1
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Chen L, Patil S, Barbon J, Waire J, Laroux S, McCarthy D, Pratibha M, Zhong S, Dong F, Orsi K, Nguyen G, Yang Y, Crosbie N, Dominguez E, Deora A, Veldman G, Westmoreland S, Jin L, Radstake T, White K, Wei HJ. Agonistic anti-DCIR antibody inhibits ITAM-mediated inflammatory signaling and promotes immune resolution. JCI Insight 2024; 9:e176064. [PMID: 38781017 PMCID: PMC11383175 DOI: 10.1172/jci.insight.176064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
DC inhibitory receptor (DCIR) is a C-type lectin receptor selectively expressed on myeloid cells, including monocytes, macrophages, DCs, and neutrophils. Its role in immune regulation has been implicated in murine models and human genome-wide association studies, suggesting defective DCIR function associates with increased susceptibility to autoimmune diseases such as rheumatoid arthritis, lupus, and Sjögren's syndrome. However, little is known about the mechanisms underlying DCIR activation to dampen inflammation. Here, we developed anti-DCIR agonistic antibodies that promote phosphorylation on DCIR's immunoreceptor tyrosine-based inhibitory motifs and recruitment of SH2 containing protein tyrosine phosphatase-2 for reducing inflammation. We also explored the inflammation resolution by depleting DCIR+ cells with antibodies. Utilizing a human DCIR-knock-in mouse model, we validated the antiinflammatory properties of the agonistic anti-DCIR antibody in experimental peritonitis and colitis. These findings provide critical evidence for targeting DCIR to develop transformative therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Liang Chen
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Suresh Patil
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Jeffrey Barbon
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - James Waire
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Stephen Laroux
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Donna McCarthy
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Mishra Pratibha
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Suju Zhong
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Feng Dong
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Karin Orsi
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Gunarso Nguyen
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Yingli Yang
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Nancy Crosbie
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Eric Dominguez
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Arun Deora
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | | | | | - Liang Jin
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Timothy Radstake
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Kevin White
- AbbVie, Cambridge Research Center, Cambridge, Massachusetts, USA
| | - Hsi-Ju Wei
- AbbVie Bay Area, South San Francisco, California, USA
| |
Collapse
|
3
|
Trimaglio G, Sneperger T, Raymond BBA, Gilles N, Näser E, Locard-Paulet M, Ijsselsteijn ME, Brouwer TP, Ecalard R, Roelands J, Matsumoto N, Colom A, Habch M, de Miranda NFCC, Vergnolle N, Devaud C, Neyrolles O, Rombouts Y. The C-type lectin DCIR contributes to the immune response and pathogenesis of colorectal cancer. Sci Rep 2024; 14:7199. [PMID: 38532110 DOI: 10.1038/s41598-024-57941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Development and progression of malignancies are accompanied and influenced by alterations in the surrounding immune microenvironment. Understanding the cellular and molecular interactions between immune cells and cancer cells has not only provided important fundamental insights into the disease, but has also led to the development of new immunotherapies. The C-type lectin Dendritic Cell ImmunoReceptor (DCIR) is primarily expressed by myeloid cells and is an important regulator of immune homeostasis, as demonstrated in various autoimmune, infectious and inflammatory contexts. Yet, the impact of DCIR on cancer development remains largely unknown. Analysis of available transcriptomic data of colorectal cancer (CRC) patients revealed that high DCIR gene expression is associated with improved patients' survival, immunologically "hot" tumors and high immunologic constant of rejection, thus arguing for a protective and immunoregulatory role of DCIR in CRC. In line with these correlative data, we found that deficiency of DCIR1, the murine homologue of human DCIR, leads to the development of significantly larger tumors in an orthotopic murine model of CRC. This phenotype is accompanied by an altered phenotype of tumor-associated macrophages (TAMs) and a reduction in the percentage of activated effector CD4+ and CD8+ T cells in CRC tumors of DCIR1-deficient mice. Overall, our results show that DCIR promotes antitumor immunity in CRC, making it an attractive target for the future development of immunotherapies to fight the second deadliest cancer in the world.
