1
|
Guzman Ruiz L, Zollner AM, Hoxie I, Küchler J, Hausjell C, Mesurado T, Krammer F, Jungbauer A, Pereira Aguilar P, Klausberger M, Grabherr R. Enhancing NA immunogenicity through novel VLP designs. Vaccine 2024; 42:126270. [PMID: 39197219 DOI: 10.1016/j.vaccine.2024.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Current influenza virus vaccines poorly display key neuraminidase (NA) epitopes and do not robustly induce NA-reactive antibodies; instead, they focus on the induction of hemagglutinin (HA)-reactive antibodies. Next-generation influenza vaccines should be optimized in order to activate NA-reactive B cells and to induce a broadly cross-reactive and protective antibody response. We aimed at enhancing the immunogenicity of the NA on vaccines by two strategies: (i) modifying the HA:NA ratio of the vaccine preparation and (ii) exposing epitopes on the lateral surface or beneath the head of the NA by extending the NA stalk. The H1N1 glycoproteins from the influenza virus A/California/04/2009 strain were displayed on human immunodeficiency virus 1 (HIV-1) gag-based virus-like particles (VLP). Using the baculovirus insect cell expression system, we biased the quantity of surface glycoproteins employing two different promoters, the very late baculovirus p10 promoter and the early and late gp64 promoter. This led to a 1:1 to 2:1 HA:NA ratio, which was approximately double or triple the amount of NA as present on the wild-type influenza A virus (HA:NA ratio 3:1 to 5:1). Furthermore, by insertion of 15 amino acids from the A-New York/61/2012 strain (NY12) which prolongates the NA stalk (NA long stalk; NA-LS), we intended to improve the accessibility of the NA. Six different types of VLPs were produced and purified using a platform downstream process based on Capto-Core 700™ followed by Capto-Heparin™ affinity chromatography combined with ultracentrifugation. These VLPs were then tested in a mouse model. Robust titers of antibodies that inhibit the neuraminidase activity were elicited even after vaccination with two low doses (0.3 μg) of the H1N1 VLPs without compromising the anti-HA responses. In conclusion, our results demonstrate the feasibility of the two developed strategies to retain HA immunogenicity and improve NA immunogenicity as a future influenza vaccine candidate.
Collapse
Affiliation(s)
- Leticia Guzman Ruiz
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Alexander M Zollner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Irene Hoxie
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Küchler
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Christina Hausjell
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Tomas Mesurado
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Alois Jungbauer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Patricia Pereira Aguilar
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Miriam Klausberger
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Reingard Grabherr
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
3
|
Genetic Characterization and Pathogenesis of Avian Influenza Virus H3N8 Isolated from Chinese pond heron in China in 2021. Viruses 2023; 15:v15020383. [PMID: 36851597 PMCID: PMC9966531 DOI: 10.3390/v15020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
In October 2021, a wild bird-origin H3N8 influenza virus-A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8)-was isolated from Chinese pond heron in China. Phylogenetic and molecular analyses were performed to characterize the genetic origin of the H3N8 strain. Phylogenetic analysis revealed that eight gene segments of this avian influenza virus H3N8 belong to Eurasian lineages. HA gene clustered with avian influenza viruses is circulating in poultry in southern China. The NA gene possibly originated from wild ducks in South Korea and has the highest homology (99.3%) with A/Wild duck/South Korea/KNU2020-104/2020 (H3N8), while other internal genes have a complex and wide range of origins. The HA cleavage site is PEKQTR↓GLF with one basic amino acid, Q226 and T228 at HA preferentially bind to the alpha-2,3-linked sialic acid receptor, non-deletion of the stalk region in the NA gene and no mutations at E627K and D701N of the PB2 protein, indicating that isolate A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8) was a typical avian influenza with low pathogenicity. However, there are some mutations that may increase pathogenicity and transmission in mammals, such as N30D, T215A of M1 protein, and P42S of NS1 protein. In animal studies, A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8) replicates inefficiently in the mouse lung and does not adapt well to the mammalian host. Overall, A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8) is a novel wild bird-origin H3N8 influenza virus reassortant from influenza viruses of poultry and wild birds. This wild bird-origin avian influenza virus is associated with wild birds along the East Asian-Australasian flyway. Therefore, surveillance of avian influenza viruses in wild birds should be strengthened to assess their mutation and pandemic risk in advance.
