1
|
Yang S, Zhang L, Khan K, Travers J, Huang R, Jovanovic VM, Veeramachaneni R, Sakamuru S, Tristan CA, Davis EE, Klumpp-Thomas C, Witt KL, Simeonov A, Shaw ND, Xia M. Identification of Environmental Compounds That May Trigger Early Female Puberty by Activating Human GnRHR and KISS1R. Endocrinology 2024; 165:bqae103. [PMID: 39254333 PMCID: PMC11384912 DOI: 10.1210/endocr/bqae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 09/11/2024]
Abstract
There has been an alarming trend toward earlier puberty in girls, suggesting the influence of an environmental factor(s). As the reactivation of the reproductive axis during puberty is thought to be mediated by the hypothalamic neuropeptides kisspeptin and gonadotropin-releasing hormone (GnRH), we asked whether an environmental compound might activate the kisspeptin (KISS1R) or GnRH receptor (GnRHR). We used GnRHR or KISS1R-expressing HEK293 cells to screen the Tox21 10K compound library, a compendium of pharmaceuticals and environmental compounds, for GnRHR and KISS1R activation. Agonists were identified using Ca2+ flux and phosphorylated extracellularly regulated kinase (p-ERK) detection assays. Follow-up studies included measurement of genes known to be upregulated upon receptor activation using relevant murine or human cell lines and molecular docking simulation. Musk ambrette was identified as a KISS1R agonist, and treatment with musk ambrette led to increased expression of Gnrh1 in murine and human hypothalamic cells and expansion of GnRH neuronal area in developing zebrafish larvae. Molecular docking demonstrated that musk ambrette interacts with the His309, Gln122, and Gln123 residues of the KISS1R. A group of cholinergic agonists with structures similar to methacholine was identified as GnRHR agonists. When applied to murine gonadotrope cells, these agonists upregulated Fos, Jun, and/or Egr1. Molecular docking revealed a potential interaction between GnRHR and 5 agonists, with Asn305 constituting the most conservative GnRHR binding site. In summary, using a Tox21 10K compound library screen combined with cellular, molecular, and structural biology techniques, we have identified novel environmental agents that may activate the human KISS1R or GnRHR.
Collapse
Affiliation(s)
- Shu Yang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kamal Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
| | - Jameson Travers
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vukasin M Jovanovic
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rithvik Veeramachaneni
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Srilatha Sakamuru
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos A Tristan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL 60611, USA
- Department of Pediatrics, Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Anton Simeonov
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalie D Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Kumar TP, Gireesh-Babu P, Vasudevan D, Pavan-Kumar A, Chaudhari A. Characterization of Kiss/Kissr system and expression profiling through developmental stages indicate kiss1 to be the active isotype in Clarias magur. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1353-1373. [PMID: 38647980 DOI: 10.1007/s10695-024-01343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Kisspeptin (Kiss) and kisspeptin receptor (Kissr) system is a key regulator of GnRH expression in several vertebrates. The Indian catfish, Clarias magur, is popular in the Indian sub-continent, and a neo-type of the Asian catfish, C. batrachus. Catfish breeding is constrained as males do not release milt captivity with/without stimulation. Magur Kiss/Kissr system comprising of kiss1, kiss2, kissr1, and kissr2 genes was characterized for the first time. Full-length mRNA was sequenced using RACE PCR. Neighbor-joining tree of predicted proteins shows one clade of teleost orthologs. Magur whole genome (NCBI GenBank) has single copies of each gene, though yet unannotated/misannotated. Anomalies in the nomenclature of earlier sequences in GenBank were noted. Relative gene expression was profiled during various ontogenic stages, in six tissues including brain and gonads at maturity, and also in brains and gonads of premature and spent fish. Expression of gnrh1, gnrhr1, and gnrhr2 was estimated concomitantly. The kiss1 was the first to be twofold upregulated (P < 0.05) at 12 h post fertilization. Kiss/Kissr genes expressed primarily in the brain, ovary, and testis. Though kiss2 was 10 times higher than kiss1, only kiss1 showed significant modulation across stages and appears to be the active isotype that regulates GnRH in magur.
Collapse
Affiliation(s)
- Thushar P Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - Dileep Vasudevan
- RGCB-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Annam Pavan-Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
3
|
Granitzer S, Widhalm R, Atteneder S, Fernandez MF, Mustieles V, Zeisler H, Hengstschläger M, Gundacker C. BDNF and KISS-1 Levels in Maternal Serum, Umbilical Cord, and Placenta: The Potential Role of Maternal Levels as Effect Biomarker. EXPOSURE AND HEALTH 2023:1-17. [PMID: 37360514 PMCID: PMC10225291 DOI: 10.1007/s12403-023-00565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and kisspeptin-1 (KISS-1) regulate placental development and fetal growth. The predictive value of maternal serum BDNF and KISS-1 concentrations for placental and umbilical cord levels has not yet been explored. The influence of prenatal lead (Pb) and cadmium (Cd) exposure and maternal iron status on BDNF and KISS-1 levels is also unclarified and of concern. In a pilot cross-sectional study with 65 mother-newborn pairs, we analyzed maternal and cord serum levels of pro-BDNF, mature BDNF, and KISS-1, BDNF, and KISS-1 gene expression in placenta, Pb and Cd in maternal and umbilical cord blood (erythrocytes), and placenta. We conducted a series of in vitro experiments using human primary trophoblast cells (hTCs) and BeWo cells to verify main findings of the epidemiological analysis. Strong and consistent correlations were observed between maternal serum levels of pro-BDNF, mature BDNF, and KISS-1 and corresponding levels in umbilical serum and placental tissue. Maternal red blood cell Pb levels were inversely correlated with serum and placental KISS-1 levels. Lower expression and release of KISS-1 was also observed in Pb-exposed BeWo cells. In vitro Pb exposure also reduced cellular BDNF levels. Cd-treated BeWo cells showed increased pro-BDNF levels. Low maternal iron status was positively associated with low BDNF levels. Iron-deficient hTCs and BeWo cells showed a consistent decrease in the release of mature BDNF. The correlations between maternal BDNF and KISS-1 levels, placental gene expression, and umbilical cord serum levels, respectively, indicate the strong potential of maternal serum as predictive matrix for BDNF and KISS-1 levels in placentas and fetal sera. Pb exposure and iron status modulate BDNF and KISS-1 levels, but a clear direction of modulations was not evident. The associations need to be confirmed in a larger sample and validated in terms of placental and neurodevelopmental function. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00565-w.