Collapse
Affiliation(s)
- Giulia Trimaglio
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tamara Sneperger
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Benjamin B A Raymond
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nelly Gilles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Näser
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Thomas P Brouwer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Romain Ecalard
- INSERM US006 ANEXPLO/CREFRE, Purpan Hospital, Toulouse, France
| | - Jessica Roelands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Naoki Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - André Colom
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Myriam Habch
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Christel Devaud
- Institut de Recherche en Santé Digestive, IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yoann Rombouts
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Kottom TJ, Carmona EM, Schaefbauer K, Limper AH. CLEC4A and CLEC12B C-type lectin receptors mediate interactions with Pneumocystis cell wall components. J Med Microbiol 2023; 72. [PMID: 37294293 DOI: 10.1099/jmm.0.001714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Introduction. C-type lectin receptors (CLRs) are prominently expressed on myeloid cells where they perform multiple functions including serving as pattern recognition receptors (PRRs) to drive innate as well as adaptive immunity to pathogens. Depending on the presence of a tyrosine-based signalling motif, CLR-microbial pathogen engagement may result in either anti- or pro-inflammatory signalling.Impact statement. In this manuscript, we report our laboratory study of two novel CLRs that recognize Pneumocystis murina cell wall homogenates (CWH) and a purified Pneumocystis carinii cell wall fraction (CWF).Aim. To study the potential of newly generated hFc-CLR fusions on binding to Pneumocystis murina CWHs and P. carinii CWFs and subsequent downstream inflammatory signalling analysis.Methods. Newly generated hFc-CLR fusion CLEC4A and CLEC12B were screened against P. murina CWHs and P. carinii CWFs preparations via modified ELISA. Immunofluorescence assay (IFA) was utilized to visualize hFc-CLR fusion binding against intact fixed fungal life forms to verify results. Quantitative PCR (q-PCR) analysis of lung mRNA from the mouse immunosuppressed Pneumocystis pneumonia (PCP) model versus uninfected mice was employed to detect possible changes in the respective Clec4a and Clec12b transcripts. Lastly, siRNA technology of both CLRs was conducted to determine effects on downstream inflammatory events in mouse macrophages stimulated in the presence of P. carinii CWFs.Results. We determined that both CLEC4A and CLEC12B hFc-CLRs displayed significant binding with P. murina CWHs and P. carinii CWFs. Binding events showed significant binding to both curdlan and laminarin, both polysaccharides containing β-(1,3) glucans as well as N-acetylglucosamine (GlcNAc) residues and modest yet non-significant binding to the negative control carbohydrate dextran. IFA with both CLR hFc-fusions against whole P. murina life forms corroborated these findings. Lastly, we surveyed the mRNA expression profiles of both CLRs tested above in the mouse immunosuppressed Pneumocystis pneumonia (PCP) model and determined that both CLRs were significantly up regulated during infection. Lastly, siRNA of both CLRs in the mouse RAW macrophage cell line was conducted and results demonstrated that silencing of Clec4a resulted in no significant changes in TNF-alpha generation in P. carinii CWF stimulated macrophages. On the contrary, silencing of Clec12b CLR resulted in significant decreases in TNF-alpha in RAW cells stimulated with the same CWF.Conclusion. The data presented here provide new members of the CLRs family recognizing Pneumocystis. Future studies using CLEC4A and/or CLEC12B deficient mice in the PCP mouse model should provide further insights into the host immunological response to Pneumocystis.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Kyle Schaefbauer
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| |
Collapse
|
5
|
The Potential Therapeutic Role of Lactobacillaceae rhamnosus for Treatment of Inflammatory Bowel Disease. Foods 2023; 12:foods12040692. [PMID: 36832767 PMCID: PMC9955806 DOI: 10.3390/foods12040692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous group of diseases associated with chronic inflammation of the intestinal tract, and is highly prevalent worldwide. Although its origin is not yet fully understood, new evidence emphasizes that environmental factors, especially dietary factors and intestinal microbiota disorders are key triggers of IBD. Probiotics, such as Lactobacillaceae spp., play an essential role in human health as they exert beneficial effects on the composition of the human gastrointestinal microbial community and immune system. Probiotic-based therapies have been shown to be effective in alleviating IBD. Among these, Lactobacillaceae rhamnosus is one of the most widely used strains. L. rhamnosus is widely present in the intestines of healthy individuals; it regulates the intestinal immune system and reduces inflammation through a variety of mechanisms. The purpose of this study was to identify scientific evidence related to L. rhamnosus and IBD, review and summarize the results, and discuss the possible mechanisms of action as a starting point for future research on IBD treatment.