Collapse
|
4
|
Diefenbacher M, Tan TJC, Bauer DLV, Stadtmueller BM, Wu NC, Brooke CB. Interactions between Influenza A Virus Nucleoprotein and Gene Segment Untranslated Regions Facilitate Selective Modulation of Viral Gene Expression. J Virol 2022; 96:e0020522. [PMID: 35467364 PMCID: PMC9131868 DOI: 10.1128/jvi.00205-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) genome is divided into eight negative-sense, single-stranded RNA segments. Each segment exhibits a unique level and temporal pattern of expression; however, the exact mechanisms underlying the patterns of individual gene segment expression are poorly understood. We previously demonstrated that a single substitution in the viral nucleoprotein (NP:F346S) selectively modulates neuraminidase (NA) gene segment expression while leaving other segments largely unaffected. Given what is currently known about NP function, there is no obvious explanation for how changes in NP can selectively modulate the replication of individual gene segments. In this study, we found that the specificity of this effect for the NA segment is virus strain specific and depends on the untranslated region (UTR) sequences of the NA segment. While the NP:F346S substitution did not significantly alter the RNA binding or oligomerization activities of NP in vitro, it specifically decreased the ability of NP to promote NA segment viral RNA (vRNA) synthesis. In addition to NP residue F346, we identified two other adjacent aromatic residues in NP (Y385 and F479) capable of similarly regulating NA gene segment expression, suggesting a larger role for this domain in gene-segment specific regulation. Our findings reveal a novel role for NP in selective regulation of viral gene segment replication and provide a framework for understanding how the expression patterns of individual viral gene segments can be modulated during adaptation to new host environments. IMPORTANCE Influenza A virus (IAV) is a respiratory pathogen that remains a significant source of morbidity and mortality. Escape from host immunity or emergence into new host species often requires mutations that modulate the functional activities of the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), which are responsible for virus attachment to and release from host cells, respectively. Maintaining the functional balance between the activities of HA and NA is required for fitness across multiple host systems. Thus, selective modulation of viral gene expression patterns may be a key determinant of viral immune escape and cross-species transmission potential. We identified a novel mechanism by which the viral nucleoprotein (NP) gene can selectively modulate NA segment replication and gene expression through interactions with the segment UTRs. Our work highlights an unexpected role for NP in selective regulation of expression from the individual IAV gene segments.
Collapse
Affiliation(s)
- Meghan Diefenbacher
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David L. V. Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Rozek W, Kwasnik M, Socha W, Sztromwasser P, Rola J. Analysis of Single Nucleotide Variants (SNVs) Induced by Passages of Equine Influenza Virus H3N8 in Embryonated Chicken Eggs. Viruses 2021; 13:v13081551. [PMID: 34452416 PMCID: PMC8402691 DOI: 10.3390/v13081551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination is an effective method for the prevention of influenza virus infection. Many manufacturers use embryonated chicken eggs (ECE) for the propagation of vaccine strains. However, the adaptation of viral strains during subsequent passages can lead to additional virus evolution and lower effectiveness of the resulting vaccines. In our study, we analyzed the distribution of single nucleotide variants (SNVs) of equine influenza virus (EIV) during passaging in ECE. Viral RNA from passage 0 (nasal swabs), passage 2 and 5 was sequenced using next generation technology. In total, 50 SNVs with an occurrence frequency above 2% were observed, 29 of which resulted in amino acid changes. The highest variability was found in passage 2, with the most variable segment being IV encoding hemagglutinin (HA). Three variants, HA (W222G), PB2 (A377E) and PA (R531K), had clearly increased frequency with the subsequent passages, becoming dominant. None of the five nonsynonymous HA variants directly affected the major antigenic sites; however, S227P was previously reported to influence the antigenicity of EIV. Our results suggest that although host-specific adaptation was observed in low passages of EIV in ECE, it should not pose a significant risk to influenza vaccine efficacy.
Collapse
Affiliation(s)
- Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
- Correspondence:
| | - Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Pawel Sztromwasser
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland;
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| |
Collapse
|
6
|
Danilenko AV, Kolosova NP, Shvalov AN, Ilyicheva TN, Svyatchenko SV, Durymanov AG, Bulanovich JA, Goncharova NI, Susloparov IM, Marchenko VY, Tregubchak TV, Gavrilova EV, Maksyutov RA, Ryzhikov AB. Evaluation of HA-D222G/N polymorphism using targeted NGS analysis in A(H1N1)pdm09 influenza virus in Russia in 2018-2019. PLoS One 2021; 16:e0251019. [PMID: 33914831 PMCID: PMC8084186 DOI: 10.1371/journal.pone.0251019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Outbreaks of influenza, which is a contagious respiratory disease, occur throughout the world annually, affecting millions of people with many fatal cases. The D222G/N mutations in the hemagglutinin (HA) gene of A(H1N1)pdm09 are associated with severe and fatal human influenza cases. These mutations lead to increased virus replication in the lower respiratory tract (LRT) and may result in life-threatening pneumonia. Targeted NGS analysis revealed the presence of mutations in major and minor variants in 57% of fatal cases, with the proportion of viral variants with mutations varying from 1% to 98% in each individual sample in the epidemic season 2018-2019 in Russia. Co-occurrence of the mutations D222G and D222N was detected in a substantial number of the studied fatal cases (41%). The D222G/N mutations were detected at a low frequency (less than 1%) in the rest of the studied samples from fatal and nonfatal cases of influenza. The presence of HA D222Y/V/A mutations was detected in a few fatal cases. The high rate of occurrence of HA D222G/N mutations in A(H1N1)pdm09 viruses, their increased ability to replicate in the LRT and their association with fatal outcomes points to the importance of monitoring the mutations in circulating A(H1N1)pdm09 viruses for the evaluation of their epidemiological significance and for the consideration of disease prevention and treatment options.
