in ruminants and infants. The G glycoprotein of RSV serves as the viral attachment ligand. Despite currently available vaccines, RSV immunity is insufficient, and re-infections occur. Vaccine studies employing the G-protein's 174-187 amino acids, representing the immunodominant domain, have protected mice and calves against infections. To investigate the causes of vaccination failure, we designed four synthetic peptides for the ruminant RSV isolates (391-2, Maryland-BRSV, European-BRSV, and ORSV) using the immune-dominant sequence and vaccinated mice groups with them. The produced antibodies targeting each peptide were evaluated using ELISA and flow cytometry to determine their reactivity against the linear antigen and the native form of the G protein, respectively. Antibodies responded to homologous and heterologous peptides as determined by ELISA. Using flow cytometry-analysis targeting the natively folded protein, most generated antibodies reacted only with their homologous strain. However, antibodies raised to 391-2 peptide reacted with homologous and heterologous Maryland-BRSV viral epitopes. Accordingly, inadequate immunity and recurring RSV infections might be attributed to variations of antibodies targeting the immunodominant region of the G-protein.
Collapse
Affiliation(s)
- Mohamed Abd-Eldaim
- Department of Virology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Maarouf
- Department of Virology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt.
| | - Leon Potgieter
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville TN, USA
| | - Stephen A Kania
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville TN, USA
| |
Collapse
|
3
|
Protection against Bovine Respiratory Syncytial Virus Afforded by Maternal Antibodies from Cows Immunized with an Inactivated Vaccine. Vaccines (Basel) 2023; 11:vaccines11010141. [PMID: 36679988 PMCID: PMC9864491 DOI: 10.3390/vaccines11010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The passive protection afforded by the colostrum from cattle that were vaccinated prepartum with an inactivated combination vaccine against the bovine respiratory syncytial virus (BRSV) was evaluated after an experimental challenge of calves. Pregnant cows without or with a low ELISA and neutralizing BRSV antibody titers were twice vaccinated or not vaccinated, the last immunization being at one month prior to calving. Vaccination was followed by a rapid increase in BRSV antibody titers after the second immunization. Twenty-eightnewborn calves were fed during the 6 h following birth, with 4 L of colostrum sourced from vaccinated cows (14 vaccine calves) or non-vaccinated cows (14 control calves) and were challenged with BRSV at 21 days of age. We showed that maternal immunity to BRSV provides a significant reduction in the clinical signs of BRSV in calves, especially for severe clinical forms. This protection was correlated with reduced BRSV detection in the lower respiratory tract but not in nasal swabs, indicating an absence of protection against BRSV nasal excretion. Finally, transcriptomic assays in bronchoalveolar lavages showed no statistical differences between groups for chemokine and cytokine mRNA transcriptions, with the exception of the overexpression of IL-9 at days 6 and 10 post-challenge, and a severe downregulation of CXCL-1 at day 3 post-challenge, in the vaccine group.
Collapse
|
4
|
Johnson PCD, Hägglund S, Näslund K, Meyer G, Taylor G, Orton RJ, Zohari S, Haydon DT, Valarcher JF. Evaluating the potential of whole-genome sequencing for tracing transmission routes in experimental infections and natural outbreaks of bovine respiratory syncytial virus. Vet Res 2022; 53:107. [PMID: 36510312 PMCID: PMC9746130 DOI: 10.1186/s13567-022-01127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease in cattle. Genomic sequencing can resolve phylogenetic relationships between virus populations, which can be used to infer transmission routes and potentially inform the design of biosecurity measures. Sequencing of short (<2000 nt) segments of the 15 000-nt BRSV genome has revealed geographic and temporal clustering of BRSV populations, but insufficient variation to distinguish viruses collected from herds infected close together in space and time. This study investigated the potential for whole-genome sequencing to reveal sufficient genomic variation for inferring transmission routes between herds. Next-generation sequencing (NGS) data were generated from experimental infections and from natural outbreaks in Jämtland and Uppsala counties in Sweden. Sufficient depth of coverage for analysis of consensus and sub-consensus sequence diversity was obtained from 47 to 20 samples respectively. Few (range: 0-6 polymorphisms across the six experiments) consensus-level polymorphisms were observed along experimental transmissions. A much higher level of diversity (146 polymorphic sites) was found among the consensus sequences from the outbreak samples. The majority (144/146) of polymorphisms were between rather than within counties, suggesting that consensus whole-genome sequences show insufficient spatial resolution for inferring direct transmission routes, but might allow identification of outbreak sources at the regional scale. By contrast, within-sample diversity was generally higher in the experimental than the outbreak samples. Analyses to infer known (experimental) and suspected (outbreak) transmission links from within-sample diversity data were uninformative. In conclusion, analysis of the whole-genome sequence of BRSV from experimental samples discriminated between circulating isolates from distant areas, but insufficient diversity was observed between closely related isolates to aid local transmission route inference.
Collapse
Affiliation(s)
- Paul C D Johnson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Sara Hägglund
- HPIG. Unit of Ruminant Medicine. Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Katarina Näslund
- Department of Microbiology, National Veterinary Institute, SVA, Uppsala, Sweden
| | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Richard J Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, SVA, Uppsala, Sweden
| | - Daniel T Haydon
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Jean François Valarcher
- HPIG. Unit of Ruminant Medicine. Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
5
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Anmol K, Akanksha H, Zhengguo X. Are CD45RO+ and CD45RA- genuine markers for bovine memory T cells? ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractEffective vaccination induces memory T cells, which protect the host against pathogen re-infections. Therefore, detection of memory T cells is essential for evaluating vaccine efficacy, which was originally dependent on cytokine induction assays. Currently, two isoforms of CD45 tyrosine phosphatase, CD45RO expression and CD45RA exclusion (CD45RO+/ CD45RA-) are used extensively for detecting memory T cells in cattle. The CD45RO+/CD45RA- markers were first established in humans around three decades ago, and were adopted in cattle soon after. However, in the last two decades, some published data in humans have challenged the initial paradigm, and required multiple markers for identifying memory T cells. On the contrary, memory T cell detection in cattle still mostly relies on CD45RO+/CD45RA- despite some controversial evidence. In this review, we summarized the current literature to examine if CD45RO+/CD45RA- are valid markers for detecting memory T cells in cattle. It seems CD45RA and CD45RO (CD45RA/RO) as markers for identifying bovine memory T cells are questionable.