Collapse
|
6
|
Hatinguais R, Willment JA, Brown GD. C-type lectin receptors in antifungal immunity: Current knowledge and future developments. Parasite Immunol 2023; 45:e12951. [PMID: 36114607 PMCID: PMC10078331 DOI: 10.1111/pim.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
C-type lectin receptors (CLRs) constitute a category of innate immune receptors that play an essential role in the antifungal immune response. For over two decades, scientists have uncovered what are the fungal ligands recognized by CLRs and how these receptors initiate the immune response. Such studies have allowed the identification of genetic polymorphisms in genes encoding for CLRs or for proteins involved in the signalisation cascade they trigger. Nevertheless, our understanding of how these receptors functions and the full extent of their function during the antifungal immune response is still at its infancy. In this review, we summarize some of the main findings about CLRs in antifungal immunity and discuss what the future might hold for the field.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Li M, Zhang R, Li J, Li J. The Role of C-Type Lectin Receptor Signaling in the Intestinal Microbiota-Inflammation-Cancer Axis. Front Immunol 2022; 13:894445. [PMID: 35619716 PMCID: PMC9127077 DOI: 10.3389/fimmu.2022.894445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
As a subset of pattern recognition receptors (PRRs), C-type lectin-like receptors (CLRs) are mainly expressed by myeloid cells as both transmembrane and soluble forms. CLRs recognize not only pathogen associated molecular patterns (PAMPs), but also damage-associated molecular patterns (DAMPs) to promote innate immune responses and affect adaptive immune responses. Upon engagement by PAMPs or DAMPs, CLR signaling initiates various biological activities in vivo, such as cytokine secretion and immune cell recruitment. Recently, several CLRs have been implicated as contributory to the pathogenesis of intestinal inflammation, which represents a prominent risk factor for colorectal cancer (CRC). CLRs function as an interface among microbiota, intestinal epithelial barrier and immune system, so we firstly discussed the relationship between dysbiosis caused by microbiota alteration and inflammatory bowel disease (IBD), then focused on the role of CLRs signaling in pathogenesis of IBD (including Mincle, Dectin-3, Dectin-1, DCIR, DC-SIGN, LOX-1 and their downstream CARD9). Given that CLRs mediate intricate inflammatory signals and inflammation plays a significant role in tumorigenesis, we finally highlight the specific effects of CLRs on CRC, especially colitis-associated cancer (CAC), hoping to open new horizons on pathogenesis and therapeutics of IBD and CAC.
Collapse
Affiliation(s)
- Muhan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runfeng Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Abuqwider J, Altamimi M, Mauriello G. Limosilactobacillus reuteri in Health and Disease. Microorganisms 2022; 10:microorganisms10030522. [PMID: 35336098 PMCID: PMC8953724 DOI: 10.3390/microorganisms10030522] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Limosilactobacillus reuteri is a microorganism with valuable probiotic qualities that has been widely employed in humans to promote health. It is a well-studied probiotic bacterium that exerts beneficial health effects due to several metabolic mechanisms that enhance the production of anti-inflammatory cytochines and modulate the gut microbiota by the production of antimicrobial molecules, including reuterin. This review provides an overview of the data that support the role of probiotic properties, and the antimicrobial and immunomodulatory effects of some L. reuteri strains in relation to their metabolite production profile on the amelioration of many diseases and disorders. Although the results discussed in this paper are strain dependent, they show that L. reuteri, by different mechanisms and various metabolites, may control body weight and obesity, improve insulin sensitivity and glucose homeostasis, increase gut integrity and immunomodulation, and attenuate hepatic disorders. Gut microbiota modulation by ingesting probiotic L. reuteri strains could be a promising preventative and therapeutic approach against many diseases and disorders.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
- Correspondence: ; Tel.: +39-081-2539452
| |
Collapse
|
9
|
Fischer S, Stegmann F, Gnanapragassam VS, Lepenies B. From structure to function – Ligand recognition by myeloid C-type lectin receptors. Comput Struct Biotechnol J 2022; 20:5790-5812. [DOI: 10.1016/j.csbj.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
|
10
|
C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep 2021; 11:23819. [PMID: 34893671 PMCID: PMC8664856 DOI: 10.1038/s41598-021-03201-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotropic viruses target the brain and contribute to neurologic diseases. C-type lectin receptors (CLRs) are pattern recognition receptors that recognize carbohydrate structures on endogenous molecules and pathogens. The myeloid CLR dendritic cell immunoreceptor (DCIR) is expressed by antigen presenting cells and mediates inhibitory intracellular signalling. To investigate the effect of DCIR on neurotropic virus infection, mice were infected experimentally with Theiler’s murine encephalomyelitis virus (TMEV). Brain tissue of TMEV-infected C57BL/6 mice and DCIR−/− mice were analysed by histology, immunohistochemistry and RT-qPCR, and spleen tissue by flow cytometry. To determine the impact of DCIR deficiency on T cell responses upon TMEV infection in vitro, antigen presentation assays were utilised. Genetic DCIR ablation in C57BL/6 mice was associated with an ameliorated hippocampal integrity together with reduced cerebral cytokine responses and reduced TMEV loads in the brain. Additionally, absence of DCIR favoured increased peripheral cytotoxic CD8+ T cell responses following TMEV infection. Co-culture experiments revealed that DCIR deficiency enhances the activation of antigen-specific CD8+ T cells by virus-exposed dendritic cells (DCs), indicated by increased release of interleukin-2 and interferon-γ. Results suggest that DCIR deficiency has a supportive influence on antiviral immune mechanisms, facilitating virus control in the brain and ameliorates neuropathology during acute neurotropic virus infection.
