1
|
Wei J, Tang Y, Qin S, Ma X, Zhong W, Yang P, Deng Q, Ma J. Laggera alata Attenuates Inflammatory Response by Regulating Macrophage Polarization in Rheumatoid Arthritis Mice. Mol Biotechnol 2024; 66:1934-1941. [PMID: 37493934 DOI: 10.1007/s12033-023-00808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Rheumatoid arthritis (RA) is a type of joint injury, which can induce the activation of inflammatory factors and polarization of tissue macrophages. Total phenolics from Laggera alata (TPLA) has been reported to exhibit anti-inflammatory effect in various diseases. However, its specific function in RA is still unknown. Here, the protective properties of TPLA were studied in collagen-induced arthritis (CIA)-induced RA mice. RA mouse model was established through the CIA induction. Arthritis score, hind paw thickness, and the body weight of the RA mice were evaluated in each group. H&E staining was conducted in hind paw and joint tissues for histopathological staining. The distal femur was analyzed by microCT, and bone loss-related indicators were assessed. The expression of macrophage polarization markers was detected by immunofluorescence staining in RA mice. The serum levels of inflammatory markers were determined by enzyme-linked immunosorbent assay (ELISA). TPLA reduced the CIA-induced arthritis score and hind paw thickness in mice. The body weight of the CIA mouse was significantly increased by TPLA treatment. TPLA improved the CIA-induced histopathological changes in the hind paw and joint tissues from the mice. TPLA inhibited the bone loss and alleviated bone destruction in CIA mouse model. TPLA altered the macrophage phenotype from M1 macrophages into M2 in CIA mice. TPLA suppressed the levels of inflammatory markers both in the serum and joint tissues of the CIA mice. TPLA mitigated RA development by suppressing inflammatory reaction through the inhibition of M1 microphage polarization.
Collapse
Affiliation(s)
- Jiangcun Wei
- Zhuangyao Medicine Preparation Center, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, Guangxi, China
| | - Yunli Tang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Suhong Qin
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Building c03, Zhongmeng Industrial Park, No.5 Guangxin Road, Pumiao Town, Yongning District, Nanning, 530299, Guangxi, China
| | - Xiumei Ma
- Department of Paediatrics, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, Guangxi, China
| | - Wen Zhong
- Zhuangyao Medicine Preparation Center, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, Guangxi, China
| | - Peng Yang
- Department of Scientific Research, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, Guangxi, China
| | - Qingmei Deng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jiabao Ma
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Building c03, Zhongmeng Industrial Park, No.5 Guangxin Road, Pumiao Town, Yongning District, Nanning, 530299, Guangxi, China.
| |
Collapse
|
2
|
Kittaka M, Mizuno N, Morino H, Yoshimoto T, Zhu T, Liu S, Wang Z, Mayahara K, Iio K, Kondo K, Kondo T, Hayashi T, Coghlan S, Teno Y, Doan AAP, Levitan M, Choi RB, Matsuda S, Ouhara K, Wan J, Cassidy AM, Pelletier S, Nampoothiri S, Urtizberea AJ, Robling AG, Ono M, Kawakami H, Reichenberger EJ, Ueki Y. Loss-of-function OGFRL1 variants identified in autosomal recessive cherubism families. JBMR Plus 2024; 8:ziae050. [PMID: 38699440 PMCID: PMC11062026 DOI: 10.1093/jbmrpl/ziae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 05/05/2024] Open
Abstract
Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.