Collapse
|
7
|
Hägglund S, Näslund K, Svensson A, Lefverman C, Enül H, Pascal L, Siltenius J, Holzhauer M, Delabouglise A, Österberg J, Alvåsen K, Olsson U, Eléouët JF, Riffault S, Taylor G, Rodriguez MJ, Garcia Duran M, Valarcher JF. Longitudinal study of the immune response and memory following natural bovine respiratory syncytial virus infections in cattle of different age. PLoS One 2022; 17:e0274332. [PMID: 36112582 PMCID: PMC9481050 DOI: 10.1371/journal.pone.0274332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Human and bovine respiratory syncytial virus (HRSV and BRSV) are closely genetically related and cause respiratory disease in their respective host. Whereas HRSV vaccines are still under development, a multitude of BRSV vaccines are used to reduce clinical signs. To enable the design of vaccination protocols to entirely stop virus circulation, we aimed to investigate the duration, character and efficacy of the immune responses induced by natural infections. The systemic humoral immunity was monitored every two months during two years in 33 dairy cattle in different age cohorts following a natural BRSV outbreak, and again in selected individuals before and after a second outbreak, four years later. Local humoral and systemic cellular responses were also monitored, although less extensively. Based on clinical observations and economic losses linked to decreased milk production, the outbreaks were classified as moderate. Following the first outbreak, most but not all animals developed neutralising antibody responses, BRSV-specific IgG1, IgG2 and HRSV F- and HRSV N-reactive responses that lasted at least two years, and in some cases at least four years. In contrast, no systemic T cell responses were detected and only weak IgA responses were detected in some animals. Seronegative sentinels remained negative, inferring that no new infections occurred between the outbreaks. During the second outbreak, reinfections with clinical signs and virus shedding occurred, but the signs were milder, and the virus shedding was significantly lower than in naïve animals. Whereas the primary infection induced similar antibody titres against the prefusion and the post fusion form of the BRSV F protein, memory responses were significantly stronger against prefusion F. In conclusion, even if natural infections induce a long-lasting immunity, it would probably be necessary to boost memory responses between outbreaks, to stop the circulation of the virus and limit the potential role of previously infected adult cattle in the chain of BRSV transmission.
Collapse
Affiliation(s)
- Sara Hägglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Katarina Näslund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Svensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilia Lefverman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hakan Enül
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leonore Pascal
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jari Siltenius
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Menno Holzhauer
- Ruminant Health Department Royal GD Animal Health, Deventer, The Netherlands
| | - Alexis Delabouglise
- CIRAD, UMR ASTRE, F-34398 Montpellier, France and UMR ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Julia Österberg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Alvåsen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulf Olsson
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Sabine Riffault
- Université Paris-Saclay, UVSQ, INRAE, VIM, Jouy-en-Josas, France
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | | | | | - Jean François Valarcher
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Lemon JL, McMenamy MJ. A Review of UK-Registered and Candidate Vaccines for Bovine Respiratory Disease. Vaccines (Basel) 2021; 9:vaccines9121403. [PMID: 34960149 PMCID: PMC8703677 DOI: 10.3390/vaccines9121403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Vaccination is widely regarded as a cornerstone in animal or herd health and infectious disease management. Nineteen vaccines against the major pathogens implicated in bovine respiratory disease are registered for use in the UK by the Veterinary Medicines Directorate (VMD). However, despite annual prophylactic vaccination, bovine respiratory disease is still conservatively estimated to cost the UK economy approximately £80 million per annum. This review examines the vaccine types available, discusses the surrounding literature and scientific rationale of the limitations and assesses the potential of novel vaccine technologies.
Collapse
Affiliation(s)
- Joanne L. Lemon
- Sustainable Agri-Food and Sciences Division, Agri-Food and Bioscience Institute, Newforge Lane, Belfast BT9 5PX, UK
- Correspondence:
| | - Michael J. McMenamy
- Veterinary Sciences Division, Agri-Food and Bioscience Institute, Stormont, Belfast BT4 3SD, UK;
| |
Collapse
|
9
|
Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46999-47023. [PMID: 34272669 PMCID: PMC8284698 DOI: 10.1007/s11356-021-14941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 04/12/2023]
Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
10
|
Makoschey B, Berge AC. Review on bovine respiratory syncytial virus and bovine parainfluenza - usual suspects in bovine respiratory disease - a narrative review. BMC Vet Res 2021; 17:261. [PMID: 34332574 PMCID: PMC8325295 DOI: 10.1186/s12917-021-02935-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
Bovine Respiratory Syncytial virus (BRSV) and Bovine Parainfluenza 3 virus (BPIV3) are closely related viruses involved in and both important pathogens within bovine respiratory disease (BRD), a major cause of morbidity with economic losses in cattle populations around the world. The two viruses share characteristics such as morphology and replication strategy with each other and with their counterparts in humans, HRSV and HPIV3. Therefore, BRSV and BPIV3 infections in cattle are considered useful animal models for HRSV and HPIV3 infections in humans.The interaction between the viruses and the different branches of the host's immune system is rather complex. Neutralizing antibodies seem to be a correlate of protection against severe disease, and cell-mediated immunity is thought to be essential for virus clearance following acute infection. On the other hand, the host's immune response considerably contributes to the tissue damage in the upper respiratory tract.BRSV and BPIV3 also have similar pathobiological and epidemiological features. Therefore, combination vaccines against both viruses are very common and a variety of traditional live attenuated and inactivated BRSV and BPIV3 vaccines are commercially available.
