1
|
Rudley D, DeSoto L, Rodríguez-Echeverría S, Nabais C. Climate effect on the growth and hydraulic traits of two shrubs from the top of a Mediterranean mountain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165911. [PMID: 37549708 DOI: 10.1016/j.scitotenv.2023.165911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Increasing mean global temperatures in conjunction with increases in the frequency and severity of drought events affect plant growth and physiology, particularly in more arid and mountainous ecosystems. Thus, it is imperative to understand the response of plant growth to climatic oscillations in these regions. This study used dendrochronological and wood anatomical traits of two shrub species growing over 1500 m.a.s.l. in the Serra da Estrela (Portugal), Juniperus communis and Cytisus oromediterraneus, to analyze their response to temperature and water availability parameters. Results showed an increase in shrub growth related to the increase over time of the mean minimum and maximum monthly temperature in Serra da Estrela. Warming seems to promote shrub growth because it lengthens the growing season, although J. communis responds mainly to spring maximum temperature while C. oromediterraneus is influenced by fall maximum temperature. Hydraulic traits of J. communis and C. oromediterraneus were negatively influenced by winter drought. Additionally, there were species-specific differences in response to changes in water availability. J. communis radial growth was significantly affected by spring drought conditions, while C. oromediterraneus radial growth was significantly affected by spring precipitation. C. oromediterraneus hydraulic traits were also significantly affected by drought conditions from the previous spring and fall. This study shed light on specific differences in the response to climate between two co-occurring shrub species in the top of an understudied Mediterranean mountain, which could have implications in the future distribution of woody species within this region.
Collapse
Affiliation(s)
- D Rudley
- Forest Research Centre and Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| | - L DeSoto
- Department of Biodiversity, Ecology, and Evolution (BEE), Faculty of Biological Sciences, Complutense University of Madrid, C/ José Antonio Novais 12, 28040 Madrid, Spain
| | - S Rodríguez-Echeverría
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas s/n, 3000-456 Coimbra, Portugal
| | - C Nabais
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas s/n, 3000-456 Coimbra, Portugal
| |
Collapse
|
2
|
Olsen SL, Evju M, Åström J, Løkken JO, Dahle S, Andresen JL, Eide NE. Climate influence on plant-pollinator interactions in the keystone species Vaccinium myrtillus. Ecol Evol 2022; 12:e8910. [PMID: 35619731 PMCID: PMC9126989 DOI: 10.1002/ece3.8910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022] Open
Abstract
Climate change is altering the world's ecosystems through direct effects of climate warming and precipitation changes but also indirectly through changes in biotic interactions. For instance, climate‐driven changes in plant and/or insect communities may alter plant–pollinator interactions, thereby influencing plant reproductive success and ultimately population dynamics of insect‐pollinated plants. To better understand how the importance of insect pollination for plant fruit set varies with climate, we experimentally excluded pollinators from the partly selfing keystone species Vaccinium myrtillus along elevational gradients in the forest‐tundra ecotone in central Norway. The study comprised three mountain areas, seven elevational gradients spanning from the climatically relatively benign birch forest to the colder alpine areas above the tree line, and 180 plots of 1 × 1 m, with experimental treatments allocated randomly to plots within sites. Within the experimental plots, we counted the number of flowers of V. myrtillus and counted and weighed all fruits, as well as seeds for a selection of fruits. Excluding pollinators resulted in lower fruit production, as well as reduced fruit and seed mass of V. myrtillus. In the alpine sites pollinator exclusion resulted in 84% fewer fruits, 50% lower fruit weight, and 50% lower seed weight compared to control conditions. Contrary to our expectations, the negative effect of pollinator exclusion was less pronounced in the forest compared to alpine sites, suggesting that the importance of insect pollination for seed production is lower at low elevations. Our findings indicate that the keystone species V. myrtillus is relatively robust to changes in the pollinator community in a warmer climate, thereby making it less vulnerable to climate‐driven changes in plant–pollinator interactions.