Collapse
Affiliation(s)
- Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Simon Atteneder
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
| | - Mariana F. Fernandez
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs.GRANADA), Granada, Spain
- Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs.GRANADA), Granada, Spain
- Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Harald Zeisler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| |
Collapse
|
4
|
Huang H, Xiao K, Shu T, Liu X, Yang J. Effects of Kisspeptin on the reproductive function in the Dabry's sturgeon (Acipenser dabrynus). Gen Comp Endocrinol 2023; 336:114244. [PMID: 36841441 DOI: 10.1016/j.ygcen.2023.114244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/26/2022] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Kisspeptin, a kind of neuropeptide, is involved in various physiological processes such as tumor metastasis inhibition and reproductive regulation due to its ability to interact with Kisspeptin receptor-Kissr. In teleost, Kisspeptin/Kissr system stimulates the hypothalamus-pituitary-gonadal axis (HPG axis), which is crucial for the reproductive regulation. Compared to one Kisspeptin protein Kiss1 was existed in mammals, two Kisspeptin were identified in sturgeon species, including Kiss1 and Kiss2, with specific receptors of Kissr1 and Kissr2, respectively. However, few reports described the effects of the two isoforms of Kisspeptin on the reproductive regulation in sturgeon. The core peptides of Kiss1 and Kiss2 (Kiss1-10 and Kiss2-10) of Dabry's sturgeon were successfully synthesized to explore the functional influence of Kisspeptin on the sturgeon HPG axis in the present study. The present findings suggested that intraperitoneal injection of Kiss1-10 and Kiss2-10 could significantly up-regulate the mRNA expression of Gnrh、Fsh and Lh in the hypothalamus and pituitary and the content of Lh protein in the serum. Assays of Kisspeptin-treated cells demonstrated that Kiss1-10 and Kiss2-10 can significantly promote the expression of Gnrh in hypothalamus cells and Lh and Fsh in pituitary cells of Dabry's sturgeon, indicating their direct-acting effect on pituitary cells and regulatory function on the reproductive development of sturgeon. This study described the reproductive function of the Kisspeptin in the Dabry's sturgeon for the first time, and provided supportive reference for the development of high-efficiency ripening technologies of artificially breeding sturgeon.
Collapse
Affiliation(s)
- Hongtao Huang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| | - Tingting Shu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| | - Xueqing Liu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China.
| |
Collapse
|
5
|
Wang B, Mechaly AS, Somoza GM. Overview and New Insights Into the Diversity, Evolution, Role, and Regulation of Kisspeptins and Their Receptors in Teleost Fish. Front Endocrinol (Lausanne) 2022; 13:862614. [PMID: 35392133 PMCID: PMC8982144 DOI: 10.3389/fendo.2022.862614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, kisspeptin (Kiss) has been identified as an important player in the regulation of reproduction and other physiological functions in vertebrates, including several fish species. To date, two ligands (Kiss1, Kiss2) and three kisspeptin receptors (Kissr1, Kissr2, Kissr3) have been identified in teleosts, likely due to whole-genome duplication and loss of genes that occurred early in teleost evolution. Recent results in zebrafish and medaka mutants have challenged the notion that the kisspeptin system is essential for reproduction in fish, in marked contrast to the situation in mammals. In this context, this review focuses on the role of kisspeptins at three levels of the reproductive, brain-pituitary-gonadal (BPG) axis in fish. In addition, this review compiled information on factors controlling the Kiss/Kissr system, such as photoperiod, temperature, nutritional status, sex steroids, neuropeptides, and others. In this article, we summarize the available information on the molecular diversity and evolution, tissue expression and neuroanatomical distribution, functional significance, signaling pathways, and gene regulation of Kiss and Kissr in teleost fishes. Of particular note are recent advances in understanding flatfish kisspeptin systems, which require further study to reveal their structural and functional diversity.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Alejandro S. Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| |
Collapse
|
6
|
Keen KL, Petersen AJ, Figueroa AG, Fordyce BI, Shin J, Yadav R, Erdin S, Pearce RA, Talkowski ME, Bhattacharyya A, Terasawa E. Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells. Endocrinology 2021; 162:6298609. [PMID: 34125902 PMCID: PMC8294693 DOI: 10.1210/endocr/bqab120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus play a key role in the regulation of reproductive function. In this study, we sought an efficient method for generating GnRH neurons from human embryonic and induced pluripotent stem cells (hESC and hiPSC, respectively). First, we found that exposure of primitive neuroepithelial cells, rather than neuroprogenitor cells, to fibroblast growth factor 8 (FGF8), was more effective in generating GnRH neurons. Second, addition of kisspeptin to FGF8 further increased the efficiency rates of GnRH neurogeneration. Third, we generated a fluorescent marker mCherry labeled human embryonic GnRH cell line (mCh-hESC) using a CRISPR-Cas9 targeting approach. Fourth, we examined physiological characteristics of GnRH (mCh-hESC) neurons: similar to GnRH neurons in vivo, they released the GnRH peptide in a pulsatile manner at ~60 min intervals; GnRH release increased in response to high potassium, kisspeptin, estradiol, and neurokinin B challenges; and injection of depolarizing current induced action potentials. Finally, we characterized developmental changes in transcriptomes of GnRH neurons using hESC, hiPSC, and mCh-hESC. The developmental pattern of transcriptomes was remarkably similar among the 3 cell lines. Collectively, human stem cell-derived GnRH neurons will be an important tool for establishing disease models to understand diseases, such as idiopathic hypothalamic hypogonadism, and testing contraceptive drugs.
