1
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
2
|
Wakhloo D, Oberhauser J, Madira A, Mahajani S. From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer's and Parkinson's diseases. Neural Regen Res 2022; 17:2606-2614. [PMID: 35662189 PMCID: PMC9165389 DOI: 10.4103/1673-5374.336138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
Two of the most common neurodegenerative disorders - Alzheimer's and Parkinson's diseases - are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to abnormal protein accumulation. The intracellular aggregation of hyper-phosphorylated tau and the extracellular aggregation of amyloid beta plaques form the basis of Alzheimer's disease pathology. The major hallmark of Parkinson's disease is the loss of dopaminergic neurons in the substantia nigra pars compacta, following the formation of Lewy bodies, which consists primarily of alpha-synuclein aggregates. However, the discrete mechanisms that contribute to neurodegeneration in these disorders are still poorly understood. Both neuronal loss and impaired adult neurogenesis have been reported in animal models of these disorders. Yet these findings remain subject to frequent debate due to a lack of conclusive evidence in post mortem brain tissue from human patients. While some publications provide significant findings related to axonal regeneration in Alzheimer's and Parkinson's diseases, they also highlight the limitations and obstacles to the development of neuroregenerative therapies. In this review, we summarize in vitro and in vivo findings related to neurogenesis, neuroregeneration and neurodegeneration in the context of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Debia Wakhloo
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jane Oberhauser
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Angela Madira
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sameehan Mahajani
- Deparment of Neuropathology, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Guo Z, Tong C, Jacków J, Doucet YS, Abaci HE, Zeng W, Hansen C, Hayashi R, DeLorenzo D, Rami A, Pappalardo A, Lumpkin EA, Christiano AM. Engineering human skin model innervated with itch sensory neuron-like cells differentiated from induced pluripotent stem cells. Bioeng Transl Med 2022; 7:e10247. [PMID: 35111948 PMCID: PMC8780951 DOI: 10.1002/btm2.10247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD), driven by interleukins (IL-4/IL-13), is a chronic inflammatory skin disease characterized by intensive pruritus. However, it is unclear how immune signaling and sensory response pathways cross talk with each other. We differentiated itch sensory neuron-like cells (ISNLCs) from iPSC lines. These ISNLCs displayed neural markers and action potentials and responded specifically to itch-specific stimuli. These ISNLCs expressed receptors specific for IL-4/IL-13 and were activated directly by the two cytokines. We successfully innervated these ISNLCs into full thickness human skin constructs. These innervated skin grafts can be used in clinical applications such as wound healing. Moreover, the availability of such innervated skin models will be valuable to develop drugs to treat skin diseases such as AD.
Collapse
Affiliation(s)
- Zongyou Guo
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Chi‐Kun Tong
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Joanna Jacków
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Yanne S. Doucet
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Hasan E. Abaci
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Wangyong Zeng
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Corey Hansen
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Ryota Hayashi
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | | | - Avina Rami
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | | | | | | |
Collapse
|
4
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Adami R, Bottai D. Spinal Muscular Atrophy Modeling and Treatment Advances by Induced Pluripotent Stem Cells Studies. Stem Cell Rev Rep 2020; 15:795-813. [PMID: 31863335 DOI: 10.1007/s12015-019-09910-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal Muscular Atrophy (SMA) is a neurodegenerative disease characterized by specific and predominantly lower motor neuron (MN) loss. SMA is the main reason for infant death, while about one in 40 children born is a healthy carrier. SMA is caused by decreased levels of production of a ubiquitously expressed gene: the survival motor neuron (SMN). All SMA patients present mutations of the telomeric SMN1 gene, but many copies of a centromeric, partially functional paralog gene, SMN2, can somewhat compensate for the SMN1 deficiency, scaling inversely with phenotypic harshness. Because the study of neural tissue in and from patients presents too many challenges and is very often not feasible; the use of animal models, such as the mouse, had a pivotal impact in our understanding of SMA pathology but could not portray totally satisfactorily the elaborate regulatory mechanisms that are present in higher animals, particularly in humans. And while recent therapeutic achievements have been substantial, especially for very young infants, some issues should be considered for the treatment of older patients. An alternative way to study SMA, and other neurological pathologies, is the use of induced pluripotent stem cells (iPSCs) derived from patients. In this work, we will present a wide analysis of the uses of iPSCs in SMA pathology, starting from basic science to their possible roles as therapeutic tools.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy
| | - Daniele Bottai
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy.