Collapse
Affiliation(s)
- Birgit Makoschey
- Intervet International BV/MSD-Animal Health, Wim de Körverstraat, 5831AN, Boxmeer, The Netherlands.
| | - Anna Catharina Berge
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
11
|
Single-Shot Vaccines against Bovine Respiratory Syncytial Virus (BRSV): Comparative Evaluation of Long-Term Protection after Immunization in the Presence of BRSV-Specific Maternal Antibodies. Vaccines (Basel) 2021; 9:vaccines9030236. [PMID: 33803302 PMCID: PMC8001206 DOI: 10.3390/vaccines9030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The induction of long-lasting clinical and virological protection is needed for a successful vaccination program against the bovine respiratory syncytial virus (BRSV). In this study, calves with BRSV-specific maternally derived antibodies were vaccinated once, either with (i) a BRSV pre-fusion protein (PreF) and MontanideTM ISA61 VG (ISA61, n = 6), (ii) BRSV lacking the SH gene (ΔSHrBRSV, n = 6), (iii) a commercial vaccine (CV, n = 6), or were injected with ISA61 alone (n = 6). All calves were challenged with BRSV 92 days later and were euthanized 13 days post-infection. Based on clinical, pathological, and proteomic data, all vaccines appeared safe. Compared to the controls, PreF induced the most significant clinical and virological protection post-challenge, followed by ΔSHrBRSV and CV, whereas the protection of PreF-vaccinated calves was correlated with BRSV-specific serum immunoglobulin (Ig)G antibody responses 84 days post-vaccination, and the IgG antibody titers of ΔSHrBRSV- and CV-vaccinated calves did not differ from the controls on this day. Nevertheless, strong anamnestic BRSV- and PreF-specific IgG responses occurred in calves vaccinated with either of the vaccines, following a BRSV challenge. In conclusion, PreF and ΔSHrBRSV are two efficient one-shot candidate vaccines. By inducing a protection for at least three months, they could potentially improve the control of BRSV in calves.
Collapse
|
12
|
Marzo E, Montbrau C, Moreno MC, Roca M, Sitjà M, March R, Gow S, Lacoste S, Ellis J. NASYM, a live intranasal vaccine, protects young calves from bovine respiratory syncytial virus in the presence of maternal antibodies. Vet Rec 2021; 188:e83. [PMID: 33818796 DOI: 10.1002/vetr.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bovine respiratory syncytial virus (BRSV) is a major problem for cattle worldwide during their first year of life. The aim of the present study was to evaluate efficacy and longevity of immunity of a live vaccine (NASYM, HIPRA) in the presence of maternally derived antibodies (MDA). METHOD Calves (36) were distributed in four groups, based on MDA status and treatment. They received NASYM or a placebo at an early age (less than two weeks) by intranasal route. Eight weeks later, animals were challenged with the Asquith strain of BRSV. Efficacy was assessed by monitoring clinical signs and mortality, PaO2 , virus shedding and lung lesions. The immunological response was evaluated by measuring IgG in serum and IgA in nasal secretions. RESULTS A reduction of mortality, lung lesions, shedding and a higher PaO2 was achieved in NASYM vaccinated groups, independently of MDA status. An anamnestic IgG response was observed after challenge in vaccinated animals, both in MDA+ and MDA- groups. An IgA response was also observed in vaccinated animals after vaccination and challenge. CONCLUSION NASYM protected newborn calves with MDAs during the first 10 weeks of life, against a very virulent challenge that caused extensive pulmonary lesions and deaths in control animals, with just a single intranasal dose.
Collapse
Affiliation(s)
- Elena Marzo
- Department of R&D Preclinical and clinical development, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Carlos Montbrau
- Department of R&D Preclinical and clinical development, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Maria-Carmen Moreno
- Department of R&D Biologics, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Mercè Roca
- Department of R&D Experimentation and Controls, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Marta Sitjà
- Department of R&D Biologics, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Ricard March
- Department of R&D Preclinical and clinical development, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain.,Department of R&D Experimentation and Controls, Hipra Scientific S.L.U., Avda. La Selva 135, Amer, 17170, Spain
| | - Sheryl Gow
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Stacey Lacoste
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - John Ellis
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
13
|
Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020; 8:608050. [PMID: 33363134 PMCID: PMC7759628 DOI: 10.3389/fbioe.2020.608050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most important tools available to prevent and reduce the incidence of infectious diseases in cattle. Despite their availability and widespread use to combat many important pathogens impacting cattle, several of these products demonstrate variable efficacy and safety in the field, require multiple doses, or are unstable under field conditions. Recently, nanoparticle-based vaccine platforms (nanovaccines) have emerged as promising alternatives to more traditional vaccine platforms. In particular, polymer-based nanovaccines provide sustained release of antigen payloads, stabilize such payloads, and induce enhanced antibod- and cell-mediated immune responses, both systemically and locally. To improve vaccine administrative strategies and efficacy, they can be formulated to contain multiple antigenic payloads and have the ability to protect fragile proteins from degradation. Nanovaccines are also stable at room temperature, minimizing the need for cold chain storage. Nanoparticle platforms can be synthesized for targeted delivery through intranasal, aerosol, or oral administration to induce desired mucosal immunity. In recent years, several nanovaccine platforms have emerged, based on biodegradable and biocompatible polymers, liposomes, and virus-like particles. While most nanovaccine candidates have not yet advanced beyond testing in rodent models, a growing number have shown promise for use against cattle infectious diseases. This review will highlight recent advancements in polymeric nanovaccine development and the mechanisms by which nanovaccines may interact with the bovine immune system. We will also discuss the positive implications of nanovaccines use for combating several important viral and bacterial disease syndromes and consider important future directions for nanovaccine development in beef and dairy cattle.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
14
|