Collapse
Affiliation(s)
- Kim L Keen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Andrew J Petersen
- Waisman Center, Graduate School, University of Wisconsin, Madison, WI, USA
| | - Alexander G Figueroa
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Benjamin I Fordyce
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Robert A Pearce
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Anita Bhattacharyya
- Waisman Center, Graduate School, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Medicine, University of Wisconsin, Madison, WI, USA
| | - Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Correspondence: Ei Terasawa, PhD, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA.
| |
Collapse
|
7
|
Rodríguez Gabilondo A, Hernández Pérez L, Martínez Rodríguez R. Hormonal and neuroendocrine control of reproductive function in teleost fish. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.02.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reproduction is one of the important physiological events for the maintenance of the species. Hormonal and neuroendocrine regulation of teleost requires multiple and complex interactions along the hypothalamic-pituitary-gonad (HPG) axis. Within this axis, gonadotropin-releasing hormone (GnRH) regulates the synthesis and release of gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Steroidogenesis drives reproduction function in which the development and differentiation of gonads. In recent years, new neuropeptides have become the focus of reproductive physiology research as they are involved in the different regulatory mechanisms of these species' growth, metabolism, and reproduction. However, especially in fish, the role of these neuropeptides in the control of reproductive function is not well studied. The study of hormonal and neuroendocrine events that regulate reproduction is crucial for the development and success of aquaculture.
Collapse
Affiliation(s)
- Adrian Rodríguez Gabilondo
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Liz Hernández Pérez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rebeca Martínez Rodríguez
- Metabolic Modifiers for Aquaculture, Agricultural Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
8
|
Zhao Y, Chen K, Liu F, Jiang M, Chen Z, Chen H, Song Y, Tao B, Cui X, Li Y, Zhu Z, Chen J, Hu W, Luo D. Dynamic Gene Expression and Alternative Splicing Events Demonstrate Co-Regulation of Testicular Differentiation and Maturation by the Brain and Gonad in Common Carp. Front Endocrinol (Lausanne) 2021; 12:820463. [PMID: 35222265 PMCID: PMC8867607 DOI: 10.3389/fendo.2021.820463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The common carp (Cyprinus carpio) accounts for approximately 10% of the annual freshwater aquaculture production and is an ideal model to study cyprinidae reproduction. Female common carp grow faster than the males; therefore, related research presents an opportunity with high application value. Although we have a detailed understanding of common carp's early gonadal differentiation process, information about genome-wide gene expression, regulation, and underlying molecular mechanisms during this process remain limited. Here, time-course data comprising six key stages during testicular differentiation and maturation were investigated to further understand the molecular mechanisms underlying the testicular development in cyprinid species. After integrating these time-series data sets, common carp genome, including 98,345 novel transcripts and 3,071 novel genes were re-annotated and precisely updated. Gene co-expression network analysis revealed that the ubiquitin-mediated proteolysis pathway was essential for metabolism during testicular differentiation in the endocrine system of C. carpio. Functional enrichment analyses indicated that genes mainly related to amino acid metabolism and steroid hormone synthesis were relatively highly expressed at the testicular undifferentiation stages, whereas genes associated with cell cycle and meiosis were expressed from the beginning of testicular differentiation until maturation. The dynamics of alternative splicing events demonstrated that exon skipping accounted for majority of the alternative splicing events in the testis and the brain during gonad development. Notably, several potential male-specific genes (fanci and sox30) and brain-specific genes (oxt, gad2, and tac1, etc.) were identified. Importantly, we traversed beyond the level of transcription to test for stage- and gonad-specific alternative splicing patterns between the brain and testis. This study is the first to describe a comprehensive landscape of alternative splicing events and gene expression patterns during gonadogenesis in common carp. This work is extremely valuable to elucidate the mechanisms underlying gonadal differentiation in Cyprinidae as well as other fish species.