Collapse
Affiliation(s)
- Siri L Olsen
- Norwegian Institute for Nature Research Oslo Norway.,Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway
| | | | - Jens Åström
- Norwegian Institute for Nature Research Trondheim Norway
| | - Jørn O Løkken
- Norwegian Institute for Nature Research Trondheim Norway
| | - Sondre Dahle
- Norwegian Institute for Nature Research Trondheim Norway
| | - Jonas L Andresen
- Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway.,University of South-Eastern Norway Bø Norway
| | - Nina E Eide
- Norwegian Institute for Nature Research Trondheim Norway
| |
Collapse
|
3
|
Satyanti A, Liantoro T, Thomas M, Neeman T, Nicotra AB, Guja LK. Predicting effects of warming requires a whole-of-life cycle perspective: a case study in the alpine herb Oreomyrrhis eriopoda. CONSERVATION PHYSIOLOGY 2021; 9:coab023. [PMID: 33959289 PMCID: PMC8084022 DOI: 10.1093/conphys/coab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/15/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Global warming is affecting plant phenology, growth and reproduction in complex ways and is particularly apparent in vulnerable alpine environments. Warming affects reproductive and vegetative traits, as well as phenology, but seldom do studies assess these traits in concert and across the whole of a plant's life cycle, particularly in wild species. Thus, it is difficult to extrapolate from such effects to predictions about the persistence of species or their conservation and management. We assessed trait variation in response to warming in Oreomyrrhis eriopoda, an Australian native montane herb, in which populations vary in germination strategy (degree of dormancy) and growth characteristics as a function of ecological factors. Warming accelerated growth in the early stages of development, particularly for populations with non-dormant seed. The differences in growth disappeared at the transition to reproduction, when an accelerating effect on phenology emerged, to varying degrees depending on germination strategy. Overall, warming reduced flower and seed production and increased mortality, indicating a reduction in reproductive opportunities, particularly for populations with dormant seed. Developmental condition affected germination strategy of the next generation seed, leading to increased degree of dormancy and slowed germination rate. But there were no whole-scale shifts in strategy or total germination percent. Following through the life cycle reveals that warming will have some potentially positive effects (early growth rates) and some negative effects (reduced reproductive output). Ultimately, warming impacts will depend on how those effects play out in the field: early establishment and an accelerated trajectory to seed maturity may offset the tradeoff with overall seed production. Small differences among germination strategies likewise may cascade to larger effects, with important implications for persistence of species in the alpine landscape. Thus, to understand and manage the response of wild species to warming takes a whole-of-life perspective and attention to ecologically significant patterns of within-species variation.
Collapse
Affiliation(s)
- Annisa Satyanti
- Division Ecology and Evolution, Research School of Biology, The Australian National University, Robertson Building, Acton, ACT 2601, Australia
- Centre for Plant Conservation—Botanic Gardens, Indonesian Institute of Sciences, Jalan Ir. Haji Juanda, Bogor 16003, Indonesia
- National Seed Bank, Australian National Botanic Gardens, Parks Australia, Clunies Ross St, Acton, ACT 2601, Australia
| | - Toton Liantoro
- Division Ecology and Evolution, Research School of Biology, The Australian National University, Robertson Building, Acton, ACT 2601, Australia
| | - Morgan Thomas
- Division Ecology and Evolution, Research School of Biology, The Australian National University, Robertson Building, Acton, ACT 2601, Australia
- School of Earth, Environmental and Biological Sciences, Faculty of Science and Engineering, Queensland University of Technology, QLD 4067, Australia
| | - Teresa Neeman
- Division Ecology and Evolution, Research School of Biology, The Australian National University, Robertson Building, Acton, ACT 2601, Australia
- Statistical Consulting Unit, The Australian National University, Acton, ACT 2601, Australia
| | - Adrienne B Nicotra
- Division Ecology and Evolution, Research School of Biology, The Australian National University, Robertson Building, Acton, ACT 2601, Australia
| | - Lydia K Guja
- National Seed Bank, Australian National Botanic Gardens, Parks Australia, Clunies Ross St, Acton, ACT 2601, Australia
- Centre for Australian National Biodiversity Research, (a joint venture between the Parks Australia CSIRO), Clunies Ross St, Acton, ACT 2601, Australia
| |
Collapse
|
4
|
Filippi A, Braidot E, Petrussa E, Fabro M, Vuerich M, Boscutti F. Plant growth shapes the effects of elevation on the content and variability of flavonoids in subalpine bilberry stands. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:241-249. [PMID: 33037753 DOI: 10.1111/plb.13194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The study of morphological and physiological responses of shrubs to climate is crucial for the understanding of future scenarios regarding climate change. In this light, studying shrub growth and physiological acclimation along an elevation gradient might be insightful. The phenolic metabolic pathway represents a powerful tool to interpret such processes. In the South-Eastern Alps, we investigated the relationships between elevation, plant traits (i.e. age, xylem ring width, annual shoot length), plant-plant interaction (i.e. shrub cover) and flavonoids in Vaccinium myrtillus L. (leaves, berries) in stands above the treeline. The relationships were parsed within causal networks using a confirmatory path analysis. Elevation was the main driver of V. myrtillus growth, having both direct and indirect effects on the leaf flavonoid content, but this was less evident for berries. In particular, the content of foliar flavonoids showed a peak at mid-elevation and where the growth of xylem rings was intermediate, while it decreased in stands with higher shoot length. Flavonoid content variability of both leaves and berries was affected by elevation and shoot length. In berries, flavonoid variability was further related to all growth traits and shrub cover. These findings evidence that flavonoid content is influenced by both elevation and growth traits of V. myrtillus, often showing non-linear relationships. These results suggest a trait-mediated response of this plant to climate conditions as a result of trade-offs between plant growth, plant defence, environmental stress and nutrient/resource availability.