Riffault S, Hägglund S, Guzman E, Näslund K, Jouneau L, Dubuquoy C, Pietralunga V, Laubreton D, Boulesteix O, Gauthier D, Remot A, Boukaridi A, Falk A, Shevchenko G, Lind SB, Vargmar K, Zhang B, Kwong PD, Rodriguez MJ, Duran MG, Schwartz-Cornil I, Eléouët JF, Taylor G, Valarcher JF. A Single Shot Pre-fusion-Stabilized Bovine RSV F Vaccine is Safe and Effective in Newborn Calves with Maternally Derived Antibodies. Vaccines (Basel) 2020; 8:vaccines8020231. [PMID: 32443437 PMCID: PMC7349975 DOI: 10.3390/vaccines8020231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 01/21/2023] Open
Abstract
Achieving safe and protective vaccination against respiratory syncytial virus (RSV) in infants and in calves has proven a challenging task. The design of recombinant antigens with a conformation close to their native form in virus particles is a major breakthrough. We compared two subunit vaccines, the bovine RSV (BRSV) pre-fusion F (preF) alone or with nanorings formed by the RSV nucleoprotein (preF+N). PreF and N proteins are potent antigenic targets for neutralizing antibodies and T cell responses, respectively. To tackle the challenges of neonatal immunization, three groups of six one-month-old calves with maternally derived serum antibodies (MDA) to BRSV received a single intramuscular injection of PreF, preF+N with MontanideTM ISA61 VG (ISA61) as adjuvant or only ISA61 (control). One month later, all calves were challenged with BRSV and monitored for virus replication in the upper respiratory tract and for clinical signs of disease over one week, and then post-mortem examinations of their lungs were performed. Both preF and preF+N vaccines afforded safe, clinical, and virological protection against BRSV, with little difference between the two subunit vaccines. Analysis of immune parameters pointed to neutralizing antibodies and antibodies to preF as being significant correlates of protection. Thus, a single shot vaccination with preF appears sufficient to reduce the burden of BRSV disease in calves with MDA.
Collapse
Affiliation(s)
- Sabine Riffault
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (L.J.); (C.D.); (V.P.); (D.L.); (I.S.-C.); (J.-F.E.)
- Correspondence: ; Tel.: +33-(0)-134-652-620
| | - Sara Hägglund
- Host Pathogen Interaction Group, Unit of ruminant medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 75007 Uppsala, Sweden; (S.H.); (K.N.); (J.F.V.)
| | - Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (E.G.); (G.T.)
| | - Katarina Näslund
- Host Pathogen Interaction Group, Unit of ruminant medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 75007 Uppsala, Sweden; (S.H.); (K.N.); (J.F.V.)
| | - Luc Jouneau
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (L.J.); (C.D.); (V.P.); (D.L.); (I.S.-C.); (J.-F.E.)
| | - Catherine Dubuquoy
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (L.J.); (C.D.); (V.P.); (D.L.); (I.S.-C.); (J.-F.E.)
| | - Vincent Pietralunga
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (L.J.); (C.D.); (V.P.); (D.L.); (I.S.-C.); (J.-F.E.)
| | - Daphné Laubreton
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (L.J.); (C.D.); (V.P.); (D.L.); (I.S.-C.); (J.-F.E.)
| | | | | | - Aude Remot
- INRAE, University of Tours, ISP, 37380 Nouzilly, France;
| | - Abdelhak Boukaridi
- University Paris Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France;
| | - Alexander Falk
- Department of Chemistry-BMC, Uppsala University, 875007 Uppsala, Sweden; (A.F.); (G.S.); (S.B.L.)
| | - Ganna Shevchenko
- Department of Chemistry-BMC, Uppsala University, 875007 Uppsala, Sweden; (A.F.); (G.S.); (S.B.L.)
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Uppsala University, 875007 Uppsala, Sweden; (A.F.); (G.S.); (S.B.L.)
| | - Karin Vargmar
- Department of Biomedicine and veterinary public Health, Swedish University of Agricultural Sciences, Box 7054, SE-756 51, 875007 Uppsala, Sweden;
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (B.Z.); (P.D.K.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (B.Z.); (P.D.K.)
| | - María Jose Rodriguez
- Applied Immunology and Genetics, S.L. (INGENASA), 28037 Madrid, Spain; (M.J.R.); (M.G.D.)
| | - Marga Garcia Duran
- Applied Immunology and Genetics, S.L. (INGENASA), 28037 Madrid, Spain; (M.J.R.); (M.G.D.)
| | - Isabelle Schwartz-Cornil
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (L.J.); (C.D.); (V.P.); (D.L.); (I.S.-C.); (J.-F.E.)
| | - Jean-François Eléouët
- University Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (L.J.); (C.D.); (V.P.); (D.L.); (I.S.-C.); (J.-F.E.)
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (E.G.); (G.T.)
| | - Jean François Valarcher
- Host Pathogen Interaction Group, Unit of ruminant medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 75007 Uppsala, Sweden; (S.H.); (K.N.); (J.F.V.)
| |
Collapse
|
15
|
Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019; 10:873. [PMID: 31130923 PMCID: PMC6510261 DOI: 10.3389/fmicb.2019.00873] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the main etiologic agent of severe lower respiratory tract infections that affect young children throughout the world, associated with significant morbidity and mortality, becoming a serious public health problem globally. Up to date, no licensed vaccines are available to prevent severe hRSV-induced disease, and the generation of safe-effective vaccines has been a challenging task, requiring constant biomedical research aimed to overcome this ailment. Among the difficulties presented by the study of this pathogen, it arises the fact that there is no single animal model that resembles all aspects of the human pathology, which is due to the specificity that this pathogen has for the human host. Thus, for the study of hRSV, different animal models might be employed, depending on the goal of the study. Of all the existing models, the murine model has been the most frequent model of choice for biomedical studies worldwide and has been of great importance at contributing to the development and understanding of vaccines and therapies against hRSV. The most notable use of the murine model is that it is very useful as a first approach in the development of vaccines or therapies such as monoclonal antibodies, suggesting in this way the direction that research could have in other preclinical models that have higher maintenance costs and more complex requirements in its management. However, several additional different models for studying hRSV, such as other rodents, mustelids, ruminants, and non-human primates, have been explored, offering advantages over the murine model. In this review, we discuss the various applications of animal models to the study of hRSV-induced disease and the advantages and disadvantages of each model, highlighting the potential of each model to elucidate different features of the pathology caused by the hRSV infection.