Collapse
Affiliation(s)
- Yuanli Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Kuangxin Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mouyan Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Zonggui Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Huijie Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Xuefan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ji Chen, ; Wei Hu, ; Daji Luo,
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Ji Chen, ; Wei Hu, ; Daji Luo,
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Ji Chen, ; Wei Hu, ; Daji Luo,
| |
Collapse
|
9
|
Kumari P, Kumar M, Sehgal N, Aggarwal N. In silico analysis of kiss2, expression studies and protein-protein interaction with gonadotropin-releasing hormone 2 (GnRH2) and luteinizing hormone beta (LHβ) in Heteropneustes fossilis. J Biomol Struct Dyn 2020; 40:4543-4557. [PMID: 33345697 DOI: 10.1080/07391102.2020.1860820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Kisspeptins, encoded by the kiss genes, are neuropeptides that regulate the onset of puberty, maturation of gonads, and fertility in higher vertebrates including fishes. The gene ontology suggests that kisspeptin plays an important role not only in reproduction but also in cell signaling, immune response and metabolic processes, and to decipher protein-protein interactions, computational approach has been favored. The present investigation focuses on the detailed structural analysis and molecular docking of kiss2 gene using in silico tools. A putative kiss2 protein of 113 amino acids was encoded by an open reading frame of 342 bp kiss2 gene. The protein is of 13.12 kDa with isoelectric point of 9.45. The secondary structure of the protein indicates more than 50% random coils, followed by 34% of alpha helix and 13% extended strand. The protein was found to be extracellular and secretory in nature. Since, protein-protein interactions play a very crucial role in every cellular process and due to unavailability of crystal structure of our protein of interest in fishes computational approach has been employed. The 3D PDB modeling and the molecular docking of kiss2, Gonadotropin-releasing hormone 2 (GnRH2) and luteinizing hormone beta (LHβ) proteins in fishes have been demonstrated applying protein-docking approach. Molecular interactions of kiss2 protein were the highest with kisspeptin receptor 2 and lowest for the neuropeptide FF-amide peptide precursor protein. Expression of kiss2 transcripts, mainly in the brain and ovary of H. fossilis, supports its hypothalamic-pituitary-gonadal axis signaling and reproductive function. Further, changes in expression patterns of kiss2 mRNA during different developmental stages, indicate its potential role in embryonic development also. The present study conclusively reveals interaction of kiss2 with other neuropeptides. Prediction of binding structures and identification of key residues in protein-protein interaction illustrate direct interaction among these proteins, playing a cardinal role in neuroendocrine regulation of reproduction in catfish. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
10
|
Oliveira CCV, Fatsini E, Fernández I, Anjos C, Chauvigné F, Cerdà J, Mjelle R, Fernandes JMO, Cabrita E. Kisspeptin Influences the Reproductive Axis and Circulating Levels of microRNAs in Senegalese Sole. Int J Mol Sci 2020; 21:E9051. [PMID: 33260781 PMCID: PMC7730343 DOI: 10.3390/ijms21239051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Kisspeptin regulates puberty and reproduction onset, acting upstream of the brain-pituitary-gonad (HPG) axis. This study aimed to test a kisspeptin-based hormonal therapy on cultured Senegalese sole (G1) breeders, known to have reproductive dysfunctions. A single intramuscular injection of KISS2-10 decapeptide (250 µg/kg) was tested in females and males during the reproductive season, and gonad maturation, sperm motility, plasma levels of gonadotropins (Fsh and Lh) and sex steroids (11-ketotestosterone, testosterone and estradiol), as well as changes in small non-coding RNAs (sncRNAs) in plasma, were investigated. Fsh, Lh, and testosterone levels increased after kisspeptin injection in both sexes, while sperm analysis did not show differences between groups. Let7e, miR-199a-3p and miR-100-5p were differentially expressed in females, while miR-1-3p miRNA was up-regulated in kisspeptin-treated males. In silico prediction of mRNAs targeted by miRNAs revealed that kisspeptin treatment might affect paracellular transporters, regulate structural and functional polarity of cells, neural networks and intracellular trafficking in Senegalese sole females; also, DNA methylation and sphingolipid metabolism might be altered in kisspeptin-treated males. Results demonstrated that kisspeptin stimulated gonadotropin and testosterone secretion in both sexes and induced an unanticipated alteration of plasma miRNAs, opening new research venues to understand how this neuropeptide impacts in fish HPG axis.
Collapse
Affiliation(s)
- Catarina C. V. Oliveira
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Elvira Fatsini
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - Ignacio Fernández
- Aquaculture Research Center, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Segovia, Spain;
| | - Catarina Anjos
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| | - François Chauvigné
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Joan Cerdà
- IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (F.C.); (J.C.)
| | - Robin Mjelle
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Jorge M. O. Fernandes
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodø, Norway; (R.M.); (J.M.O.F.)
| | - Elsa Cabrita
- Center of Marine Sciences-CCMAR, University of Algarve, 8005-139 Faro, Portugal; (E.F.); (C.A.)