Collapse
Affiliation(s)
- Mizuho Kittaka
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Tetsuya Yoshimoto
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Sheng Liu
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama 700-8558, Japan
| | - Kotoe Mayahara
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Kyohei Iio
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kaori Kondo
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo 113-8677, Japan
| | - Toshio Kondo
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama 700-8558, Japan
| | - Tatsuhide Hayashi
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University, Aichi 464-8650, Japan
| | - Sarah Coghlan
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Yayoi Teno
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Andrew Anh Phung Doan
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Marcus Levitan
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| | - Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Jun Wan
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Annelise M Cassidy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kerala 682041, India
| | | | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama 700-8558, Japan
| | - Hideshi Kawakami
- Department of Molecular Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, CT 06030, United States
| | - Yasuyoshi Ueki
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, United States
| |
Collapse
|
3
|
Abd-Elhalem SS, Al-Doori MH, Hassen MT. Macrophage Polarization Towards M2 Phenotype by Curcuminoids Through NF-κB Pathway Inhibition in Adjuvant-Induced Arthritis. Int Immunopharmacol 2023; 119:110231. [PMID: 37130441 DOI: 10.1016/j.intimp.2023.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Macrophage polarization is decisive for homeostasis maintenance and tissue repair. Anti-inflammatory properties of curcumin (CUR) have been demonstrated in several studies. It used in the treatment of bone disorders includingrheumatoid arthritis. The present study aims to explore the potential mechanisms of curcumin on macrophage polarization, expression, activation, and cytokine secretion in adjuvant-induced arthritis as well as its possible role in enhancing the therapeutic action of methotrexate (MTX) together with minimizing MTX initiated side-effects. Rats were divided into eight groups as follows; Control group, MTX group: was weekly injected with MTX, CUR group: was treated with a daily oral dose of curcumin, MTX + CUR group: was treated with both methotrexate and curcumin, Adjuvant arthritis group (AIA): was injected with complete Freund's adjuvant for arthritis induction, AIA/MTX group: arthritic rats treated with methotrexate, AIA/CUR group: arthritic rats treated with curcumin and AIA/MTX + CUR: arthritic rats treated with both methotrexate and curcumin. Paw swelling, haematological analysis, immunological studies, histological observations and quantitative immunohistochemical investigations were performed. The present results showed that treating arthritic rats with curcumin either alone or in combination with methotrexate resulted in amelioration in paws inflammation, growth rate, absolute and relative spleen weights, and haematological analyses. Antinuclear antibodies, IL-1β, IL-8, IL-10, NF-kB levels, and CD68 + joint expression were also ameliorated. The microscopic examination of joint and spleen showed more improvement as apparently normal tissues in treated groups. It can be concluded that curcumin seems to be most promising in regulating macrophage expression, activation, cytokine secretion, and polarization, thus providing a novel insight in the application of curcumin-based treatments.
Collapse
Affiliation(s)
- Sahar S Abd-Elhalem
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt.
| | - Mohamed H Al-Doori
- Analysis Pathological Department, Faculty of Applied Sciences, Samarra University, Iraq
| | - Marwa T Hassen
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| |
Collapse
|
4
|
Mukai T, Akagi T, Asano SH, Tosa I, Ono M, Kittaka M, Ueki Y, Yahagi A, Iseki M, Oohashi T, Ishihara K, Morita Y. Imatinib has minimal effects on inflammatory and osteopenic phenotypes in a murine cherubism model. Oral Dis 2023; 29:1089-1101. [PMID: 34743383 PMCID: PMC9076755 DOI: 10.1111/odi.14073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Cherubism is a genetic disorder characterised by bilateral jawbone deformation. The associated jawbone lesions regress after puberty, whereas severe cases require surgical treatment. Although several drugs have been tested, fundamental treatment strategies for cherubism have not been established. The effectiveness of imatinib has recently been reported; however, its pharmaceutical mechanism remains unclear. In this study, we tested the effects of imatinib using a cherubism mouse model. METHODS We used Sh3bp2 P416R cherubism mutant mice, which exhibit systemic organ inflammation and osteopenia. The effects of imatinib were determined using primary bone marrow-derived macrophages. Imatinib was administered intraperitoneally to the mice, and serum tumour necrosis factor-α (TNFα), organ inflammation and bone properties were examined. RESULTS The cherubism mutant macrophages produced higher levels of TNFα in response to lipopolysaccharide compared to wild-type macrophages, and imatinib did not significantly suppress TNFα production. Although imatinib suppressed osteoclast formation in vitro, administering it in vivo did not suppress organ inflammation and osteopenia. CONCLUSION The in vivo administration of imatinib had a minimal therapeutic impact in cherubism mutant mice. To establish better pharmaceutical interventions, it is necessary to integrate new findings from murine models with clinical data from patients with a definitive diagnosis of cherubism.