Collapse
Affiliation(s)
- Alexey V. Danilenko
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Natalia P. Kolosova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Alexander N. Shvalov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Tatyana N. Ilyicheva
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana V. Svyatchenko
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Alexander G. Durymanov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Julia A. Bulanovich
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Natalia I. Goncharova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Ivan M. Susloparov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Vasiliy Y. Marchenko
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Tatyana V. Tregubchak
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Elena V. Gavrilova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Rinat A. Maksyutov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| | - Alexander B. Ryzhikov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk Region, Russia
| |
Collapse
|
7
|
Trexler M, Brusatori M, Auner G. Avidin-biotin complex-based capture coating platform for universal Influenza virus immobilization and characterization. PLoS One 2021; 16:e0247429. [PMID: 33635877 PMCID: PMC7909696 DOI: 10.1371/journal.pone.0247429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza virus mutates quickly and unpredictably creating emerging pathogenic strains that are difficult to detect, diagnose, and characterize. Conventional tools to study and characterize virus, such as next generation sequencing, genome amplification (RT-PCR), and serological antibody testing, are not adequately suited to rapidly mutating pathogens like Influenza virus where the success of infection heavily depends on the phenotypic expression of surface glycoproteins. Bridging the gap between genome and pathogenic expression remains a challenge. Using sialic acid as a universal Influenza virus binding receptor, a novel virus avidin-biotin complex-based capture coating was developed and characterized that may be used to create future diagnostic and interrogation platforms for viable whole Influenza virus. First, fluorescent FITC probe studies were used to optimize coating component concentrations. Then atomic force microscopy (AFM) was used to profile the surface characteristics of the novel capture coating, acquire topographical imaging of Influenza particles immobilized by the coating, and calculate the capture efficiency of the coating (over 90%) for all four representative human Influenza virus strains tested.
Collapse
Affiliation(s)
- Micaela Trexler
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- * E-mail:
| | - Michelle Brusatori
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Gregory Auner
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
8
|
Liu L, Li Z, Zhou J, Lu J, Li X, Liu J, Xiao N, Wang D. The effect of single amino acid substitution at position 220 in the hemagglutinin glycoprotein on avian influenza H7N9 candidate vaccine virus. Virus Genes 2021; 57:164-171. [PMID: 33606171 DOI: 10.1007/s11262-021-01827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/18/2021] [Indexed: 11/26/2022]
Abstract
Influenza vaccines represent the most effective preventive strategy to control influenza virus infections; however, adaptive mutations frequently occur in the hemagglutinin (HA) glycoprotein during the preparation of candidate vaccine virus and production of vaccine in embryonated eggs. In our previous study, we constructed candidate vaccine virus (HA-R) to match the highly pathogenic avian influenza H7N9 viruses A/Guangdong/17SF003/2016 as part of a pandemic preparedness program. However, mixed amino acids (R, G, and I) were presented at position 220 (H3 numbering) in HA during passage in embryonated eggs. The residue at position 220 is located close to the receptor-binding site and the biological characteristics of this site remain to be elucidated. Therefore, in this study, using reverse genetics, we constructed two viruses carrying the single substitution in position 220 of HA (HA-G and HA-I) and evaluated the biological effects of substitution (R with G/I) on receptor binding, neuraminidase (NA) activity, growth characteristics, genetic stability, and antigenicity. The results revealed both mutant viruses exhibited lower HA binding affinities to two receptor types (sialic acid in alpha2,3- and alpha2,6-linkage to galactose, P < 0.001) and significant better growth characteristics compared to HA-R in two cells. Moreover, under similar NA enzymatic activity, the two mutant viruses eluted more easily from agglutinated erythrocytes than HA-R. Collectively, these results implied the balance of HA and NA in mutant viruses was a stronger determinant of viral growth than the individual amino acid in the HA position 220 in HA-R without strong binding between HA and sialylated receptors. Importantly, both the substitutions conferred altered antigenicity to the mutant viruses. In conclusion, amino acid substitutions at position 220 can substantially influence viral biological properties.
Collapse
Affiliation(s)
- Liqi Liu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China
| | - Zi Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China
| | - Jianfang Zhou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China
| | - Jian Lu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China
| | - Xiyan Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China
| | - Jia Liu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China
| | - Ning Xiao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Gao R, Gu M, Shi L, Liu K, Li X, Wang X, Hu J, Liu X, Hu S, Chen S, Peng D, Jiao X, Liu X. N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Vet Res 2021; 52:8. [PMID: 33436086 PMCID: PMC7805195 DOI: 10.1186/s13567-020-00879-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2014, clade 2.3.4.4 has become the dominant epidemic branch of the Asian lineage H5 subtype highly pathogenic avian influenza virus (HPAIV) in southern and eastern China, while the H5N6 subtype is the most prevalent. We have shown earlier that lack of glycosylation at position 158 of the hemagglutinin (HA) glycoprotein due to the T160A mutation is a key determinant of the dual receptor binding property of clade 2.3.4.4 H5NX subtypes. Our present study aims to explore other effects of this site among H5N6 viruses. Here we report that N-linked glycosylation at site 158 facilitated the assembly of virus-like particles and enhanced virus replication in A549, MDCK, and chicken embryonic fibroblast (CEF) cells. Consistently, the HA-glycosylated H5N6 virus induced higher levels of inflammatory factors and resulted in stronger pathogenicity in mice than the virus without glycosylation at site 158. However, H5N6 viruses without glycosylation at site 158 were more resistant to heat and bound host cells better than the HA-glycosylated viruses. H5N6 virus without glycosylation at this site triggered the host immune response mechanism to antagonize the viral infection, making viral pathogenicity milder and favoring virus spread. These findings highlight the importance of glycosylation at site 158 of HA for the pathogenicity of the H5N6 viruses.