| |
Collapse
|
11
|
Knocking-down of the Prokineticin receptor 2 affects reveals its complex role in the regulation of the hypothalamus-pituitary-gonadal axis in the zebrafish model. Sci Rep 2020; 10:7632. [PMID: 32376893 PMCID: PMC7203128 DOI: 10.1038/s41598-020-64077-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/07/2020] [Indexed: 11/26/2022] Open
Abstract
Prokineticin receptors (PROKR1 and PROKR2) are G protein-coupled receptors which control human central and peripheral reproductive processes. Importantly, allelic variants of PROKR2 in humans are associated with altered migration of GnRH neurons, resulting in congenital hypogonadotropic hypogonadism (CHH), a heterogeneous disease characterized by delayed/absent puberty and/or infertility. Although this association is established in humans, murine models failed to fully recapitulate the reproductive and olfactory phenotypes observed in patients harboring PROKR2 mutations. Here, taking advantage of zebrafish model we investigated the role of prokr1b (ortholog of human PROKR2) during early stages of GnRH neuronal migration. Real-Time PCR and whole mount in situ hybridization assays indicate that prokr1b spatial-temporal expression is consistent with gnrh3. Moreover, knockdown and knockout of prokr1b altered the correct development of GnRH3 fibers, a phenotype that is rescued by injection of prokr1b mRNA. These results suggest that prokr1b regulates the development of the GnRH3 system in zebrafish. Analysis of gonads development and mating experiments indicate that prokr1b is not required for fertility in zebrafish, although its loss determine changes also at the testis level. Altogether, our results support the thesis of a divergent evolution in the control of vertebrate reproduction and provide a useful in vivo model for deciphering the mechanisms underlying the effect of PROKR2 allelic variants on CHH.
Collapse
|
12
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
13
|
Yi TL, Pei MT, Yang DQ. Expression patterns of kiss2 and gpr54-2 in Monopterus albus suggest these genes may play a role in sex reversal in fish. FEBS Open Bio 2019; 9:1835-1844. [PMID: 31446680 PMCID: PMC6768111 DOI: 10.1002/2211-5463.12727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
Due to its exceptionally small genome size and protogynous hermaphroditism, Monopterus albus has been proposed as a model for vertebrate sexual development. The Kiss/GPR54 system is a central regulator of sexual development in most vertebrates, but its role in sex reversal remains hypothetical. In contrast to mammals, fishes often possess more than one copy of the kiss and gpr54 genes. Our objectives were to identify all kiss/gpr54 genes in the genome of M. albus and to assess their involvement in sex reversal via their expression patterns (qPCR) in females, males, and intersex specimens. We identified only two genes: kiss2 and gpr54‐2. kiss2 expression was extremely high in the gonads of males, intermediate in females, and low in intersex; and reduced in all tissues of intersex. gpr54 expression was also extremely high in the gonads of males, high in intersex, but low in females. gpr54 expression in brain was high in all three sexes. In conclusion, (a) kiss1 has been functionally replaced in M. albus; (b) the functions of gpr54‐2 in brain are not sex‐specific; (c) kiss2 appears to undergo a ‘reset’ in the expression during the sex change; and (d) sex‐specific expression patterns in the gonads indicate that these two genes may play a role in sex reversal in fish.
Collapse
Affiliation(s)
- Ti-Lin Yi
- Yangtze University Engineering Research Center for Ecology and Agriculture Use of Wetland, Ministry of Education, Jingzhou, China.,School of Animal Science, Yangtze University, Jingzhou, China
| | - Meng-Ting Pei
- Hubei Provincial Engineering and Technology Research Center for Monopterus albus, Jingzhou, China.,Hubei Zhongqing Aquaculture Industry Technology Research Institute and limited company, Jingzhou, 434026, China
| | - Dai-Qin Yang
- Yangtze University Engineering Research Center for Ecology and Agriculture Use of Wetland, Ministry of Education, Jingzhou, China.,School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
14
|
Distribution of Kiss2 receptor in the brain and its localization in neuroendocrine cells in the zebrafish. Cell Tissue Res 2019; 379:349-372. [PMID: 31471710 DOI: 10.1007/s00441-019-03089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
Kisspeptin is a hypothalamic neuropeptide, which acts directly on gonadotropin-releasing hormone (GnRH)-secreting neurons via its cognate receptor (GPR54 or Kiss-R) to stimulate GnRH secretion in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and Kiss-R types. Recent gene knockout studies have demonstrated that fish kisspeptin systems are not essential in the regulation of reproduction. Studying the detailed distribution of kisspeptin receptor in the brain and pituitary is important for understanding the multiple action sites and potential functions of the kisspeptin system. In the present study, we generated a specific antibody against zebrafish Kiss2-R (=Kiss1Ra/GPR54-1/Kiss-R2/KissR3) and examined its distribution in the brain and pituitary. Kiss2-R-immunoreactive cell bodies are widely distributed in the brain including in the dorsal telencephalon, preoptic area, hypothalamus, optic tectum, and in the hindbrain regions. Double-labeling showed that not all but a subset of preoptic GnRH3 neurons expresses Kiss2-R, while Kiss2-R is expressed in most of the olfactory GnRH3 neurons. In the posterior preoptic region, Kiss2-R immunoreactivity was seen in vasotocin cells. In the pituitary, Kiss2-R immunoreactivity was seen in corticotropes, but not in gonadotropes. The results in this study suggest that Kiss2 and Kiss2-R signaling directly serve non-reproductive functions and indirectly subserve reproductive functions in teleosts.
Collapse
|
15
|
Ohga H, Selvaraj S, Matsuyama M. The Roles of Kisspeptin System in the Reproductive Physiology of Fish With Special Reference to Chub Mackerel Studies as Main Axis. Front Endocrinol (Lausanne) 2018; 9:147. [PMID: 29670580 PMCID: PMC5894438 DOI: 10.3389/fendo.2018.00147] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain-pituitary-gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.