Collapse
|
11
|
Toxocara canis and Toxocara cati Somatic and Excretory-Secretory Antigens Are Recognised by C-Type Lectin Receptors. Pathogens 2021; 10:pathogens10030321. [PMID: 33803269 PMCID: PMC8001263 DOI: 10.3390/pathogens10030321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
Toxocara canis and Toxocara cati, the worldwide occurring intestinal roundworms of canids and felids, represent an important public health threat due to various disease manifestations in humans. Host recognition of pathogens is mediated by pattern recognition receptors (PRRs). Myeloid C-type lectin receptors (CLRs) are PRRs and recognise carbohydrate structures of various pathogens. As Toxocara excretory-secretory products (TES) are predominantly composed of glycoconjugates, they represent suitable targets for CLRs. However, the range of host-derived CLRs recognising Toxocara spp. is still unknown. Using a CLR-hFc fusion protein library, T. canis and T. cati L3 somatic antigens (TSOM) were bound by a variety of CLRs in enzyme-linked immunosorbent assay (ELISA), while their TES products interacted with macrophage galactose-type lectin-1 (MGL-1). Two prominent candidate CLRs, MGL-1 and macrophage C-type lectin (MCL), were selected for further binding studies. Immunofluorescence microscopy revealed binding of MGL-1 to the oral aperture of L3. Immunoblot experiments identified distinct protein fractions representing potential ligands for MGL-1 and MCL. To evaluate how these interactions influence the host immune response, bone marrow-derived dendritic cell (BMDC) assays were performed, showing MCL-dependent T. cati-mediated cytokine production. In conclusion, MGL-1 and MCL are promising candidates for immune modulation during Toxocara infection, deserving further investigation in the future.
Collapse
|
12
|
Dierking K, Pita L. Receptors Mediating Host-Microbiota Communication in the Metaorganism: The Invertebrate Perspective. Front Immunol 2020; 11:1251. [PMID: 32612612 PMCID: PMC7308585 DOI: 10.3389/fimmu.2020.01251] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Multicellular organisms live in close association with a plethora of microorganism, which have a profound effect on multiple host functions. As such, the microbiota and its host form an intimate functional entity, termed the metaorganism or holobiont. But how does the metaorganism communicate? Which receptors recognize microbial signals, mediate the effect of the microbiota on host physiology or regulate microbiota composition and homeostasis? In this review we provide an overview on the function of different receptor classes in animal host-microbiota communication. We put a special focus on invertebrate hosts, including both traditional invertebrate models such as Drosophila melanogaster and Caenorhabditis elegans and “non-model” invertebrates in microbiota research. Finally, we highlight the potential of invertebrate systems in studying mechanism of host-microbiota interactions.
Collapse
Affiliation(s)
- Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Lucía Pita
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
13
|
Wang H, Zhou C, Huang J, Kuai X, Shao X. The potential therapeutic role of Lactobacillus reuteri for treatment of inflammatory bowel disease. Am J Transl Res 2020; 12:1569-1583. [PMID: 32509162 PMCID: PMC7270012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal disease of unknown etiology. However, recent studies have established a pathological role of disordered intestinal microbiota and immune dysregulation. Clinical studies have suggested that the reconstruction of the normal intestinal flora in patients with IBD can reverse the dysbiosis caused by genetic, environmental, dietary, or antibiotic factors to ameliorate the symptoms of IBD. Lactobacillus reuteri is widely present in the intestines of healthy individuals and regulates the intestinal immune system, reducing inflammation through multiple mechanisms. This review summarizes the current knowledge of the role of L. reuteri in maintaining intestinal homeostasis and considers its possible value as a new therapeutic agent for patients with IBD.