Collapse
Affiliation(s)
- Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Liwei Shi
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiuli Li
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
10
|
Takayama I, Nguyen BG, Dao CX, Pham TT, Dang TQ, Truong PT, Do TV, Pham TTP, Fujisaki S, Odagiri T, Hasegawa H, Nakajima N. Next-Generation Sequencing Analysis of the Within-Host Genetic Diversity of Influenza A(H1N1)pdm09 Viruses in the Upper and Lower Respiratory Tracts of Patients with Severe Influenza. mSphere 2021; 6:e01043-20. [PMID: 33408229 PMCID: PMC7845592 DOI: 10.1128/msphere.01043-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023] Open
Abstract
The influenza A(H1N1)pdm09 virus emerged in April 2009 with an unusual incidence of severe disease and mortality, and currently circulates as a seasonal influenza virus. Previous studies using consensus viral genome sequencing data have overlooked the viral genomic and phenotypic diversity. Next-generation sequencing (NGS) may instead be used to characterize viral populations in an unbiased manner and to measure within-host genetic diversity. In this study, we used NGS analysis to investigate the within-host genetic diversity of influenza A(H1N1)pdm09 virus in the upper and lower respiratory samples from nine patients who were admitted to the intensive care unit (ICU). A total of 47 amino acid substitution positions were found to differ between the upper and lower respiratory tract samples from all patients. However, the D222G/N substitution in hemagglutinin (HA) protein was the only amino acid substitution common to multiple patients. Furthermore, the substitution was detected only in the six samples from the lower respiratory tract. Therefore, it is important to investigate influenza A(H1N1)pdm09 virus populations using multiple paired samples from the upper and lower respiratory tract to avoid overlooking potentially important substitutions, especially in patients with severe disease.IMPORTANCE The D222G/N substitution in the hemagglutinin (HA) protein of influenza A(H1N1)pdm09 virus has been reported to be associated with disease severity and mortality in numerous previous studies. In the present study, 75% of lower respiratory samples contained heterogeneous influenza populations that carried different amino acids at position 222 of the HA protein, whereas all upper respiratory samples only contained the wild-type 222D. These results suggest the influenza A(H1N1)pdm09 virus has diversified inside the host owing to differences in tissue specificity. In this study, the within-host genetic diversity of influenza A(H1N1)pdm09 virus was investigated for the first time using next-generation sequencing analysis of the viral whole-genome in samples extracted from the upper and lower respiratory tracts of patients with severe disease.
Collapse
Affiliation(s)
- Ikuyo Takayama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
11
|
Zhong M, Yu Y, Song JQ, Jia TW, Liu AY, Zhao TF, He HJ, Yang MB, Zhang WX, Yang Y. Amide-sialoside protein conjugates as neomucin bioshields prevent influenza virus infection. Carbohydr Res 2020; 495:108088. [PMID: 32807356 DOI: 10.1016/j.carres.2020.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
We report the preparation of multivalent amide-sialoside-decorated human serum albumin (HSA) and bovine serum albumin (BSA) as mimics of natural mucin and bioshields against influenza virus infection. Free sialic acid with an amine on C-2 was covalently attached to the protein scaffolds using di-(N-succinimidyl) adipate. Dynamic light scattering (DLS) showed that the synthetic neomucins were able to act as bioshields and aggregate the influenza virion particles. The dissociation constants (KD) of the interactions between the prepared glycoconjugates and three different viral strains were measured by isothermal titration calorimetry (ITC) indicating the multivalent presentation of sialyl ligands on the HSA and BSA backbones can dramatically enhance the adsorbent capability compared to the corresponding monomeric sialoside. Hemagglutinin inhibition (HAI) and neuraminidase inhibition (NAI) assays showed that the glycoconjugates acted as moderate HA and NA inhibitors, thus impeding viral infection. Moreover, the different binding affinities of the glycoproteins to HA and NA proteins from different influenza viruses demonstrated the importance of HA/NA balance in viral replication and evolution. These findings provide a foundation for the development of antiviral drugs and viral adsorbent materials based on mimicking the structure of mucin.
Collapse
Affiliation(s)
- Ming Zhong
- Medical College of Shaoguan University, Shaoguan, 512026, Guangdong Province, China
| | - Yao Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Qi Song
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Tian-Wei Jia
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Ao-Yun Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Teng-Fei Zhao
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Hao-Jie He
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Mei-Bing Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Wen-Xuan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
12
|
Pichon M, Picard C, Simon B, Gaymard A, Renard C, Massenavette B, Malcus C, Monneret G, Morfin-Sherpa F, Valette M, Javouhey E, Millat G, Lina B, Josset L, Escuret V. Clinical management and viral genomic diversity analysis of a child's influenza A(H1N1)pdm09 infection in the context of a severe combined immunodeficiency. Antiviral Res 2018; 160:1-9. [DOI: 10.1016/j.antiviral.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
|
13
|
Ferraris O, Casalegno JS, Frobert E, Bouscambert Duchamp M, Valette M, Jacquot F, Raoul H, Lina B, Ottmann M. The NS Segment of H1N1pdm09 Enhances H5N1 Pathogenicity in a Mouse Model of Influenza Virus Infections. Viruses 2018; 10:v10090504. [PMID: 30227598 PMCID: PMC6164720 DOI: 10.3390/v10090504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 11/17/2022] Open
Abstract
In 2009, the co-circulation of H5N1 and H1N1pdm09 raised concerns that a reassortment event may lead to highly pathogenic influenza strains. H1N1pdm09 and H5N1 are able to infect the same target cells of the lower respiratory tract. To investigate the capacity of the emergence of reassortant viruses, we characterized viruses obtained from the co-infection of cells with H5N1 (A/Turkey/13/2006) and H1N1pdm09 (A/Lyon/969/2009 H1N1). In our analysis, all the screened reassortants possessed the PB2, HA, and NP segments from H5N1 and acquired one or two of the H1N1pdm09 segments. Moreover, the in vivo infections showed that the acquisition of the NS segment from H1N1pdm09 increased the virulence of H5N1 in mice. We conclude, therefore, that reassortment can occur between these two viruses, even if this process has never been detected in nature.