Collapse
Affiliation(s)
- A Filippi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - E Braidot
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - E Petrussa
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - M Fabro
- Servizio fitosanitario e chimico, ricerca, sperimentazione e assistenza tecnica, ERSA, Pozzuolo del Friuli, Italy
| | - M Vuerich
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - F Boscutti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
5
|
Seasonality of feral horse grazing and invasion of Pinus halepensis in grasslands of the Austral Pampean Mountains (Argentina): management considerations. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02300-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Casolo V, Braidot E, Petrussa E, Zancani M, Vianello A, Boscutti F. Relationships between population traits, nonstructural carbohydrates, and elevation in alpine stands of Vaccinium myrtillus. AMERICAN JOURNAL OF BOTANY 2020; 107:639-649. [PMID: 32239489 PMCID: PMC7217170 DOI: 10.1002/ajb2.1458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/30/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Despite great attention given to the relationship between plant growth and carbon balance in alpine tree species, little is known about shrubs at the treeline. We hypothesized that the pattern of main nonstructural carbohydrates (NSCs) across elevations depends on the interplay between phenotypic trait plasticity, plant-plant interaction, and elevation. METHODS We studied the pattern of NSCs (i.e., glucose, fructose, sucrose, and starch) in alpine stands of Vaccinium myrtillus (above treeline) across an elevational gradient. In the same plots, we measured key growth traits (i.e., anatomical stem features) and shrub cover, evaluating putative relationships with NSCs. RESULTS Glucose content was positively related with altitude, but negatively related with shrub cover. Sucrose decreased at high altitude and in older populations and increased with higher percentage of vascular tissue. Starch content increased at middle and high elevations and in stands with high shrub cover. Moreover, starch content was negatively related with the number of xylem rings and the percentage of phloem tissue, but positively correlated with the percentage of xylem tissue. CONCLUSIONS We found that the increase in carbon reserves across elevations was uncoupled from plant growth, supporting the growth limitation hypothesis, which postulates NSCs accumulate at high elevation as a consequence of low temperature. Moreover, the response of NSC content to the environmental stress caused by elevation was buffered by phenotypic plasticity of plant traits, suggesting that, under climate warming conditions, shrub expansion due to enhanced plant growth would be pronounced in old but sparse stands.
Collapse
Affiliation(s)
- Valentino Casolo
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Enrico Braidot
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Elisa Petrussa
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Marco Zancani
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Angelo Vianello
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| | - Francesco Boscutti
- Department of Agriculture, Food, Environmental and Animal SciencesPlant Biology UnitUniversity of Udinevia delle Scienze 9133100UdineItaly
| |
Collapse
|
7
|
Mäki M, Aalto J, Hellén H, Pihlatie M, Bäck J. Interannual and Seasonal Dynamics of Volatile Organic Compound Fluxes From the Boreal Forest Floor. FRONTIERS IN PLANT SCIENCE 2019; 10:191. [PMID: 30853968 PMCID: PMC6395408 DOI: 10.3389/fpls.2019.00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
In the northern hemisphere, boreal forests are a major source of biogenic volatile organic compounds (BVOCs), which drive atmospheric processes and lead to cloud formation and changes in the Earth's radiation budget. Although forest vegetation is known to be a significant source of BVOCs, the role of soil and the forest floor, and especially interannual variations in fluxes, remains largely unknown due to a lack of long-term measurements. Our aim was to determine the interannual, seasonal and diurnal dynamics of boreal forest floor volatile organic compound (VOC) fluxes and to estimate how much they contribute to ecosystem VOC fluxes. We present here an 8-year data set of forest floor VOC fluxes, measured with three automated chambers connected to the quadrupole proton transfer reaction mass spectrometer (quadrupole PTR-MS). The exceptionally long data set shows that forest floor fluxes were dominated by monoterpenes and methanol, with relatively comparable emission rates between the years. Weekly mean monoterpene fluxes from the forest floor were highest in spring and in autumn (maximum 59 and 86 μg m-2 h-1, respectively), whereas the oxygenated VOC fluxes such as methanol had highest weekly mean fluxes in spring and summer (maximum 24 and 79 μg m-2 h-1, respectively). Although the chamber locations differed from each other in emission rates, the inter-annual dynamics were very similar and systematic. Accounting for this chamber location dependent variability, temperature and relative humidity, a mixed effects linear model was able to explain 79-88% of monoterpene, methanol, acetone, and acetaldehyde fluxes from the boreal forest floor. The boreal forest floor was a significant contributor in the forest stand fluxes, but its importance varies between seasons, being most important in autumn. The forest floor emitted 2-93% of monoterpene fluxes in spring and autumn and 1-72% of methanol fluxes in spring and early summer. The forest floor covered only a few percent of the forest stand fluxes in summer.