Collapse
Affiliation(s)
- María José Altamirano-Lagos
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E. Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Andrés Mansilla
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Soto
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Abel E. Vasquez
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Parainfluenza virus 5 (PIV5) amplifying virus-like particles expressing respiratory syncytial virus (RSV) antigens protect mice against RSV infection. Vaccine 2019; 37:2925-2934. [PMID: 31010715 DOI: 10.1016/j.vaccine.2019.04.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/04/2019] [Accepted: 04/14/2019] [Indexed: 12/26/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in children under one year of age. In addition to causing severe respiratory diseases in children, it is also a major cause of morbidity and mortality among the elderly and immunocompromised individuals. RSV is the most common cause of lower respiratory tract infections, yet there are currently no licensed vaccines. A parainfluenza virus 5 (PIV5)-based amplifying virus-like particle (AVLP), which enables the use of PIV5 RNA transcription/replication machinery to express gene of interest, has recently been developed. We evaluated the PIV5-based AVLP system as a vaccine platform for RSV by incorporating the fusion protein (F) gene and the transcription factor protein (M2-1) gene of RSV into the PIV5-AVLP backbone (AVLP-F and AVLP-M2-1, respectively). Mice immunized with a single dose of the AVLP-F or AVLP-M2-1 developed RSV-F or RSV-M2-1-specific immune responses, respectively. Both vaccine candidates elicited antigen-specific cell-mediated responses at levels comparable to or higher than an RSV infection. Most importantly, each vaccine was able to induce protection against RSV A2 challenge in the mouse model. These results indicate the potential of the PIV5-based AVLP system as a platform for vaccines against RSV infection.
Collapse
|
17
|
Guerra-Maupome M, Palmer MV, McGill JL, Sacco RE. Utility of the Neonatal Calf Model for Testing Vaccines and Intervention Strategies for Use against Human RSV Infection. Vaccines (Basel) 2019; 7:vaccines7010007. [PMID: 30626099 PMCID: PMC6466205 DOI: 10.3390/vaccines7010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of pediatric respiratory tract infections. It is estimated that two-thirds of infants are infected with RSV during the first year of life and it is one of the leading causes of death in this age group worldwide. Similarly, bovine RSV is a primary viral pathogen in cases of pneumonia in young calves and plays a significant role in bovine respiratory disease complex. Importantly, naturally occurring infection of calves with bovine RSV shares many features in common with human RSV infection. Herein, we update our current understanding of RSV infection in cattle, with particular focus on similarities between the calf and human infection, and the recent reports in which the neonatal calf has been employed for the development and testing of vaccines and therapeutics which may be applied to hRSV infection in humans.
Collapse
Affiliation(s)
- Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
18
|
Richard CA, Hervet C, Ménard D, Gutsche I, Normand V, Renois F, Meurens F, Eléouët JF. First demonstration of the circulation of a pneumovirus in French pigs by detection of anti-swine orthopneumovirus nucleoprotein antibodies. Vet Res 2018; 49:118. [PMID: 30518406 PMCID: PMC6280484 DOI: 10.1186/s13567-018-0615-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
The presence of pneumoviruses in pigs is poorly documented. In this study, we used the published sequence of the nucleoprotein (N) of the recently identified Swine Orthopneumovirus (SOV) to express and purify SOV N as a recombinant protein in Escherichia coli. This protein was purified as nanorings and used to set up an enzyme-linked immunosorbent assay, which was used to analyse the presence of anti-pneumovirus N antibodies in swine sera. Sera collected from different pig farms in the West of France and from specific pathogen free piglets before colostrum uptake showed indirectly that a pneumovirus is circulating in pig populations with some variations between animals. Piglets before colostrum uptake were sero-negative for anti-pneumovirus antibodies while most of the other pigs showed positivity. Interestingly, in two farms presenting respiratory clinical signs and negative or under control for some common respiratory pathogens, pigs were detected positive for anti-pneumovirus antibodies. Globally, anti-pneumovirus N antibody concentrations were variable between and within farms. Further studies will aim to isolate the circulating virus and determine its potential pathogenicity. SOV could potentially become a new member of the porcine respiratory complex, important on its own or in association with other viral and bacterial micro-organisms.
Collapse
Affiliation(s)
- Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Caroline Hervet
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Déborah Ménard
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Irina Gutsche
- CNRS, CEA, IBS, University of Grenoble Alpes, 38000, Grenoble, France
| | - Valérie Normand
- Porc.Spective Swine Vet Practice, Chêne Vert Conseil Veterinary Group, ZA de Gohélève, 56920, Noyal-Pontivy, France
| | - Fanny Renois
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - François Meurens
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, 44307, Nantes, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
19
|
Blanco JCG, Boukhvalova MS, Morrison TG, Vogel SN. A multifaceted approach to RSV vaccination. Hum Vaccin Immunother 2018; 14:1734-1745. [PMID: 29771625 PMCID: PMC6067850 DOI: 10.1080/21645515.2018.1472183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/12/2018] [Accepted: 04/29/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of pneumonia and bronchiolitis in infants, resulting in significant morbidity and mortality worldwide. In addition, RSV infections occur throughout different ages, thus, maintaining the virus in circulation, and increasing health risk to more susceptible populations such as infants, the elderly, and the immunocompromised. To date, there is no vaccine approved to prevent RSV infection or minimize symptoms of infection. Current clinical trials for vaccines against RSV are being carried out in four very different populations. There are vaccines that target two different pediatric populations, infants 2 to 6 month of age and seropositive children over 6 months of age, as well as women (non-pregnant or pregnant in their third trimester). There are vaccines that target adult and elderly populations. In this review, we will present and discuss RSV vaccine candidates currently in clinical trials. We will describe the preclinical studies instrumental for their advancement, with the goal of introducing new preclinical models that may more accurately predict the outcome of clinical vaccine studies.