Collapse
Affiliation(s)
- Olivier Ferraris
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
| | - Jean-Sébastien Casalegno
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Emilie Frobert
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Maude Bouscambert Duchamp
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Martine Valette
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
- Laboratoire de Virologie, Centre National de Référence Virus des Infections Respiratoires, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Frédéric Jacquot
- Laboratoire P4 Jean Mérieux Inserm US003, 69365 CEDEX 07 Lyon, France.
| | - Hervé Raoul
- Laboratoire P4 Jean Mérieux Inserm US003, 69365 CEDEX 07 Lyon, France.
| | - Bruno Lina
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
- Laboratoire de Virologie, Centre National de Référence Virus des Infections Respiratoires, Groupement Hospitalier Nord des Hospices Civils de Lyon, 69317 CEDEX 04 Lyon, France.
| | - Michèle Ottmann
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69372 CEDEX 08 Lyon, France.
| |
Collapse
|
14
|
Liu K, Gao R, Gu M, Li J, Shi L, Sun W, Liu D, Gao Z, Wang X, Hu J, Liu X, Hu S, Chen S, Gao S, Peng D, Jiao XA, Liu X. Genetic and biological characterization of two reassortant H5N2 avian influenza A viruses isolated from waterfowl in China in 2016. Vet Microbiol 2018; 224:8-16. [PMID: 30269795 DOI: 10.1016/j.vetmic.2018.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 01/22/2023]
Abstract
Two reassortant H5N2 viruses in which hemagglutinin (HA) was clustered into clade 2.3.4.4, were isolated from apparently healthy waterfowl in live poultry markets in Eastern China in 2016. We used specific pathogen-free chickens, mallard ducks, and BALB/c mice to evaluate the isolates' biological characteristics in different animal models. The newly isolated reassortant H5N2 viruses were able to cause severe disease in chickens and effective contact transmission, only at high doses. Our pathogenicity studies in ducks yielded an interesting result: the intravenous pathogenicity index (IVPI) indicated that isolate A/goose/Eastern China/1106/2016(1106) was low pathogenic and the other isolate A/duck/Eastern China/YD1516/2016(YD1516) was of highly pathogenicity in ducks. However, our 50% duck lethal dose (DLD50) experiment demonstrated that these viruses were all of low pathogenicity (DLD50 > 107.0 EID50) in ducks. Additionally, despite the fact that reassortant H5N2 were of low pathogenicity in mice, they could bind to both avian-type (SAα-2,3 Gal) and human-type (SAα-2,6 Gal) receptors, suggesting that these isolates still present a high risk for human infection. Therefore, it is of great importance to implement continual surveillance of avian influenza virus (AIV) to protect both veterinary and public health.
Collapse
Affiliation(s)
- Kaituo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Juan Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Liwei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenqi Sun
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Song Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xin-An Jiao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
15
|
Gambaryan AS, Lomakina NF, Boravleva EY, Mochalova LV, Sadykova GK, Prilipov AG, Matrosovich TY, Matrosovich MN. Mutations in Hemagglutinin and Polymerase Alter the Virulence of Pandemic A(H1N1) Influenza Virus. Mol Biol 2018. [DOI: 10.1134/s0026893318040052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Jeannoel M, Casalegno JS, Ottmann M, Badiou C, Dumitrescu O, Lina B, Lina G. Synergistic Effects of Influenza and Staphylococcus aureus Toxins on Inflammation Activation and Cytotoxicity in Human Monocytic Cell Lines. Toxins (Basel) 2018; 10:toxins10070286. [PMID: 29997328 PMCID: PMC6070873 DOI: 10.3390/toxins10070286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
In patients with influenza, morbidity and mortality are strongly influenced by infections with Staphylococcus aureus producing high amounts of certain toxins. Here we tested the impact of influenza virus on the pro-inflammatory and cytotoxic actions of a panel of S. aureus virulence factors, including Panton-Valentine Leucocidin (PVL), phenol-soluble modulin α1 (PSMα1) and 3 (PSMα3), α-hemolysin (Hla), and cell wall components, i.e., heat-killed S. aureus (HKSA) and protein A. We initially screened for potential synergic interactions using a standardized in vitro model in influenza-infected continuous human monocytic cell lines. Then we tested the identified associations using an ex vivo model in influenza-infected human monocytes freshly isolated from blood. Co-exposure to influenza virus and HKSA, PVL, PSMα1, and PSMα3 increased NF-κB/AP-1 pathway activation in THP1-XBlue cells, and co-exposure to influenza virus and PVL increased cytotoxicity in U937 cells. In monocytes isolated from blood, the synergy between influenza virus and HKSA was confirmed based on cytokine production (TNF-α, IL-1β, IL-6), and co-exposure to influenza virus and Hla-increased cytotoxicity. Our findings suggest that influenza virus potentiates the pro-inflammatory action of HKSA and contributes to the cytotoxicity of Hla on monocytes. Synergic interactions identified in the cell-line model must be cautiously interpreted since few were relevant in the ex vivo model.