Collapse
Affiliation(s)
- Huiyu Wang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| | - Junxiang Huang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| | - Xiaoyi Kuai
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Network Aggregation to Enhance Results Derived from Multiple Analytics. IFIP ADVANCES IN INFORMATION AND COMMUNICATION TECHNOLOGY 2020. [PMCID: PMC7256384 DOI: 10.1007/978-3-030-49161-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The more complex data are, the higher the number of possibilities to extract partial information from those data. These possibilities arise by adopting different analytic approaches. The heterogeneity among these approaches and in particular the heterogeneity in results they produce are challenging for follow-up studies, including replication, validation and translational studies. Furthermore, they complicate the interpretation of findings with wide-spread relevance. Here, we take the example of statistical epistasis networks derived from genome-wide association studies with single nucleotide polymorphisms as nodes. Even though we are only dealing with a single data type, the epistasis detection problem suffers from many pitfalls, such as the wide variety of analytic tools to detect them, each highlighting different aspects of epistasis and exhibiting different properties in maintaining false positive control. To reconcile different network views to the same problem, we considered 3 network aggregation methods and discussed their performance in the context of epistasis network aggregation. We furthermore applied a latent class method as best performer to real-life data on inflammatory bowel disease (IBD) and highlighted its benefits to increase our understanding about IBD underlying genetic architectures.
Collapse
|
15
|
Li TH, Liu L, Hou YY, Shen SN, Wang TT. C-type lectin receptor-mediated immune recognition and response of the microbiota in the gut. Gastroenterol Rep (Oxf) 2019; 7:312-321. [PMID: 31687150 PMCID: PMC6821170 DOI: 10.1093/gastro/goz028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
C-type lectin receptors (CLRs) are powerful pattern-recognition receptors that discern ‘self’ and ‘non-self’ in our body and protect us from invasive pathogens by mediating immune recognition and response. The gastrointestinal tract is very important for the maintenance of homeostasis; it is the largest shelter for the billions of microorganisms in the body and CLRs play a crucial regulatory role in this system. This study focuses on several CLRs, including Dectin-1, Dectin-2, Dectin-3 and Mincle. We summarize the roles of CLRs in maintaining gastrointestinal immune-system homeostasis, especially their functions in mediating immune recognition and responses in the gut, discuss their relationships to some diseases, highlight the significance of CLR-mediated sensing of microbial and non-microbial compounds in the gut immune system and identify new therapeutic targets.
Collapse
Affiliation(s)
- Tian-Hang Li
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ling Liu
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ya-Yi Hou
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Su-Nan Shen
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Ting-Ting Wang
- Immunology and Reproduction Biology Lab, Medical School of Nanjing University, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, P. R. China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
16
|
Tang C, Makusheva Y, Sun H, Han W, Iwakura Y. Myeloid C-type lectin receptors in skin/mucoepithelial diseases and tumors. J Leukoc Biol 2019; 106:903-917. [PMID: 30964564 PMCID: PMC6850291 DOI: 10.1002/jlb.2ri0119-031r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022] Open
Abstract
Myeloid C‐type lectin receptors (CLRs), which consist of an extracellular carbohydrate recognition domain and intracellular signal transducing motif such as the immunoreceptor tyrosine‐based activation motif (ITAM) or immunoreceptor tyrosine‐based inhibitory motif (ITIM), are innate immune receptors primarily expressed on myeloid lineage cells such as dendritic cells (DCs) and Mϕs. CLRs play important roles in host defense against infection by fungi and bacteria by recognizing specific carbohydrate components of these pathogens. However, these immune receptors also make important contributions to immune homeostasis of mucosa and skin in mammals by recognizing components of microbiota, as well as by recognizing self‐components such as alarmins from dead cells and noncanonical non‐carbohydrate ligands. CLR deficiency not only induces hypersensitivity to infection, but also causes dysregulation of muco‐cutaneous immune homeostasis, resulting in the development of allergy, inflammation, autoimmunity, and tumors. In this review, we introduce recent discoveries regarding the roles of myeloid CLRs in the immune system exposed to the environment, and discuss the roles of these lectin receptors in the development of colitis, asthma, psoriasis, atopic dermatitis, and cancer. Although some CLRs are suggested to be involved in the development of these diseases, the function of CLRs and their ligands still largely remain to be elucidated.