Collapse
|
20
|
Bertolotti L, Giammarioli M, Rosati S. Genetic characterization of bovine respiratory syncytial virus strains isolated in Italy: evidence for the circulation of new divergent clades. J Vet Diagn Invest 2017; 30:300-304. [PMID: 29251553 DOI: 10.1177/1040638717746202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is circulating in cattle in Europe. Although vaccination helps control the disease, its prevalence within and among herds remains high. Previous genetic characterization studies revealed a strict geographic correlation between viral variants; on the other hand, they showed the emergence of new variants in northern Europe. Few studies have described BRSV distribution, and little is known about the genetic features of BRSV strains circulating in Italy. We studied sample-positive tests for BRSV, and sequenced the coding regions of the G and N proteins to determine the presence of divergent variants. Two different sets of sequences were found, including in samples from animals from vaccinated herds. The 2 groups of sequences correspond to 2 time periods and suggest an active role of herd immunity in preventing the spread of infection. Our findings that different strains of BRSV are circulating in Italy and that the virus is evolving rapidly highlight the importance of updating vaccination strategies.
Collapse
Affiliation(s)
- Luigi Bertolotti
- Department of Veterinary Science, University of Torino, Grugliasco, Torino, Italy (Bertolotti, Rosati).,Istituto Zooprofilattico Sperimentale dell'Umbria e Marche, Perugia, Italy (Giammarioli)
| | - Monica Giammarioli
- Department of Veterinary Science, University of Torino, Grugliasco, Torino, Italy (Bertolotti, Rosati).,Istituto Zooprofilattico Sperimentale dell'Umbria e Marche, Perugia, Italy (Giammarioli)
| | - Sergio Rosati
- Department of Veterinary Science, University of Torino, Grugliasco, Torino, Italy (Bertolotti, Rosati).,Istituto Zooprofilattico Sperimentale dell'Umbria e Marche, Perugia, Italy (Giammarioli)
| |
Collapse
|
21
|
Hägglund S, Blodörn K, Näslund K, Vargmar K, Lind SB, Mi J, Araínga M, Riffault S, Taylor G, Pringle J, Valarcher JF. Proteome analysis of bronchoalveolar lavage from calves infected with bovine respiratory syncytial virus-Insights in pathogenesis and perspectives for new treatments. PLoS One 2017; 12:e0186594. [PMID: 29036182 PMCID: PMC5643112 DOI: 10.1371/journal.pone.0186594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
Human and bovine respiratory syncytial viruses (HRSV/BRSV) are major causes of severe lower respiratory tract infections in children and calves, respectively. Shared epidemiological, clinical, pathological and genetic characteristics of these viruses make comparative research highly relevant. To characterise the host response against BRSV infection, bronchoalveolar lavage supernatant (BAL) from i) non-vaccinated, BRSV-infected ii) vaccinated, BRSV-infected and iii) non-infected calves was analysed by tandem mass spectrometry. Proteins were semi-quantified and protein expression was validated by immunoblotting. Correlations between selected proteins and pathology, clinical signs and virus shedding were investigated. Calves with BRSV-induced disease had increased total protein concentrations and a decreased number of proteins identified in BAL. The protein profile was characterised by neutrophil activation and a reduction in identified antioxidant enzymes. The presence of neutrophils in alveolar septa, the expression level of neutrophil-related or antioxidant proteins and LZTFL1 correlated significantly with disease. Citrullinated histone 3, an indicator of extracellular traps (ETs), was only detected in non-vaccinated, BRSV-infected animals. By bringing disequilibrium in the release and detoxification of reactive oxygen species, generating ETs and causing elastine degradation, exaggerated neutrophil responses might exacerbate RSV-induced disease. Neutrophil-mitigating or antioxidant treatments should be further explored.
Collapse
Affiliation(s)
- Sara Hägglund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
- * E-mail:
| | - Krister Blodörn
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| | - Katarina Näslund
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| | - Karin Vargmar
- Swedish University of Agricultural Sciences, Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Uppsala, Sweden
| | - Sara Bergström Lind
- Uppsala University, Science for Life Laboratory, Analytical Chemistry, Department of Chemistry-BMC, Uppsala, Sweden
| | - Jia Mi
- Uppsala University, Science for Life Laboratory, Analytical Chemistry, Department of Chemistry-BMC, Uppsala, Sweden
- Binzhou Medical University, Medicine and Pharmarcy Research Center, Yantai, China
| | - Mariluz Araínga
- University of Nebraska Medical Center (UNMC), Omaha, Nebraska, United States of America
| | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Université Paris-Saclay, Jouy-en-Josas, France
| | - Geraldine Taylor
- The Pirbright Institute Ash Road, Pirbright, Surrey, United Kingdom
| | - John Pringle
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| | - Jean François Valarcher
- Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Dept. of Clinical Sciences, Uppsala, Sweden
| |
Collapse
|
22
|
New Insights Contributing to the Development of Effective Vaccines and Therapies to Reduce the Pathology Caused by hRSV. Int J Mol Sci 2017; 18:ijms18081753. [PMID: 28800119 PMCID: PMC5578143 DOI: 10.3390/ijms18081753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Human Respiratory Syncytial Virus (hRSV) is one of the major causes of acute lower respiratory tract infections (ALRTI) worldwide, leading to significant levels of immunocompromisation as well as morbidity and mortality in infants. Its main target of infection is the ciliated epithelium of the lungs and the host immune responses elicited is ineffective at achieving viral clearance. It is thought that the lack of effective immunity against hRSV is due in part to the activity of several viral proteins that modulate the host immune response, enhancing a Th2-like pro-inflammatory state, with the secretion of cytokines that promote the infiltration of immune cells to the lungs, with consequent damage. Furthermore, the adaptive immunity triggered by hRSV infection is characterized by weak cytotoxic T cell responses and secretion of low affinity antibodies by B cells. These features of hRSV infection have meant that, to date, no effective and safe vaccines have been licensed. In this article, we will review in detail the information regarding hRSV characteristics, pathology, and host immune response, along with several prophylactic treatments and vaccine prototypes. We will also expose significant data regarding the newly developed BCG-based vaccine that promotes protective cellular and humoral response against hRSV infection, which is currently undergoing clinical evaluation.