Collapse
Affiliation(s)
- Marion Jeannoel
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Jean-Sebastien Casalegno
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Michèle Ottmann
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Cédric Badiou
- Pathogénie des Staphylocoques, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Oana Dumitrescu
- Pathogénie des Staphylocoques, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Gérard Lina
- Pathogénie des Staphylocoques, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
| |
Collapse
|
17
|
Wang X, Zeng Z, Zhang Z, Zheng Y, Li B, Su G, Li H, Huang L, Qi W, Liao M. The Appropriate Combination of Hemagglutinin and Neuraminidase Prompts the Predominant H5N6 Highly Pathogenic Avian Influenza Virus in Birds. Front Microbiol 2018; 9:1088. [PMID: 29896169 PMCID: PMC5987672 DOI: 10.3389/fmicb.2018.01088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Haemagglutinin (HA) and neuraminidase (NA) are two vital surface glycoproteins of influenza virus. The HA of H5N6 highly pathogenic avian influenza virus is divided into Major/H5 and Minor/H5, and its NA consists of short stalk NA and full-length stalk NA. The strain combined with Major/H5 and short stalk NA account for 76.8% of all strains, and the proportion was 23.0% matched by Minor/H5 and full-length stalk NA. Our objective was to investigate the influence of HA-NA matching on the biological characteristics and the effects of the epidemic trend of H5N6 on mice and chickens. Four different strains combined with two HAs and two NAs of the represented H5N6 viruses with the fixed six internal segments were rescued and analyzed. Plaque formation, NA activity of infectious particles, and virus growth curve assays, as well as a saliva acid receptor experiment, with mice and chickens were performed. We found that all the strains can replicate well on Madin-Darby canine kidney (MDCK) cells and chicken embryo fibroblasts (CEF) cells, simultaneously, mice and infection group chickens were complete lethal. However, the strain combined with Major/H5 and short stalk N6 formed smaller plaque on MDCK, showed a moderate replication ability in both MDCK and CEF, and exhibited a higher survival rate among the contact group of chickens. Conversely, strains with opposite biological characters which combined with Minor/H5 and short stalk N6 seldom exist in nature. Hence, we drew the conclusion that the appropriate combination of Major/H5 and short stalk N6 occur widely in nature with appropriate biological characteristics for the proliferation and transmission, whereas other combinations of HA and NA had a low proportion and even have not yet been detected.
Collapse
Affiliation(s)
- Xiuhui Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyong Zeng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zaoyue Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yi Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guanming Su
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huanan Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihong Huang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
18
|
New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants with High Genomic Diversity in Wave Five. J Virol 2018; 92:JVI.00301-18. [PMID: 29563296 DOI: 10.1128/jvi.00301-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
H7N9 virus has caused five infection waves since it emerged in 2013. The highest number of human cases was seen in wave 5; however, the underlying reasons have not been thoroughly elucidated. In this study, the geographical distribution, phylogeny, and genetic evolution of 240 H7N9 viruses in wave 5, including 35 new isolates from patients and poultry in nine provinces, were comprehensively analyzed together with strains from first four waves. Geographical distribution analysis indicated that the newly emerging highly pathogenic (HP) and low-pathogenicity (LP) H7N9 viruses were cocirculating, causing human and poultry infections across China. Genetic analysis indicated that dynamic reassortment of the internal genes among LP-H7N9/H9N2/H6Ny and HP-H7N9, as well as of the surface genes, between the Yangtze and Pearl River Delta lineages resulted in at least 36 genotypes, with three major genotypes (G1 [A/chicken/Jiangsu/SC537/2013-like], G3 [A/Chicken/Zhongshan/ZS/2017-like], and G11 [A/Anhui/40094/2015-like]). The HP-H7N9 genotype likely evolved from G1 LP-H7N9 by the insertion of a KRTA motif at the cleavage site (CS) and then evolved into 15 genotypes with four different CS motifs, including PKGKRTAR/G, PKGKRIAR/G, PKRKRAAR/G, and PKRKRTAR/G. Approximately 46% (28/61) of HP strains belonged to G3. Importantly, neuraminidase (NA) inhibitor (NAI) resistance (R292K in NA) and mammalian adaptation (e.g., E627K and A588V in PB2) mutations were found in a few non-human-derived HP-H7N9 strains. In summary, the enhanced prevalence and diverse genetic characteristics that occurred with mammalian-adapted and NAI-resistant mutations may have contributed to increased numbers of human infections in wave 5.IMPORTANCE The highest numbers of human H7N9 infections were observed during wave 5 from October 2016 to September 2017. Our results showed that HP-H7N9 and LP-H7N9 had spread virtually throughout China and underwent dynamic reassortment with different subtypes (H7N9/H9N2 and H6Ny) and lineages (Yangtze and Pearl River Delta lineages), resulting in totals of 36 and 3 major genotypes, respectively. Notably, the NAI drug-resistant (R292K in NA) and mammalian-adapted (e.g., E627K in PB2) mutations were found in HP-H7N9 not only from human isolates but also from poultry and environmental isolates, indicating increased risks for human infections. The broad dissemination of LP- and HP-H7N9 with high levels of genetic diversity and host adaptation and drug-resistant mutations likely accounted for the sharp increases in the number of human infections during wave 5. Therefore, more strategies are needed against the further spread and damage of H7N9 in the world.