Collapse
Affiliation(s)
- Mari Mäki
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Juho Aalto
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Heidi Hellén
- Finnish Meteorological Institute, Helsinki, Finland
| | - Mari Pihlatie
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Anadon-Rosell A, Dawes MA, Fonti P, Hagedorn F, Rixen C, von Arx G. Xylem anatomical and growth responses of the dwarf shrub Vaccinium myrtillus to experimental CO 2 enrichment and soil warming at treeline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1172-1183. [PMID: 30045499 DOI: 10.1016/j.scitotenv.2018.06.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Plant growth responses to environmental changes may be linked to xylem anatomical adjustments. The study of such links is essential for improving our understanding of plant functioning under global change. We investigated the xylem anatomy and above-ground growth of the dwarf shrub Vaccinium myrtillus in the understorey of Larix decidua and Pinus uncinata at the Swiss treeline after 9 years of free-air CO2 enrichment (+200 ppm) and 6 years of soil warming (+4 °C). We aimed to determine the responses of xylem anatomical traits and growth to these treatments, and to analyse xylem anatomy-growth relationships. We quantified anatomical characteristics of vessels and ray parenchyma and measured xylem ring width (RW), above-ground biomass and shoot elongation as growth parameters. Our results showed strong positive correlations between theoretical hydraulic conductivity (Kh) and shoot increment length or total biomass across all treatments. However, while soil warming stimulated shoot elongation and RW, it reduced vessel size (Dh) by 14%. Elevated CO2 had smaller effects than soil warming: it increased Dh (5%) in the last experimental years and only influenced growth by increasing basal stem size. The abundance of ray parenchyma, representing storage capacity, did not change under any treatment. Our results demonstrate a link between growth and stem Kh in V. myrtillus, but its growth responses to warming were not explained by the observed xylem anatomical changes. Smaller Dh under warming may increase resistance to freezing events frequently occurring at treeline and suggests that hydraulic efficiency is not limiting for V. myrtillus growing on moist soils at treeline. Our findings suggest that future higher atmospheric CO2 concentrations will have smaller effects on V. myrtillus growth and functioning than rising temperatures at high elevations; further, growth stimulation of this species under future warmer conditions may not be synchronized with xylem adjustments favouring hydraulic efficiency.
Collapse
Affiliation(s)
- Alba Anadon-Rosell
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, D-17487 Greifswald, Germany; Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, E-08028 Barcelona, Catalonia, Spain; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland.
| | - Melissa A Dawes
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland; WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260 Davos, Switzerland
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260 Davos, Switzerland
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8093 Birmensdorf, Switzerland; Climatic Change and Climate Impacts, Institute for Environmental Sciences, 66 Blvd Carl Vogt, CH-1205 Geneva, Switzerland
| |
Collapse
|
9
|
Boscutti F, Casolo V, Beraldo P, Braidot E, Zancani M, Rixen C. Shrub growth and plant diversity along an elevation gradient: Evidence of indirect effects of climate on alpine ecosystems. PLoS One 2018; 13:e0196653. [PMID: 29698464 PMCID: PMC5919657 DOI: 10.1371/journal.pone.0196653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/17/2018] [Indexed: 11/18/2022] Open
Abstract
Enhanced shrub growth and expansion are widespread responses to climate warming in many arctic and alpine ecosystems. Warmer temperatures and shrub expansion could cause major changes in plant community structure, affecting both species composition and diversity. To improve our understanding of the ongoing changes in plant communities in alpine tundra, we studied interrelations among climate, shrub growth, shrub cover and plant diversity, using an elevation gradient as a proxy for climate conditions. Specifically, we analyzed growth of bilberry (Vaccinium myrtillus L.) and its associated plant communities along an elevation gradient of ca. 600 vertical meters in the eastern European Alps. We assessed the ramet age, ring width and shoot length of V. myrtillus, and the shrub cover and plant diversity of the community. At higher elevation, ramets of V. myrtillus were younger, with shorter shoots and narrower growth rings. Shoot length was positively related to shrub cover, but shrub cover did not show a direct relationship with elevation. A greater shrub cover had a negative effect on species richness, also affecting species composition (beta-diversity), but these variables were not influenced by elevation. Our findings suggest that changes in plant diversity are driven directly by shrub cover and only indirectly by climate, here represented by changes in elevation.