Collapse
|
23
|
Ellis JA. How efficacious are vaccines against bovine respiratory syncytial virus in cattle? Vet Microbiol 2017; 206:59-68. [DOI: 10.1016/j.vetmic.2016.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
24
|
Zhang B, Chen L, Silacci C, Thom M, Boyington JC, Druz A, Joyce MG, Guzman E, Kong WP, Lai YT, Stewart-Jones GBE, Tsybovsky Y, Yang Y, Zhou T, Baxa U, Mascola JR, Corti D, Lanzavecchia A, Taylor G, Kwong PD. Protection of calves by a prefusion-stabilized bovine RSV F vaccine. NPJ Vaccines 2017; 2:7. [PMID: 29021918 PMCID: PMC5627276 DOI: 10.1038/s41541-017-0005-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bovine respiratory syncytial virus, a major cause of respiratory disease in calves, is closely related to human RSV, a leading cause of respiratory disease in infants. Recently, promising human RSV-vaccine candidates have been engineered that stabilize the metastable fusion (F) glycoprotein in its prefusion state; however, the absence of a relevant animal model for human RSV has complicated assessment of these vaccine candidates. Here, we use a combination of structure-based design, antigenic characterization, and X-ray crystallography to translate human RSV F stabilization into the bovine context. A "DS2" version of bovine respiratory syncytial virus F with subunits covalently fused, fusion peptide removed, and pre-fusion conformation stabilized by cavity-filling mutations and intra- and inter-protomer disulfides was recognized by pre-fusion-specific antibodies, AM14, D25, and MPE8, and elicited bovine respiratory syncytial virus-neutralizing titers in calves >100-fold higher than those elicited by post-fusion F. When challenged with a heterologous bovine respiratory syncytial virus, virus was not detected in nasal secretions nor in respiratory tract samples of DS2-immunized calves; by contrast bovine respiratory syncytial virus was detected in all post-fusion- and placebo-immunized calves. Our results demonstrate proof-of-concept that DS2-stabilized RSV F immunogens can induce highly protective immunity from RSV in a native host with implications for the efficacy of prefusion-stabilized F vaccines in humans and for the prevention of bovine respiratory syncytial virus in calves.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chiara Silacci
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Michelle Thom
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Efrain Guzman
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.,Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.,Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Hervé PL, Deloizy C, Descamps D, Rameix-Welti MA, Fix J, McLellan JS, Eléouët JF, Riffault S. RSV N-nanorings fused to palivizumab-targeted neutralizing epitope as a nanoparticle RSV vaccine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:411-420. [PMID: 27553073 PMCID: PMC5698904 DOI: 10.1016/j.nano.2016.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute respiratory infections in children, yet no vaccine is available. The sole licensed preventive treatment against RSV is composed of a monoclonal neutralizing antibody (palivizumab), which targets a conformational epitope located on the fusion protein (F). Palivizumab reduces the burden of bronchiolitis but does not prevent infection. Thus, the development of RSV vaccines remains a priority. We previously evaluated nanorings formed by RSV nucleoprotein (N) as an RSV vaccine, as well as an immunostimulatory carrier for heterologous antigens. Here, we linked the palivizumab-targeted epitope (called FsII) to N, to generate N-FsII-nanorings. Intranasal N-FsII immunization elicited anti-F antibodies in mice that were non-neutralizing in vitro. Nevertheless, RSV-challenged animals were better protected against virus replication than mice immunized with N-nanorings, especially in the upper airways. In conclusion, an N-FsII-focused vaccine is an attractive candidate combining N-specific cellular immunity and F-specific antibodies for protection.
Collapse
Affiliation(s)
| | | | | | - Marie-Anne Rameix-Welti
- INSERM U1173, UFR Simone Veil, UVSQ, Saint-Quentin en Yvelines, France; AP-HP, Ambroise Paré Hospital, Microbiology Laboratory, Boulogne-Billancourt, France
| | - Jenna Fix
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | |
Collapse
|
26
|
|
27
|
Hervé PL, Descamps D, Deloizy C, Dhelft V, Laubreton D, Bouguyon E, Boukadiri A, Dubuquoy C, Larcher T, Benhamou PH, Eléouët JF, Bertho N, Mondoulet L, Riffault S. Non-invasive epicutaneous vaccine against Respiratory Syncytial Virus: Preclinical proof of concept. J Control Release 2016; 243:146-159. [DOI: 10.1016/j.jconrel.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
|
28
|
Raszek MM, Guan LL, Plastow GS. Use of Genomic Tools to Improve Cattle Health in the Context of Infectious Diseases. Front Genet 2016; 7:30. [PMID: 27014337 PMCID: PMC4780072 DOI: 10.3389/fgene.2016.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/18/2016] [Indexed: 12/15/2022] Open
Abstract
Although infectious diseases impose a heavy economic burden on the cattle industry, the etiology of many disorders that affect livestock is not fully elucidated, and effective countermeasures are often lacking. The main tools available until now have been vaccines, antibiotics and antiparasitic drugs. Although these have been very successful in some cases, the appearance of parasite and microbial resistance to these treatments is a cause of concern. Next-generation sequencing provides important opportunities to tackle problems associated with pathogenic illnesses. This review describes the rapid gains achieved to track disease progression, identify the pathogens involved, and map pathogen interactions with the host. Use of novel genomic tools subsequently aids in treatment development, as well as successful creation of breeding programs aimed toward less susceptible livestock. These may be important tools for mitigating the long term effects of combating infection and helping reduce the reliance on antibiotic treatment.