Collapse
Affiliation(s)
- Tomoyuki Mukai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
- Department of Rheumatology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Takahiko Akagi
- Department of Rheumatology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Sumie Hiramatsu Asano
- Department of Rheumatology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Ikue Tosa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8558, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8558, Japan
| | - Mizuho Kittaka
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 635 Barnhill Dr, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, USA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, 635 Barnhill Dr, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, USA
| | - Ayano Yahagi
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Masanori Iseki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama 700-8558, Japan
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
5
|
Matsumoto Y, Rottapel R. PARsylation-mediated ubiquitylation: lessons from rare hereditary disease Cherubism. Trends Mol Med 2023; 29:390-405. [PMID: 36948987 DOI: 10.1016/j.molmed.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/24/2023]
Abstract
Modification of proteins by ADP-ribose (PARsylation) is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes exemplified by PARP1, which controls chromatin organization and DNA repair. Additionally, PARsylation induces ubiquitylation and proteasomal degradation of its substrates because PARsylation creates a recognition site for E3-ubiquitin ligase. The steady-state levels of the adaptor protein SH3-domain binding protein 2 (3BP2) is negatively regulated by tankyrase (PARP5), which coordinates ubiquitylation of 3BP2 by the E3-ligase ring finger protein 146 (RNF146). 3BP2 missense mutations uncouple 3BP2 from tankyrase-mediated negative regulation and cause Cherubism, an autosomal dominant autoinflammatory disorder associated with craniofacial dysmorphia. In this review, we summarize the diverse biological processes, including bone dynamics, metabolism, and Toll-like receptor (TLR) signaling controlled by tankyrase-mediated PARsylation of 3BP2, and highlight the therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama 700-8558, Japan.
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| |
Collapse
|
6
|
Fujii Y, Monteiro N, Sah SK, Javaheri H, Ueki Y, Fan Z, Reichenberger EJ, Chen I. Tlr2/4-Mediated Hyperinflammation Promotes Cherubism-Like Jawbone Expansion in Sh3bp2 (P416R) Knockin Mice. JBMR Plus 2022; 6:e10562. [PMID: 35079675 PMCID: PMC8771001 DOI: 10.1002/jbm4.10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Cherubism (CBM), characterized by expansile jawbones with multilocular fibrocystic lesions, is caused by gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2; mouse orthologue Sh3bp2). Loss of jawbone and dental integrity significantly decrease the quality of life for affected children. Treatment for CBM is limited to multiple surgeries to correct facial deformities. Despite significant advances made with CBM knockin (KI) mouse models (Sh3bp2 KI/KI ), the activation mechanisms of CBM lesions remain unknown because mutant mice do not spontaneously develop expansile jawbones. We hypothesize that bony inflammation of an unknown cause triggers jawbone expansion in CBM. To introduce jawbone inflammation in a spatiotemporally controlled manner, we exposed pulp of the first right mandibular molar of 6-week-old Sh3bp2 +/+ , Sh3bp2 KI/+ , and Sh3bp2 KI/KI mice. Bacterial invasion from the exposed pulp into root canals led to apical periodontitis in wild-type and mutant mice. The pathogen-associated molecular patterns (PAMPs)-induced inflammation of alveolar bone resulted in jawbone expansion in Sh3bp2 KI/+ and Sh3bp2 KI/KI mice. CBM-like lesions developed exacerbated inflammation with increased neutrophil, macrophage, and osteoclast numbers. These lesions displayed excessive neutrophil extracellular traps (NETs) compared to Sh3bp2 +/+ mice. Expression levels of IL-1β, IL-6, and TNF-α were increased in periapical lesions of Sh3bp2 +/+ , Sh3bp2 KI/+ , and Sh3bp2 KI/KI mice and also in plasma and the left untreated mandibles (with no pulp exposure) of Sh3bp2 KI/KI mice, suggesting a systemic upregulation. Ablation of Tlr2/4 signaling or depletion of neutrophils by Ly6G antibodies ameliorated jawbone expansion induced by PAMPs in Sh3bp2 KI/KI mice. In summary, successful induction of CBM-like lesions in jaws of CBM mice is important for studying initiating mechanisms of CBM and for testing potential therapies. Our findings further emphasize a critical role of host immunity in the development of apical periodontitis and the importance of maintaining oral health in CBM patients. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Oral Health and Diagnostic Sciences, School of Dental MedicineUniversity of Connecticut HealthFarmingtonCTUSA