| |
Collapse
|
6
|
Pacitti D, Privolizzi R, Bax BE. Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Front Cell Neurosci 2019; 13:129. [PMID: 31024259 PMCID: PMC6465581 DOI: 10.3389/fncel.2019.00129] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
With 100 billion neurons and 100 trillion synapses, the human brain is not just the most complex organ in the human body, but has also been described as "the most complex thing in the universe." The limited availability of human living brain tissue for the study of neurogenesis, neural processes and neurological disorders has resulted in more than a century-long strive from researchers worldwide to model the central nervous system (CNS) and dissect both its striking physiology and enigmatic pathophysiology. The invaluable knowledge gained with the use of animal models and post mortem human tissue remains limited to cross-species similarities and structural features, respectively. The advent of human induced pluripotent stem cell (hiPSC) and 3-D organoid technologies has revolutionised the approach to the study of human brain and CNS in vitro, presenting great potential for disease modelling and translational adoption in drug screening and regenerative medicine, also contributing beneficially to clinical research. We have surveyed more than 100 years of research in CNS modelling and provide in this review an historical excursus of its evolution, from early neural tissue explants and organotypic cultures, to 2-D patient-derived cell monolayers, to the latest development of 3-D cerebral organoids. We have generated a comprehensive summary of CNS modelling techniques and approaches, protocol refinements throughout the course of decades and developments in the study of specific neuropathologies. Current limitations and caveats such as clonal variation, developmental stage, validation of pluripotency and chromosomal stability, functional assessment, reproducibility, accuracy and scalability of these models are also discussed.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- College of Medicine and Health, St Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Riccardo Privolizzi
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, United Kingdom
| | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London, United Kingdom
- *Correspondence: Bridget E. Bax,
| |
Collapse
|
7
|
Badiola-Mateos M, Hervera A, Del Río JA, Samitier J. Challenges and Future Prospects on 3D in-vitro Modeling of the Neuromuscular Circuit. Front Bioeng Biotechnol 2018; 6:194. [PMID: 30622944 PMCID: PMC6297173 DOI: 10.3389/fbioe.2018.00194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Movement of skeletal-muscle fibers is generated by the coordinated action of several cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann cells, astrocytes, microglia, and muscle-cells). Failures in any part of this circuit could impede or hinder coordinated muscle movement and cause a neuromuscular disease (NMD) or determine its severity. Studying fragments of the circuit cannot provide a comprehensive and complete view of the pathological process. We trace the historic developments of studies focused on in-vitro modeling of the spinal-locomotion circuit and how bioengineered innovative technologies show advantages for an accurate mimicking of physiological conditions of spinal-locomotion circuit. New developments on compartmentalized microfluidic culture systems (cμFCS), the use of human induced pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address limitations of current study models and three main challenges on neuromuscular studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved and the evaluation of independent and interdependent roles of each one; (ii) mimic the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo; and (iii) develop, tune, implement, and combine cμFCS, hiPSC, and 3D-culture technologies to ultimately create patient-specific complete, translational, and reliable NMD in-vitro model. Overcoming these challenges would significantly facilitate understanding the events taking place in NMDs and accelerate the process of finding new therapies.