Collapse
|
19
|
Construction and comparison of different source neuraminidase candidate vaccine strains for human infection with Eurasian avian-like influenza H1N1 virus. Microbes Infect 2017; 19:635-640. [DOI: 10.1016/j.micinf.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 11/21/2022]
|
20
|
Yu Y, Zhang Z, Li H, Wang X, Li B, Ren X, Zeng Z, Zhang X, Liu S, Hu P, Qi W, Liao M. Biological Characterizations of H5Nx Avian Influenza Viruses Embodying Different Neuraminidases. Front Microbiol 2017; 8:1084. [PMID: 28659898 PMCID: PMC5469879 DOI: 10.3389/fmicb.2017.01084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/29/2017] [Indexed: 12/27/2022] Open
Abstract
The H5 subtype virus of Highly Pathogenic Avian Influenza Virus has caused huge economic losses to the poultry industry and is a threat to human health. Until 2010, H5N1 subtype virus was the major genotype in China. Since 2011, reassortant H5N2, H5N6, and H5N8 viruses were identified in domestic poultry in China. The clade 2.3.4.4 H5N6 and H5N8 AIV has now spread to most of China. Clade 2.3.4.4 H5N6 virus has caused 17 human deaths. However, the prevalence, pathogenicity, and transmissibility of the distinct NA reassortment with H5 subtypes viruses (H5Nx) is unknown. We constructed five clade 2.3.4.4 reassortant H5Nx viruses that shared the same HA and six internal gene segments. The NA gene segment was replaced with N1, N2, N6, ΔN6 (with an 11 amino acid deletion at the 58th to 68th of NA stalk region), and N8 strains, respectively. The reassortant viruses with distinct NAs of clade 2.3.4.4 H5 subtype had different degrees of fitness. All reassortant H5Nx viruses formed plaques on MDCK cell monolayers, but the ΔH5N6 grew more efficiently in mammalian and avian cells. The reassortant H5Nx viruses were more virulent in mice as compared to the H5N2 virus. The H5N6 and H5N8 reassortant viruses exhibited enhanced pathogenicity and transmissibility in chickens as compared to the H5N1 reassortant virus. We suggest that comprehensive surveillance work should be undertaken to monitor the H5Nx viruses.
Collapse
Affiliation(s)
- Yuandi Yu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Zaoyue Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Huanan Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xiuhui Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Bo Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xingxing Ren
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Zhaoyong Zeng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Xu Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Shukai Liu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Pingsheng Hu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of AgricultureGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Ministry of AgricultureGuangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China.,Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of AgricultureGuangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Ministry of AgricultureGuangzhou, China
| |
Collapse
|
21
|
Gao Z, Niikura M, Withers SG. Ultrasensitive Fluorogenic Reagents for Neuraminidase Titration. Angew Chem Int Ed Engl 2017; 56:6112-6116. [PMID: 28191709 DOI: 10.1002/anie.201610544] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/07/2022]
Abstract
Influenza viral neuraminidase plays a crucial role during infections. It is a major target for the development of anti-influenza drugs and is also attracting increasing attention as a vaccine target as evidence accumulates that neuraminidase-neutralizing antibodies contribute to protection. However, no method currently exists to accurately and efficiently measure concentrations of active neuraminidase in virus samples or other crude mixtures, which hampers development on both fronts. In this report, we describe the development of a selective and sensitive active-site titration reagent for neuraminidase that can quantify viral neuraminidases down to sub-nanomolar levels in crude samples, with no background from non-viral neuraminidases. By using this reagent, we determined accurate kcat values for six influenza A and two influenza B neuraminidases for the first time. We also quantified the neuraminidase content in a commercial influenza vaccine, thus demonstrating that this titration reagent opens the possibility for better vaccine analysis.
Collapse
Affiliation(s)
- Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
22
|
Gao Z, Niikura M, Withers SG. Ultrasensitive Fluorogenic Reagents for Neuraminidase Titration. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhizeng Gao
- Department of Chemistry; University of British Columbia; Vancouver British Columbia V6T 1Z1 Canada
| | - Masahiro Niikura
- Faculty of Health Sciences; Simon Fraser University; Burnaby British Columbia V5A 1S6 Canada
| | - Stephen G. Withers
- Department of Chemistry; University of British Columbia; Vancouver British Columbia V6T 1Z1 Canada
| |
Collapse
|
23
|
Gaymard A, Le Briand N, Frobert E, Lina B, Escuret V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin Microbiol Infect 2016; 22:975-983. [DOI: 10.1016/j.cmi.2016.07.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 01/15/2023]
|
24
|
Ilyicheva T, Durymanov A, Susloparov I, Kolosova N, Goncharova N, Svyatchenko S, Petrova O, Bondar A, Mikheev V, Ryzhikov A. Fatal Cases of Seasonal Influenza in Russia in 2015-2016. PLoS One 2016; 11:e0165332. [PMID: 27776172 PMCID: PMC5077104 DOI: 10.1371/journal.pone.0165332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022] Open
Abstract
The influenza epidemic in 2015–2016 in Russia is characterized by a sharp increase of influenza cases (beginning from the second week of 2016) with increased fatalities. Influenza was confirmed in 20 fatal cases registered among children (0–10 years), in 5 cases among pregnant women, and in 173 cases among elderly people (60 years and older). Two hundred and ninety nine people died from influenza were patients with some chronic problems. The overwhelming majority among the deceased (more than 98%) were not vaccinated against influenza. We isolated 109 influenza A(H1N1)pdm09 and one A(H3N2) virus strains from 501 autopsy material samples. The antigenic features of the strains were similar to the vaccine strains. A phylogenic analysis of hemagglutinin revealed that influenza A(H1N1)pdm09 virus strains belonged to 6B genetic group that had two main dominant subgroups during the 2015–2016 season. In Russia strains of the first group predominated. We registered an increased proportion of strains with D222G mutation in receptor-binding site. A herd immunity analysis carried out immediately prior to the epidemic showed that 34.4% blood sera samples collected in different regions of Russia were positive to A/California/07/09(H1N1)pdm09. We came to a conclusion that public awareness enhancement is necessary to reduce unreasonable refusals of vaccination.