Collapse
|
16
|
Thakuria D, Shahi N, Singh AK, Khangembam VC, Singh AK, Kumar S. Conformational analysis of a synthetic fish kisspeptin 1 peptide in membrane mimicking environments. PLoS One 2017; 12:e0185892. [PMID: 28977030 PMCID: PMC5627949 DOI: 10.1371/journal.pone.0185892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
Kisspeptin 1 is a neuropeptide hormone of the RFamide family, which act as an upstream regulator of brain-pituitary-gonad (BPG) axis in most vertebrates including teleosts. In the present study, a 16 amino acid long putative mature bioactive peptide (kiss 1) from preprokisspeptin 1 of golden mahseer, Tor putitora (Hamilton, 1822), was synthesized and characterized using an integrated (experimental and in silico) approach. The far-UV circular dichroism (CD) spectrum of this peptide was evaluated both in aqueous and membrane mimicking solvents (TFE, HFIP and Dioxane). The results indicate that kiss 1 peptide adopted helical, turn and β conformations in membrane like environments. The near-UV CD spectroscopy was also carried out to examine the tertiary packing around aromatic residues of kiss 1 peptide and the peptide-membrane complex. The kiss 1 peptide exhibited little signal in water, but a prominent negative band was observed at around 275 nm when membrane mimetic solution was added. The observed ordered conformations of kiss 1 peptide in the different solvents indicated its potential biological activity which could enhance the secretion of gonadotropin-releasing hormone (GnRH) at BPG axis. The conformational information generated from the present study reinforces the application prospects of bioactive synthetic peptide analogs of kisspeptin 1 in improving the reproductive performances of important cultivable fish species.
Collapse
Affiliation(s)
- Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, India
- * E-mail:
| | - Neetu Shahi
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, India
| | - Atul Kumar Singh
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, India
| | | | - Arvind Kumar Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttarpradesh, India
| | - Satish Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttarpradesh, India
| |
Collapse
|
17
|
Hasebe M, Oka Y. High-Frequency Firing Activity of GnRH1 Neurons in Female Medaka Induces the Release of GnRH1 Peptide From Their Nerve Terminals in the Pituitary. Endocrinology 2017; 158:2603-2617. [PMID: 28575187 DOI: 10.1210/en.2017-00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons play an important role in promoting secretion of pituitary luteinizing hormone (LH) and ovulation by releasing GnRH peptide. The release of GnRH peptide is generally assumed to be mainly modulated according to the firing activity of GnRH neurons. However, the relationship between the firing activity and the release of GnRH peptide has been elusive. We analyzed the relationship using two lines of transgenic medaka (gnrh1:enhanced green fluorescent protein and lhb:inverse-pericam) for the combined electrophysiological and Ca2+ imaging analyses. We show that a high-frequency firing activity induced by an excitatory neurotransmitter, glutamate, strongly increases [Ca2+]i in the cell bodies of GnRH1 neurons, which should lead to stimulation of GnRH release. We examined whether this high-frequency firing actually leads to the release of endogenous GnRH1 peptide from the nerve terminals projecting to the pituitary LH cells using a whole brain-pituitary preparation of a fish generated by crossing the two types of transgenic fish. Ca2+ imaging analyses showed that local glutamate activation of GnRH1 cell bodies, but not their nerve terminals in the pituitary, induced a substantial Ca2+ response in LH cells that was abolished in the presence of a GnRH receptor antagonist, Analog M. These results suggest that such an evoked high-frequency firing activity of GnRH1 cell body stimulates the release of endogenous GnRH1 peptide from the axon terminals to the pituitary LH cells. Thus, the findings of the present study have clearly demonstrated the relationship between the firing activity of hypothalamic GnRH neurons and the release of GnRH peptide.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Li L, Wojtowicz JL, Malin JH, Huang T, Lee EB, Chen Z. GnRH-mediated olfactory and visual inputs promote mating-like behaviors in male zebrafish. PLoS One 2017; 12:e0174143. [PMID: 28329004 PMCID: PMC5362193 DOI: 10.1371/journal.pone.0174143] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/03/2017] [Indexed: 01/13/2023] Open
Abstract
The engagement of sexual behaviors is regulated by a number of factors which include gene expression, hormone circulation, and multi-sensory information integration. In zebrafish, when a male and a female are placed in the same container, they show mating-like behaviors regardless of whether they are kept together or separated by a net. No mating-like behaviors are observed when same-sex animals are put together. Through the olfacto-visual centrifugal pathway, activation of the terminalis nerve in the olfactory bulb increases GnRH signaling in the brain and triggers mating-like behaviors between males. In zebrafish mutants or wild-type fish in which the olfacto-visual centrifugal pathway is impaired or chemically ablated, in response to odor stimulation the mating-like behaviors between males are no longer evident. Together, the data suggest that the combination of olfactory and visual signals alter male zebrafish's mating-like behaviors via GnRH signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| | - Jennifer L. Wojtowicz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - John H. Malin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan,China