Collapse
Affiliation(s)
- Ce Tang
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Yulia Makusheva
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Haiyang Sun
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Wei Han
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
17
|
Schirbel A, Shouval DS, Hebecker B, Hube B, Sturm A, Werner L. Intestinal epithelial cells and T cells differentially recognize and respond toCandida albicansyeast and hypha. Eur J Immunol 2018; 48:1826-1837. [DOI: 10.1002/eji.201847586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/26/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Anja Schirbel
- Department of Medicine, Division of Gastroenterology and Hepatology, Charité Campus Mitte; Universitätsmedizin Berlin; Germany
| | - Dror S. Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital; Sheba Medical Center; Israel
- Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Betty Hebecker
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Infection Biology; Hans Knoell Institute; Jena Germany
- Aberdeen Fungal Group, MRC Centre for Medical Mycology; University of Aberdeen
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Infection Biology; Hans Knoell Institute; Jena Germany
- Friedrich Schiller University; Jena Germany
| | - Andreas Sturm
- Department of Medicine, Division of Gastroenterology and Hepatology, Charité Campus Mitte; Universitätsmedizin Berlin; Germany
- Department of Gastroenterology; DRK Kliniken Berlin Westend. Akademisches Lehrkrankenhaus der Charité; Berlin Germany
| | - Lael Werner
- Department of Medicine, Division of Gastroenterology and Hepatology, Charité Campus Mitte; Universitätsmedizin Berlin; Germany
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital; Sheba Medical Center; Israel
- Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
18
|
Chiffoleau E. C-Type Lectin-Like Receptors As Emerging Orchestrators of Sterile Inflammation Represent Potential Therapeutic Targets. Front Immunol 2018; 9:227. [PMID: 29497419 PMCID: PMC5818397 DOI: 10.3389/fimmu.2018.00227] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/26/2018] [Indexed: 01/19/2023] Open
Abstract
Over the last decade, C-type lectin-like receptors (CTLRs), expressed mostly by myeloid cells, have gained increasing attention for their role in the fine tuning of both innate and adaptive immunity. Not only CTLRs recognize pathogen-derived ligands to protect against infection but also endogenous ligands such as self-carbohydrates, proteins, or lipids to control homeostasis and tissue injury. Interestingly, CTLRs act as antigen-uptake receptors via their carbohydrate-recognition domain for internalization and subsequent presentation to T-cells. Furthermore, CTLRs signal through a complex intracellular network leading to the secretion of a particular set of cytokines that differently polarizes downstream effector T-cell responses according to the ligand and pattern recognition receptor co-engagement. Thus, by orchestrating the balance between inflammatory and resolution pathways, CTLRs are now considered as driving players of sterile inflammation whose dysregulation leads to the development of various pathologies such as autoimmune diseases, allergy, or cancer. For examples, the macrophage-inducible C-type lectin (MINCLE), by sensing glycolipids released during cell-damage, promotes skin allergy and the pathogenesis of experimental autoimmune uveoretinitis. Besides, recent studies described that tumors use physiological process of the CTLRs’ dendritic cell-associated C-type lectin-1 (DECTIN-1) and MINCLE to locally suppress myeloid cell activation and promote immune evasion. Therefore, we aim here to overview the current knowledge of the pivotal role of CTLRs in sterile inflammation with special attention given to the “Dectin-1” and “Dectin-2” families. Moreover, we will discuss the potential of these receptors as promising therapeutic targets to treat a wide range of acute and chronic diseases.