Collapse
Affiliation(s)
- Maider Badiola-Mateos
- Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain.,Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia-Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| |
Collapse
|
8
|
Stabley DL, Holbrook J, Harris AW, Swoboda KJ, Crawford TO, Sol-Church K, Butchbach MER. Establishing a reference dataset for the authentication of spinal muscular atrophy cell lines using STR profiling and digital PCR. Neuromuscul Disord 2017; 27:439-446. [PMID: 28284873 PMCID: PMC5403612 DOI: 10.1016/j.nmd.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022]
Abstract
Fibroblasts and lymphoblastoid cell lines (LCLs) derived from individuals with spinal muscular atrophy (SMA) have been and continue to be essential for translational SMA research. Authentication of cell lines helps ensure reproducibility and rigor in biomedical research. This quality control measure identifies mislabeling or cross-contamination of cell lines and prevents misinterpretation of data. Unfortunately, authentication of SMA cell lines used in various studies has not been possible because of a lack of a reference. In this study, we provide said reference so that SMA cell lines can be subsequently authenticated. We use short tandem repeat (STR) profiling and digital PCR (dPCR), which quantifies SMN1 and SMN2 copy numbers, to generate molecular identity codes for fibroblasts and LCLs that are commonly used in SMA research. Using these molecular identity codes, we clarify the familial relationships within a set of fibroblasts commonly used in SMA research. This study presents the first cell line reference set for the SMA research community and demonstrates its usefulness for re-identification and authentication of lines commonly used as in vitro models for future studies.
Collapse
Affiliation(s)
- Deborah L Stabley
- Nemours Biomolecular Core Laboratory, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Jennifer Holbrook
- Nemours Biomolecular Core Laboratory, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Ashlee W Harris
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Kathryn J Swoboda
- Neurogenetics Research Program, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Katia Sol-Church
- Nemours Biomolecular Core Laboratory, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
9
|
Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiol Dis 2017; 102:11-20. [PMID: 28161391 DOI: 10.1016/j.nbd.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
10
|
Schwab AJ, Ebert AD. Neurite Aggregation and Calcium Dysfunction in iPSC-Derived Sensory Neurons with Parkinson's Disease-Related LRRK2 G2019S Mutation. Stem Cell Reports 2016; 5:1039-1052. [PMID: 26651604 PMCID: PMC4682343 DOI: 10.1016/j.stemcr.2015.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/15/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most-common genetic determinants of Parkinson’s disease (PD). The G2019S mutation is detected most frequently and is associated with increased kinase activity. Whereas G2019S mutant dopamine neurons exhibit neurite elongation deficits, the effect of G2019S on other neuronal subtypes is unknown. As PD patients also suffer from non-motor symptoms that may be unrelated to dopamine neuron loss, we used induced pluripotent stem cells (iPSCs) to assess morphological and functional properties of peripheral sensory neurons. LRRK2 G2019S iPSC-derived sensory neurons exhibited normal neurite length but had large microtubule-containing neurite aggregations. Additionally, LRRK2 G2019S iPSC-derived sensory neurons displayed altered calcium dynamics. Treatment with LRRK2 kinase inhibitors resulted in significant, but not complete, morphological and functional rescue. These data indicate a role for LRRK2 kinase activity in sensory neuron structure and function, which when disrupted, may lead to sensory neuron deficits in PD. LRRK2 iPSC sensory neurons show neurite aggregations and abnormal calcium dynamics LRRK2 iPSC sensory neuron defects are distinct from the dopamine neuron defects Kinase inhibition of LRRK2 partially restored sensory neuron structure and function Abnormal sensory neuron phenotypes may relate to non-motor symptoms observed in PD
Collapse
Affiliation(s)
- Andrew J Schwab
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
11
|
Barral S, Kurian MA. Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Front Mol Neurosci 2016; 9:78. [PMID: 27656126 PMCID: PMC5012159 DOI: 10.3389/fnmol.2016.00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022] Open
Abstract
The study of neurological disorders often presents with significant challenges due to the inaccessibility of human neuronal cells for further investigation. Advances in cellular reprogramming techniques, have however provided a new source of human cells for laboratory-based research. Patient-derived induced pluripotent stem cells (iPSCs) can now be robustly differentiated into specific neural subtypes, including dopaminergic, inhibitory GABAergic, motorneurons and cortical neurons. These neurons can then be utilized for in vitro studies to elucidate molecular causes underpinning neurological disease. Although human iPSC-derived neuronal models are increasingly regarded as a useful tool in cell biology, there are a number of limitations, including the relatively early, fetal stage of differentiated cells and the mainly two dimensional, simple nature of the in vitro system. Furthermore, clonal variation is a well-described phenomenon in iPSC lines. In order to account for this, robust baseline data from multiple control lines is necessary to determine whether a particular gene defect leads to a specific cellular phenotype. Over the last few years patient-derived neural cells have proven very useful in addressing several mechanistic questions related to central nervous system diseases, including early-onset neurological disorders of childhood. Many studies report the clinical utility of human-derived neural cells for testing known drugs with repurposing potential, novel compounds and gene therapies, which then can be translated to clinical reality. iPSCs derived neural cells, therefore provide great promise and potential to gain insight into, and treat early-onset neurological disorders.