| | - Eric B. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Zijiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan,China
| |
Collapse
|
19
|
Identification of genes in the hypothalamus-pituitary-gonad axis in the brain of Amur sturgeons (Acipenser schrenckii) by comparative transcriptome analysis in relation to kisspeptin treatment. Gene 2016; 595:53-61. [DOI: 10.1016/j.gene.2016.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
|
20
|
Zhao Y, Singh C, Prober DA, Wayne NL. Morphological and Physiological Interactions Between GnRH3 and Hypocretin/Orexin Neuronal Systems in Zebrafish (Danio rerio). Endocrinology 2016; 157:4012-4020. [PMID: 27533887 PMCID: PMC5045510 DOI: 10.1210/en.2016-1381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/11/2016] [Indexed: 01/11/2023]
Abstract
GnRH neurons integrate internal and external cues to control sexual maturation and fertility. Homeostasis of energy balance and food intake correlates strongly with the status of reproduction. Neuropeptides secreted by the hypothalamus involved in modulating energy balance and feeding may play additional roles in the regulation of reproduction. Hypocretin (Hcrt) (also known as orexin) is one such peptide, primarily controlling sleep/wakefulness, food intake, and reward processing. There is a growing body of evidence indicating that Hcrt/orexin (Hcrt) modulates reproduction through interacting with the hypothalamo-pituitary-gonadal axis in mammals. To explore potential morphological and functional interactions between the GnRH and Hcrt neuronal systems, we employed a variety of experimental approaches including confocal imaging, immunohistochemistry, and electrophysiology in transgenic zebrafish, in which fluorescent proteins are genetically expressed in GnRH3 and Hcrt neurons. Our imaging data revealed close apposition and direct connection between GnRH3 and Hcrt neuronal systems in the hypothalamus during larval development through adulthood. Furthermore, the Hcrt receptor (HcrtR) is expressed in GnRH3 neurons. Electrophysiological data revealed a reversible inhibitory effect of Hcrt on GnRH3 neuron electrical activity, which was blocked by the HcrtR antagonist almorexant. In addition, Hcrt had no effect on the electrical activity of GnRH3 neurons in the HcrtR null mutant zebrafish (HcrtR-/-). Our findings demonstrate a close anatomical and functional relationship between Hcrt and GnRH neuronal systems in zebrafish. It is the first demonstration of a link between neuronal circuits controlling sleeping/arousal/feeding and reproduction in zebrafish, an important animal model for investigating the molecular genetics of development.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiology (Y.Z., N.L.W.), David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90095; and Division of Biology and Biological Engineering (C.S., D.P.), California Institute of Technology, Pasadena, California 91125
| | - Chanpreet Singh
- Department of Physiology (Y.Z., N.L.W.), David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90095; and Division of Biology and Biological Engineering (C.S., D.P.), California Institute of Technology, Pasadena, California 91125
| | - David A Prober
- Department of Physiology (Y.Z., N.L.W.), David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90095; and Division of Biology and Biological Engineering (C.S., D.P.), California Institute of Technology, Pasadena, California 91125
| | - Nancy L Wayne
- Department of Physiology (Y.Z., N.L.W.), David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90095; and Division of Biology and Biological Engineering (C.S., D.P.), California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
21
|
Qiu W, Zhao Y, Yang M, Farajzadeh M, Pan C, Wayne NL. Actions of Bisphenol A and Bisphenol S on the Reproductive Neuroendocrine System During Early Development in Zebrafish. Endocrinology 2016; 157:636-47. [PMID: 26653335 DOI: 10.1210/en.2015-1785] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bisphenol A (BPA) is a well-known environmental, endocrine-disrupting chemical, and bisphenol S (BPS) has been considered a safer alternative for BPA-free products. The present study aims to evaluate the impact of BPA and BPS on the reproductive neuroendocrine system during zebrafish embryonic and larval development and to explore potential mechanisms of action associated with estrogen receptor (ER), thyroid hormone receptor (THR), and enzyme aromatase (AROM) pathways. Environmentally relevant, low levels of BPA exposure during development led to advanced hatching time, increased numbers of GnRH3 neurons in both terminal nerve and hypothalamus, increased expression of reproduction-related genes (kiss1, kiss1r, gnrh3, lhβ, fshβ, and erα), and a marker for synaptic transmission (sv2). Low levels of BPS exposure led to similar effects: increased numbers of hypothalamic GnRH3 neurons and increased expression of kiss1, gnrh3, and erα. Antagonists of ER, THRs, and AROM blocked many of the effects of BPA and BPS on reproduction-related gene expression, providing evidence that those three pathways mediate the actions of BPA and BPS on the reproductive neuroendocrine system. This study demonstrates that alternatives to BPA used in the manufacture of BPA-free products are not necessarily safer. Furthermore, this is the first study to describe the impact of low-level BPA and BPS exposure on the Kiss/Kiss receptor system during development. It is also the first report of multiple cellular pathways (ERα, THRs, and AROM) mediating the effects of BPA and BPS during embryonic development in any species.