Collapse
Affiliation(s)
- Elise Chiffoleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,IHU Cesti, Nantes, France.,Labex Immunotherapy Graft Oncology (IGO), Nantes, France
| |
Collapse
|
19
|
Yau ACY, Holmdahl R. Rheumatoid arthritis: identifying and characterising polymorphisms using rat models. Dis Model Mech 2017; 9:1111-1123. [PMID: 27736747 PMCID: PMC5087835 DOI: 10.1242/dmm.026435] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory joint disorder characterised by erosive inflammation of the articular cartilage and by destruction of the synovial joints. It is regulated by both genetic and environmental factors, and, currently, there is no preventative treatment or cure for this disease. Genome-wide association studies have identified ∼100 new loci associated with rheumatoid arthritis, in addition to the already known locus within the major histocompatibility complex II region. However, together, these loci account for only a modest fraction of the genetic variance associated with this disease and very little is known about the pathogenic roles of most of the risk loci identified. Here, we discuss how rat models of rheumatoid arthritis are being used to detect quantitative trait loci that regulate different arthritic traits by genetic linkage analysis and to positionally clone the underlying causative genes using congenic strains. By isolating specific loci on a fixed genetic background, congenic strains overcome the challenges of genetic heterogeneity and environmental interactions associated with human studies. Most importantly, congenic strains allow functional experimental studies be performed to investigate the pathological consequences of natural genetic polymorphisms, as illustrated by the discovery of several major disease genes that contribute to arthritis in rats. We discuss how these advances have provided new biological insights into arthritis in humans.
Collapse
Affiliation(s)
- Anthony C Y Yau
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol 2016; 147:223-237. [DOI: 10.1007/s00418-016-1523-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 01/26/2023]
|
21
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
22
|
Nagae M, Ikeda A, Hanashima S, Kojima T, Matsumoto N, Yamamoto K, Yamaguchi Y. Crystal structure of human dendritic cell inhibitory receptor C-type lectin domain reveals the binding mode with N-glycan. FEBS Lett 2016; 590:1280-8. [PMID: 27015765 DOI: 10.1002/1873-3468.12162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Human dendritic cell inhibitory receptor (DCIR) is a C-type lectin receptor expressed in classical dendritic cells and accepts several oligosaccharide ligands including N-glycans. Here, we report the crystal structures of human DCIR C-type lectin domains in the absence and presence of a branched N-glycan unit. The domain has a typical C-type lectin fold and two bound calcium ions. In the ligand-bound form, the disaccharide unit (GlcNAcβ1-2Man) acceptably fits the electron density map, indicating that it forms the main epitope. The recognition of the nonterminal N-glycan unit explains the relatively broad specificity of this lectin.
Collapse
Affiliation(s)
- Masamichi Nagae
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Akemi Ikeda
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Shinya Hanashima
- Department of Chemistry, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan
| | - Takumi Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Naoki Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| |
Collapse
|
23
|
Zhang N, He QS. Commensal Microbiome Promotes Resistance to Local and Systemic Infections. Chin Med J (Engl) 2016; 128:2250-5. [PMID: 26265621 PMCID: PMC4717980 DOI: 10.4103/0366-6999.162502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: In this review, to illustrate the resistance mechanism for pathogen insult, we discussed the role of the intestinal microbiome in promoting resistance to local gastrointestinal tract infections and to respiratory tract infections. Data Sources: The review was based on data obtained from the published research articles. Study Selection: A total of 49 original articles were selected in accordance with our main objective to illustrate the resistance mechanism(s) by which commensal microbiota can contribute to host defense against local and systemic infections. Results: Diverse microorganisms colonize human environmentally exposed surfaces such as skin, respiratory tract, and gastrointestinal tract. Co-evolution has resulted in these microbes with extensive and diverse impacts on multiple aspects of host biological functions. During the last decade, high-throughput sequencing technology developed has been applied to study commensal microbiota and their impact on host biological functions. By using pathogen recognition receptors pathway and nucleotide binding oligomerization domain-like receptors pathway, the commensal microbiome promotes resistance to local and systemic infections, respectively. To protect against the local infections, the microbiome functions contain the following: The competing for sites of colonization, direct production of inhibition molecules or depletion of nutrients needed for pathogens, and priming immune defenses against pathogen insult. At the same time, with the purpose to maintain homeostasis, the commensal bacteria can program systemic signals toward not only local tissue but also distal tissue to modify their function for infections accordingly. Conclusions: Commensal bacteria play an essential role in protecting against infections, shaping and regulating immune responses, and maintaining host immune homeostasis.