Collapse
Affiliation(s)
- Francesco Boscutti
- Department of Agricultural, Food, Environmental and Animal Sciences, Plant Biology Unit, University of Udine, Udine, Italy
- * E-mail:
| | - Valentino Casolo
- Department of Agricultural, Food, Environmental and Animal Sciences, Plant Biology Unit, University of Udine, Udine, Italy
| | - Paola Beraldo
- Department of Agricultural, Food, Environmental and Animal Sciences, Plant Biology Unit, University of Udine, Udine, Italy
| | - Enrico Braidot
- Department of Agricultural, Food, Environmental and Animal Sciences, Plant Biology Unit, University of Udine, Udine, Italy
| | - Marco Zancani
- Department of Agricultural, Food, Environmental and Animal Sciences, Plant Biology Unit, University of Udine, Udine, Italy
| | - Christian Rixen
- WSL Institute for Forest, Snow and Landscape Research SLF, Unit Ecosystem Boundaries, Alpine Ecosystems, Davos, Switzerland
| |
Collapse
|
10
|
Anadon-Rosell A, Ninot JM, Palacio S, Grau O, Nogués S, Navarro E, Sancho MC, Carrillo E. Four years of experimental warming do not modify the interaction between subalpine shrub species. Oecologia 2017; 183:1167-1181. [PMID: 28190093 DOI: 10.1007/s00442-017-3830-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/23/2017] [Indexed: 11/27/2022]
Abstract
Climate warming can lead to changes in alpine plant species interactions through modifications in environmental conditions, which may ultimately cause drastic changes in plant communities. We explored the effects of 4 years of experimental warming with open-top chambers (OTC) on Vaccinium myrtillus performance and its interaction with neighbouring shrubs at the Pyrenean treeline ecotone. We examined the effects of warming on height, above-ground (AG) and below-ground (BG) biomass and the C and N concentration and isotope composition of V. myrtillus growing in pure stands or in stands mixed with Vaccinium uliginosum or Rhododendron ferrugineum. We also analysed variations in soil N concentrations, rhizosphere C/N ratios and the functional diversity of the microbial community, and evaluated whether warming altered the biomass, C and N concentration and isotope composition of V. uliginosum in mixed plots. Our results showed that warming induced positive changes in the AG growth of V. myrtillus but not BG, while V. uliginosum did not respond to warming. Vaccinium myrtillus performance did not differ between stand types under increased temperatures, suggesting that warming did not induce shifts in the interaction between V. myrtillus and its neighbouring species. These findings contrast with previous studies in which species interactions changed when temperature was modified. Our results show that species interactions can be less responsive to warming in natural plant communities than in removal experiments, highlighting the need for studies involving the natural assembly of plant species and communities when exploring the effect of environmental changes on plant-plant interactions.