Collapse
Affiliation(s)
- Mikolaj M Raszek
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Le L Guan
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
29
|
Jorquera PA, Anderson L, Tripp RA. Understanding respiratory syncytial virus (RSV) vaccine development and aspects of disease pathogenesis. Expert Rev Vaccines 2015; 15:173-87. [PMID: 26641318 DOI: 10.1586/14760584.2016.1115353] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infections causing bronchiolitis and some mortality in young children and the elderly. Despite decades of research there is no licensed RSV vaccine. Although significant advances have been made in understanding the immune factors responsible for inducing vaccine-enhanced disease in animal models, less information is available for humans. In this review, we discuss the different types of RSV vaccines and their target population, the need for establishing immune correlates for vaccine efficacy, and how the use of different animal models can help predict vaccine efficacy and clinical outcomes in humans.
Collapse
Affiliation(s)
- Patricia A Jorquera
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| | - Lydia Anderson
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| | - Ralph A Tripp
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| |
Collapse
|
30
|
Partial Attenuation of Respiratory Syncytial Virus with a Deletion of a Small Hydrophobic Gene Is Associated with Elevated Interleukin-1β Responses. J Virol 2015; 89:8974-81. [PMID: 26085154 DOI: 10.1128/jvi.01070-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The small hydrophobic (SH) gene of respiratory syncytial virus (RSV), a major cause of infant hospitalization, encodes a viroporin of unknown function. SH gene knockout virus (RSV ΔSH) is partially attenuated in vivo, but not in vitro, suggesting that the SH protein may have an immunomodulatory role. RSV ΔSH has been tested as a live attenuated vaccine in humans and cattle, and here we demonstrate that it protected against viral rechallenge in mice. We compared the immune response to infection with RSV wild type and RSV ΔSH in vivo using BALB/c mice and in vitro using epithelial cells, neutrophils, and macrophages. Strikingly, the interleukin-1β (IL-1β) response to RSV ΔSH infection was greater than to wild-type RSV, in spite of a decreased viral load, and when IL-1β was blocked in vivo, the viral load returned to wild-type levels. A significantly greater IL-1β response to RSV ΔSH was also detected in vitro, with higher-magnitude responses in neutrophils and macrophages than in epithelial cells. Depleting macrophages (with clodronate liposome) and neutrophils (with anti-Ly6G/1A8) demonstrated the contribution of these cells to the IL-1β response in vivo, the first demonstration of neutrophilic IL-1β production in response to viral lung infection. In this study, we describe an increased IL-1β response to RSV ΔSH, which may explain the attenuation in vivo and supports targeting the SH gene in live attenuated vaccines. IMPORTANCE There is a pressing need for a vaccine for respiratory syncytial virus (RSV). A number of live attenuated RSV vaccine strains have been developed in which the small hydrophobic (SH) gene has been deleted, even though the function of the SH protein is unknown. The structure of the SH protein has recently been solved, showing it is a pore-forming protein (viroporin). Here, we demonstrate that the IL-1β response to RSV ΔSH is greater in spite of a lower viral load, which contributes to the attenuation in vivo. This potentially suggests a novel method by which viruses can evade the host response. As all Pneumovirinae and some Paramyxovirinae carry similar SH genes, this new understanding may also enable the development of live attenuated vaccines for both RSV and other members of the Paramyxoviridae.
Collapse
|
31
|
Blodörn K, Hägglund S, Gavier-Widen D, Eléouët JF, Riffault S, Pringle J, Taylor G, Valarcher JF. A bovine respiratory syncytial virus model with high clinical expression in calves with specific passive immunity. BMC Vet Res 2015; 11:76. [PMID: 25890239 PMCID: PMC4377052 DOI: 10.1186/s12917-015-0389-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine respiratory syncytial virus (BRSV) is a major cause of respiratory disease in cattle worldwide. Calves are particularly affected, even with low to moderate levels of BRSV-specific maternally derived antibodies (MDA). Available BRSV vaccines have suboptimal efficacy in calves with MDA, and published infection models in this target group are lacking in clinical expression. Here, we refine and characterize such a model. RESULTS In a first experiment, 2 groups of 3 calves with low levels of MDA were experimentally inoculated by inhalation of aerosolized BRSV, either: the Snook strain, passaged in gnotobiotic calves (BRSV-Snk), or isolate no. 9402022 Denmark, passaged in cell culture (BRSV-Dk). All calves developed clinical signs of respiratory disease and shed high titers of virus, but BRSV-Snk induced more severe disease, which was then reproduced in a second experiment in 5 calves with moderate levels of MDA. These 5 calves shed high titers of virus and developed severe clinical signs of disease and extensive macroscopic lung lesions (mean+/-SD, 48.3+/-12.0% of lung), with a pulmonary influx of inflammatory cells, characterized by interferon gamma secretion and a marked effect on lung function. CONCLUSIONS We present a BRSV-infection model, with consistently high clinical expression in young calves with low to moderate levels of BRSV-specific MDA, that may prove useful in studies into disease pathogenesis, or evaluations of vaccines and antivirals. Additionally, refined tools to assess the outcome of BRSV infection are described, including passive measurement of lung function and a refined system to score clinical signs of disease. Using this cognate host calf model might also provide answers to elusive questions about human RSV (HRSV), a major cause of morbidity in children worldwide.
Collapse
Affiliation(s)
- Krister Blodörn
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden.
| | - Sara Hägglund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden.
| | - Dolores Gavier-Widen
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden. .,Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Sabine Riffault
- INRA, Unité de Virologie et Immunologie Moléculaires, Jouy-en-Josas, France.
| | - John Pringle
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden.
| | | | - Jean François Valarcher
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Uppsala, Sweden. .,Department of Virology, National Veterinary Institute, Immunology, and Parasitology, Uppsala, Sweden.
| |
Collapse
|
32
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|