Collapse
Affiliation(s)
- T. Ilyicheva
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - A. Durymanov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - I. Susloparov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - N. Kolosova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - N. Goncharova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - S. Svyatchenko
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - O. Petrova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - A. Bondar
- Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V. Mikheev
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| | - A. Ryzhikov
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk, Russia
| |
Collapse
|
25
|
Changes in the Length of the Neuraminidase Stalk Region Impact H7N9 Virulence in Mice. J Virol 2015; 90:2142-9. [PMID: 26656694 DOI: 10.1128/jvi.02553-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
The neuraminidase stalk of the newly emerged H7N9 influenza virus possesses a 5-amino-acid deletion. This study focuses on characterizing the biological functions of H7N9 with varied neuraminidase stalk lengths. Results indicate that the 5-amino-acid deletion had no impact on virus infectivity or replication in vitro or in vivo compared to that of a virus with a full-length stalk, but enhanced virulence in mice was observed for H7N9 encoding a 19- to 20-amino-acid deletion, suggesting that N9 stalk length impacts virulence in mammals, as N1 stalk length does.
Collapse
|
26
|
Matos-Patrón A, Byrd-Leotis L, Steinhauer DA, Barclay WS, Ayora-Talavera G. Amino acid substitution D222N from fatal influenza infection affects receptor-binding properties of the influenza A(H1N1)pdm09 virus. Virology 2015; 484:15-21. [DOI: 10.1016/j.virol.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/15/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
|
27
|
Han P, Hu Y, Sun W, Zhang S, Li Y, Wu X, Yang Y, Zhu Q, Jiang T, Li J, Qin C. Mouse lung-adapted mutation of E190G in hemagglutinin from H5N1 influenza virus contributes to attenuation in mice. J Med Virol 2015; 87:1816-22. [PMID: 26089289 DOI: 10.1002/jmv.24257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 12/27/2022]
Abstract
The highly pathogenic H5N1 avian influenza virus is one of the greatest influenza pandemic threats since 2003. The association of the receptor binding domain (RBD) with the virulence of influenza virus is rarely addressed, particularly of H5N1 influenza viruses. In this study, BALB/c mice were intranasally infected with A/Vietnam/1194/2004 (VN1194, H5N1). The mouse lung-adapted variants were isolated and the mutation of E190G (H3 numbering) in the RBD was recognized. The recombinant virus, rVN-E190G carrying E190G in hemagglutinin (HA) was designed and rescued using reverse genetics techniques. The receptor binding activity, growth curve and pathogenicity in mice of the rVN-E190G were investigated. Results demonstrated that rVN-E190G virus increased the binding avidity to α2,6 SA (sialic acid) and reduced the affinity to α2,3 SA, meanwhile weakened the viral replication in vitro. Moreover, the virulence assessment demonstrated that rVN-E190G was attenuated in mice. These results indicated that the mutation E190G in HA decreases H5N1 viral replication in vitro and significantly attenuates virulence in vivo. These findings identify one of the determinants in RBD which can be associated with H5N1 virulence in mice.
Collapse
Affiliation(s)
- Pengfei Han
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yi Hu
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Wei Sun
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Sen Zhang
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yuchang Li
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Xiaoyan Wu
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yinhui Yang
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Qingyu Zhu
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Jing Li
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Chengfeng Qin
- Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| |
Collapse
|
28
|
Zhang S, Gu D, Ouyang X, Xie W. Proinflammatory effects of the hemagglutinin protein of the avian influenza A (H7N9) virus and microRNA‑mediated homeostasis response in THP‑1 cells. Mol Med Rep 2015; 12:6241-6. [PMID: 26238163 DOI: 10.3892/mmr.2015.4142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
The pathology and immunological responses to hemagglutinin (HA) from H7N9 avian influenza viruses in humans remain unclear. The present study aimed to investigate the proinflammatory activity of the HA protein obtained from H7N9 viruses and the mechanisms underlying the homeostasis of microRNAs (miRNAs) in response to inflammatory stimuli. The expression of proinflammatory factors and miRNAs was assayed in the THP‑1 cells using reverse transcription‑quantitative polymerase chain reaction. Results showed that HA significantly increased the expression of interleukin (IL)‑1α, IL‑1β and IL‑6 in the THP‑1 cells. Furthermore, HA and lipopolysaccharide exhibited synergic effects on the expression of IL‑1α, IL‑1β and IL‑6 in the THP‑1 cells. Let‑7e can target IL‑6 and inhibit its expression. Notably, HA significantly increased let‑7e expression in THP‑1 cells and decreased the let‑7e levels in the medium. However, the knockdown of toll‑like receptor 4 (TLR4) significantly attenuated the effects of HA. These results indicate that the HA can induce inflammatory stress and may trigger an miRNA‑mediated homeostasis response to this stress. The effects of HA appeared to be mediated by the TLR4 pathway.
Collapse
Affiliation(s)
- Shaobo Zhang
- Shenzhen Key Lab of Health Science and Technology, Division of Life Science & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Dayong Gu
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, Guangdong 518033, P.R. China
| | - Xiaoxi Ouyang
- Department of Health Inspection and Quarantine, School of Public Health, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weidong Xie
- Shenzhen Key Lab of Health Science and Technology, Division of Life Science & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|