Collapse
Affiliation(s)
| | - Qiu-Shui He
- Department of Medical Microbiology and Research Centre of Microbiome, Capital Medical University, Beijing 100069, China; Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland,
| |
Collapse
|
24
|
Dendritic cell immunoreceptor 1 alters neutrophil responses in the development of experimental colitis. BMC Immunol 2015; 16:64. [PMID: 26497661 PMCID: PMC4619019 DOI: 10.1186/s12865-015-0129-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
Background Ulcerative colitis, an inflammatory bowel disease, is associated with the massive infiltration of neutrophils. Although the initial infiltration of neutrophils is beneficial for killing bacteria, it is presumed that persistent infiltration causes tissue damage by releasing antibacterial products as well as inflammatory cytokines. A murine C-type lectin receptor, dendritic cell immunoreceptor 1 (Dcir1), is expressed on CD11b+ myeloid cells, such as macrophages, dendritic cells and neutrophils. It was reported that Dcir1 is required to maintain homeostasis of the immune system to prevent autoimmunity, but it is also involved in the development of infectious disease resulting in the enhanced severity of cerebral malaria. However, the role of Dcir1 in intestinal immune responses during colitis remains unclear. In this study, we investigated the role of Dcir1 in intestinal inflammation using an experimental colitis model induced with dextran sodium sulfate (DSS). Results In contrast to wild type (WT) mice, Dcir1−/− mice exhibited mild body weight loss during the course of DSS colitis accompanied by reduced colonic inflammation. Dcir1 deficiency caused a reduced accumulation of neutrophils in the inflamed colon on day 5 of DSS colitis compared with WT mice. Consistently, the production of a neutrophil-attracting chemokine, MIP-2, was also decreased in the Dcir1−/− colon compared with the WT colon on day 5. There were fewer myeloperoxidase-positive neutrophils in the inflamed colon of Dcir1−/− mice than in that of WT mice. Moreover, bone marrow neutrophils from Dcir1−/− mice produced less reactive oxygen species (ROS) by lipopolysaccharide stimulation than those from WT mice. This suggests that Dcir1 deficiency decreases the accumulation of tissue destructive neutrophils during DSS colitis. Conclusion Dcir1 enhances the pathogenesis of DSS colitis by altering neutrophil recruitment and their functions.
Collapse
|
25
|
Abstract
Beneficial microbes hold great promise for the treatment of a wide range of immune and inflammatory disorders. In this issue of The EMBO Journal, Lightfoot and colleagues report how the food-grade bacterium Lactobacillus acidophilus helps the immune system to limit experimental colitis in mice through interaction between SIGNR3 and surface layer protein A (SlpA) in L. acidophilus. These results pave the way for future development of novel therapies for inflammatory diseases, including inflammatory bowel disease.
Collapse
Affiliation(s)
- Geanncarlo Lugo-Villarino
- Département Tuberculosis and Infection Biology, Institut de Pharmacologie et de Biologie Structurale (IPBS) CNRS, Toulouse, France UPS, IPBS Université Paul Sabatier Université de Toulouse, Toulouse, France
| | - Olivier Neyrolles
- Département Tuberculosis and Infection Biology, Institut de Pharmacologie et de Biologie Structurale (IPBS) CNRS, Toulouse, France UPS, IPBS Université Paul Sabatier Université de Toulouse, Toulouse, France
| |
Collapse
|
26
|
Rabes A, Zimmermann S, Reppe K, Lang R, Seeberger PH, Suttorp N, Witzenrath M, Lepenies B, Opitz B. The C-type lectin receptor Mincle binds to Streptococcus pneumoniae but plays a limited role in the anti-pneumococcal innate immune response. PLoS One 2015; 10:e0117022. [PMID: 25658823 PMCID: PMC4319728 DOI: 10.1371/journal.pone.0117022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022] Open
Abstract
The innate immune system employs C-type lectin receptors (CLRs) to recognize carbohydrate structures on pathogens and self-antigens. The Macrophage-inducible C-type lectin (Mincle) is a FcRγ-coupled CLR that was shown to bind to mycobacterial cord factor as well as certain fungal species. However, since CLR functions during bacterial infections have not yet been investigated thoroughly, we aimed to examine their function in Streptococcus pneumonia infection. Binding studies using a library of recombinantly expressed CLR-Fc fusion proteins indicated a specific, Ca2+-dependent, and serotype-specific binding of Mincle to S. pneumonia. Subsequent experiments with different Mincle-expressing cells as well as Mincle-deficient mice, however, revealed a limited role of this receptor in bacterial phagocytosis, neutrophil-mediated killing, cytokine production, and antibacterial immune response during pneumonia. Collectively, our results indicate that Mincle is able to recognize S. pneumonia but is not required for the anti-pneumococcal innate immune response.
Collapse
Affiliation(s)
- Anne Rabes
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephanie Zimmermann
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Katrin Reppe
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Lang
- Institute for Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Erlangen, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Lepenies
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
- * E-mail: (BO); (BL)
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (BO); (BL)
| |
Collapse
|