Collapse
Affiliation(s)
- Wenhui Qiu
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Yali Zhao
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Ming Yang
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Matthew Farajzadeh
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Nancy L Wayne
- School of Environmental and Chemical Engineering (W.Q., M.Y., C.P.), Shanghai University, Shanghai 200444, China; and Department of Physiology (W.Q., Y.Z., M.F., N.L.W.), David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
22
|
Selvaraj S, Kitano H, Ohga H, Yamaguchi A, Matsuyama M. Expression changes of mRNAs encoding kisspeptins and their receptors and gonadotropin-releasing hormones during early development and gonadal sex differentiation periods in the brain of chub mackerel (Scomber japonicus). Gen Comp Endocrinol 2015; 222:20-32. [PMID: 25304825 DOI: 10.1016/j.ygcen.2014.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 01/15/2023]
Abstract
In recent years, brain kisspeptin system has been shown to be involved in diverse reproductive function, including sexual differentiation in vertebrates. Our previous reports demonstrated that the chub mackerel (Scomber japonicus) brain expresses two kisspeptin (kiss1, kiss2), two kisspeptin receptor (kissr1, kissr2) and three gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) genes. In the present study, using quantitative real-time PCR (qRT-PCR) assays, we analysed expression changes of these genes during early development (0-30dphs) and gonadal sex differentiation periods (37-60dphs). Absolute expression level of kiss-kissr-gnrh in the whole head was higher between 0 and 15dphs, in comparison to later developmental periods. Histological analyses revealed presence of sexually differentiated males and females with testicular and ovarian features at 37, 45, and 60dphs. In both males and females, kiss2, kissr1, and kissr2 levels were higher at 37dph, in comparison to 45 and 60dphs, with kiss1 showing no significant differences. Levels of all three gnrh mRNAs were higher at 45dph, in comparison to 60dph. Changes in the expression level of kiss-kissr-gnrh mRNAs in different brain regions of sexually differentiated males and females indicated differences in their regional distribution. These results suggest possible involvement of Kiss-KissR-GnRH systems during early development and gonadal sex differentiation in the chub mackerel.
Collapse
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hajime Kitano
- Fisheries Research Institute of Karatsu, Department of Joint Research, Faculty of Agriculture, Kyushu University, Saga 847-0132, Japan
| | - Hirofumi Ohga
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
23
|
Song Y, Duan X, Chen J, Huang W, Zhu Z, Hu W. The distribution of kisspeptin (Kiss)1- and Kiss2-positive neurones and their connections with gonadotrophin-releasing hormone-3 neurones in the zebrafish brain. J Neuroendocrinol 2015; 27:198-211. [PMID: 25529211 DOI: 10.1111/jne.12251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 11/30/2014] [Accepted: 12/16/2014] [Indexed: 12/01/2022]
Abstract
Kisspeptin is a neuroendocrine hormone with a critical role in the activation of gonadotrophin-releasing hormone (GnRH) neurones, which is vital for the onset of puberty in mammals. However, the functions of kisspeptin neurones in non-mammalian vertebrates are not well understood. We have used transgenics to labell kisspeptin neurones (Kiss1 and Kiss2) with mCherry in zebrafish (Danio rerio). In kiss1:mCherry transgenic zebrafish, Kiss1 cells were located in the dorsomedial and ventromedial habenula, with their nerve fibres contributing to the fasciculus retroflexus and projecting to the ventral parts of the interpeduncular and raphe nuclei. In kiss2:mCherry zebrafish, Kiss2 cells were primarily located in the dorsal zone of the periventricular hypothalamus and, to a lesser extent, in the periventricular nucleus of the posterior tuberculum and the preoptic area. Kiss2 fibres formed a wide network projecting into the telencephalon, the mesencephalon, the hypothalamus and the pituitary. To study the relationship of kisspeptin neurones and GnRH3 neurones, these fish were crossed with gnrh3:EGFP zebrafish to obtain kiss1:mCherry/gnrh3:EGFP and kiss2:mCherry/gnrh3:EGFP double transgenic zebrafish. The GnRH3 fibres ascending to the habenula were closely associated with Kiss1 fibres projecting from the ventral habenula. On the other hand, GnRH3 fibres and Kiss2 fibres were adjacent but scarcely in contact with each other in the telencephalon and the hypothalamus. The Kiss2 and GnRH3 fibres in the ventral hypothalamus projected into the pituitary via the pituitary stalk. In the pituitary, Kiss2 fibres were directly in contact with GnRH3 fibres in the pars distalis. These results reveal the pattern of kisspeptin neurones and their connections with GnRH3 neurones in the brain, suggesting distinct mechanisms for Kiss1 and Kiss2 in regulating reproductive events in zebrafish.
Collapse
Affiliation(s)
- Y Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
24
|
Trudeau VL. Kiss and tell: Deletion of kisspeptins and receptors reveal surprising results see article in Endocrinology February 2015;156: 589-599. Endocrinology 2015; 156:769-71. [PMID: 25679870 DOI: 10.1210/en.2015-1019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
25
|
Sandvik GK, Hodne K, Haug TM, Okubo K, Weltzien FA. RFamide Peptides in Early Vertebrate Development. Front Endocrinol (Lausanne) 2014; 5:203. [PMID: 25538682 PMCID: PMC4255600 DOI: 10.3389/fendo.2014.00203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/16/2014] [Indexed: 12/17/2022] Open
Abstract
RFamides (RFa) are neuropeptides involved in many different physiological processes in vertebrates, such as reproductive behavior, pubertal activation of the reproductive endocrine axis, control of feeding behavior, and pain modulation. As research has focused mostly on their role in adult vertebrates, the possible roles of these peptides during development are poorly understood. However, the few studies that exist show that RFa are expressed early in development in different vertebrate classes, perhaps mostly associated with the central nervous system. Interestingly, the related peptide family of FMRFa has been shown to be important for brain development in invertebrates. In a teleost, the Japanese medaka, knockdown of genes in the Kiss system indicates that Kiss ligands and receptors are vital for brain development, but few other functional studies exist. Here, we review the literature of RFa in early vertebrate development, including the possible functional roles these peptides may play.
Collapse
Affiliation(s)
- Guro Katrine Sandvik
- Department of Basic Sciences and Aquatic medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Kjetil Hodne
- Institute for Experimental Medical Research, Oslo University Hospital , Oslo , Norway
| | | | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Bunkyo , Japan
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic medicine, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|