Collapse
Affiliation(s)
- Serena Barral
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College London London, UK
| | - Manju A Kurian
- Neurogenetics Group, Molecular Neurosciences, UCL Institute of Child Health,University College LondonLondon, UK; Department of Neurology, Great Ormond Street HospitalLondon, UK
| |
Collapse
|
12
|
Simone C, Ramirez A, Bucchia M, Rinchetti P, Rideout H, Papadimitriou D, Re DB, Corti S. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications? Cell Mol Life Sci 2016; 73:1003-20. [PMID: 26681261 PMCID: PMC4756905 DOI: 10.1007/s00018-015-2106-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/16/2023]
Abstract
Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. Even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It has been demonstrated that non-motor neuronal cells are also involved in disease pathogenesis and could have important therapeutic implications. For these reasons it will be crucial to take this evidence into account for the clinical translation of the novel therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Simone
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Agnese Ramirez
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Bucchia
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Paola Rinchetti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Hardy Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Dimitra Papadimitriou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, 115 27, Athens, Greece
| | - Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Stefania Corti
- Neuroscience Section, Neurology Unit, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
13
|
Valetdinova KR, Medvedev SP, Zakian SM. Model systems of motor neuron diseases as a platform for studying pathogenic mechanisms and searching for therapeutic agents. Acta Naturae 2015; 7:19-36. [PMID: 25926999 PMCID: PMC4410393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Over the past 30 years, many molecular genetic mechanisms underlying motor neuron diseases (MNDs) have been discovered and studied. Among these diseases, amyotrophic lateral sclerosis (ALS), which causes the progressive degeneration and death of central and peripheral motor neurons, and spinal muscular atrophy (SMA), which is one of the inherited diseases that prevail among hereditary diseases in the pattern of child mortality, hold a special place. These diseases, like most nerve, neurodegenerative, and psychiatric diseases, cannot be treated appropriately at present. Artificial model systems, especially those that are based on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are of paramount importance in searching for adequate therapeutic agents, as well as for a deep understanding of the MND pathogenesis. This review is mainly focused on the recent advance in the development of and research into cell and animal models of ALS and SMA. The main issues concerning the use of cellular technologies in biomedical applications are also described.
Collapse
Affiliation(s)
- K. R. Valetdinova
- Institute of Cytology and Genetics, Prospekt Lavrentyeva, 10, Novosibirsk, 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Prospekt Lavrentyeva, 8, Novosibirsk, 630090, Russia
- Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Rechkunovskaya Str., 15, Novosibirsk, 630055, Russia
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, 630090, Russia
| | - S. P. Medvedev
- Institute of Cytology and Genetics, Prospekt Lavrentyeva, 10, Novosibirsk, 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Prospekt Lavrentyeva, 8, Novosibirsk, 630090, Russia
- Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Rechkunovskaya Str., 15, Novosibirsk, 630055, Russia
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, 630090, Russia
| | - S. M. Zakian
- Institute of Cytology and Genetics, Prospekt Lavrentyeva, 10, Novosibirsk, 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Prospekt Lavrentyeva, 8, Novosibirsk, 630090, Russia
- Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Rechkunovskaya Str., 15, Novosibirsk, 630055, Russia
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, 630090, Russia
| |
Collapse
|