Collapse
Affiliation(s)
- Alba Anadon-Rosell
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
- Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Josep M Ninot
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
- Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Sara Palacio
- Instituto Pirenaico de Ecología (IPE-CSIC), Av. Nuestra Señora de la Victoria 16, 22700, Jaca, Huesca, Spain
| | - Oriol Grau
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, 08193, Cerdanyola Del Vallès, Catalonia, Spain
- 2CREAF, 08193, Cerdanyola Del Vallès, Catalonia, Spain
| | - Salvador Nogués
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Enrique Navarro
- Instituto Pirenaico de Ecología (IPE-CSIC), Av. Montañana 1005, 50059, Saragossa, Spain
| | - M Carmen Sancho
- Instituto Pirenaico de Ecología (IPE-CSIC), Av. Montañana 1005, 50059, Saragossa, Spain
| | - Empar Carrillo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
- Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Dawes MA, Schleppi P, Hättenschwiler S, Rixen C, Hagedorn F. Soil warming opens the nitrogen cycle at the alpine treeline. GLOBAL CHANGE BIOLOGY 2017; 23:421-434. [PMID: 27207568 DOI: 10.1111/gcb.13365] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Climate warming may alter ecosystem nitrogen (N) cycling by accelerating N transformations in the soil, and changes may be especially pronounced in cold regions characterized by N-poor ecosystems. We investigated N dynamics across the plant-soil continuum during 6 years of experimental soil warming (2007-2012; +4 °C) at a Swiss high-elevation treeline site (Stillberg, Davos; 2180 m a.s.l.) featuring Larix decidua and Pinus uncinata. In the soil, we observed considerable increases in the NH4+ pool size in the first years of warming (by >50%), but this effect declined over time. In contrast, dissolved organic nitrogen (DON) concentrations in soil solutions from the organic layer increased under warming, especially in later years (maximum of +45% in 2012), suggesting enhanced DON leaching from the main rooting zone. Throughout the experimental period, foliar N concentrations showed species-specific but small warming effects, whereas δ15 N values showed a sustained increase in warmed plots that was consistent for all species analysed. The estimated total plant N pool size at the end of the study was greater (+17%) in warmed plots with Pinus but not in those containing Larix, with responses driven by trees. Irrespective of plot tree species identity, warming led to an enhanced N pool size of Vaccinium dwarf shrubs, no change in that of Empetrum hermaphroditum (dwarf shrub) and forbs, and a reduction in that of grasses, nonvascular plants, and fine roots. In combination, higher foliar δ15 N values and the transient response in soil inorganic N indicate a persistent increase in plant-available N and greater cumulative plant N uptake in warmer soils. Overall, greater N availability and increased DON concentrations suggest an opening of the N cycle with global warming, which might contribute to growth stimulation of some plant species while simultaneously leading to greater N losses from treeline ecosystems and possibly other cold biomes.
Collapse
Affiliation(s)
- Melissa A Dawes
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
- WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260, Davos Dorf, Switzerland
| | - Patrick Schleppi
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle & Evolutive (CEFE UMR 5175), CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 route de Mende, F-34293, Montpellier Cedex 5, France
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research - SLF, Flüelastrasse 11, CH-7260, Davos Dorf, Switzerland
| | - Frank Hagedorn
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
12
|
Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals. Oecologia 2016; 183:571-586. [DOI: 10.1007/s00442-016-3785-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
|
13
|
Haghania A, Aliabadian M, Sarhangzadeh J, Setoodehc A. Seasonal habitat suitability modeling and factors affecting the distribution of Asian Houbara in East Iran. Heliyon 2016; 2:e00142. [PMID: 27570839 PMCID: PMC4990664 DOI: 10.1016/j.heliyon.2016.e00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, maximum entropy models were developed in four seasons to evaluate habitat suitability and factors affecting Asian Houbara in Iran. Environmental variables used in modeling consisted of 42 environmental and climate variables for Nayband wildlife refuge and 36 environmental and climate variables for Petregan protected area. Also, seasonal overlap area were obtained using the ENM TOOLS software. The results showed that the most important factors affecting habitat suitability of the Asian Houbara in all seasons included the ratio of distance to hill, the type of Artemisia-Gymnocarpus, distance to the slope (8-12%) in the Nayband wildlife refuge, distance to the type of Artemisia aucheri, distance to the Land Passion, and distance to the dry land farming in the Petregan region. In summer, the most suitable habitat is Nayband but is Petergan during fall-winter. there is maximum overlap in summer, and the least overlap in the spring these areas. The results of this study can be used as a valuable tool in implementing conservation and management strategies, in order to increase desirable habitats in the eastern part of Iran.
Collapse
Affiliation(s)
- Ali Haghania
- Masters student of Environmental Engineering, Faculty of Environment, University of Yazd, Iran
| | - Mansour Aliabadian
- Associate Professor of Faculty of Science, Ferdowsi University of Mashhad, University of Mashhad, Iran
| | | | - Ahad Setoodehc
- Assistant Professor of Faculty of Environment, University of Yazd, Iran
| |
Collapse
|
14
|
Drought increases the freezing resistance of high-elevation plants of the Central Chilean Andes. Oecologia 2016; 181:1011-23. [DOI: 10.1007/s00442-016-3622-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/25/2016] [Indexed: 11/24/2022]
|