| | - Nelson Monteiro
- Department of Oral Health and Diagnostic Sciences, School of Dental MedicineUniversity of Connecticut HealthFarmingtonCTUSA
| | - Shyam Kishor Sah
- Department of Oral Health and Diagnostic Sciences, School of Dental MedicineUniversity of Connecticut HealthFarmingtonCTUSA
| | - Homan Javaheri
- Department of Oral Health and Diagnostic Sciences, School of Dental MedicineUniversity of Connecticut HealthFarmingtonCTUSA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive CareIndiana University School of DentistryIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University, School of MedicineIndianapolisINUSA
| | - Zhichao Fan
- Department of Immunology, School of MedicineUniversity of Connecticut HealthFarmingtonCTUSA
| | - Ernst J Reichenberger
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive SciencesUniversity of Connecticut HealthFarmingtonCTUSA
| | - I‐Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental MedicineUniversity of Connecticut HealthFarmingtonCTUSA
| |
Collapse
|
7
|
SH3BP2 Deficiency Ameliorates Murine Systemic Lupus Erythematosus. Int J Mol Sci 2021; 22:ijms22084169. [PMID: 33920631 PMCID: PMC8073120 DOI: 10.3390/ijms22084169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The adaptor protein Src homology 3 domain-binding protein 2 (SH3BP2) is widely expressed in immune cells. It controls intracellular signaling pathways. The present study was undertaken to investigate the role of SH3BP2 in a murine systemic lupus erythematosus model. METHODS For the lupus model, we used Faslpr/lpr mice. Clinical and immunological phenotypes were compared between Faslpr/lpr and SH3BP2-deficient Faslpr/lpr mice. Splenomegaly and renal involvement were assessed. Lymphocyte subsets in the spleen were analyzed by flow cytometry. To examine the role of SH3BP2 in specific cells, B cell-specific SH3BP2-deficient lupus mice were analyzed; T cells and bone marrow-derived dendritic cells and macrophages were analyzed in vitro. RESULTS SH3BP2 deficiency significantly reduced lupus-like phenotypes, presented as splenomegaly, renal involvement, elevated serum anti-dsDNA antibody, and increased splenic B220+CD4-CD8- T cells. Notably, SH3BP2 deficiency in B cells did not rescue the lupus-like phenotypes. Furthermore, SH3BP2 deficiency did not substantially affect the characteristics of T cells and macrophages in vitro. Interestingly, SH3BP2 deficiency suppressed the differentiation of dendritic cells in vitro and reduced the number of dendritic cells in the spleen of the lupus-prone mice. CONCLUSIONS SH3BP2 deficiency ameliorated lupus-like manifestations. Modulating SH3BP2 expression could thus provide a novel therapeutic approach to autoimmune diseases.
Collapse
|
8
|
Cherubism: a systematic literature review of clinical and molecular aspects. Int J Oral Maxillofac Surg 2020; 50:43-53. [PMID: 32620450 DOI: 10.1016/j.ijom.2020.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022]
Abstract
The purpose of this review was to integrate the clinical, radiological, microscopic, and molecular data of published cherubism cases, in addition to therapeutic approaches, to provide more concise information about the disease. An electronic search was undertaken in September 2019. Eligibility criteria included publications having enough clinical, radiological, and histological information to confirm the diagnosis. A total of 260 publications reporting 513 cherubism cases were included. Familial history was observed in 310/458 cases (67.7%). SH3BP2 mutations were reported in 101/108 cases (93.5%) and mainly occurred at protein residues 415, 418, 419, and 420. Retrospective clinical grading was possible in 175 cases. Advanced clinical grading was associated with tooth agenesis, but not with other clinical, radiological, and genetic features. Specific amino acid substitutions of SH3BP2 mutations were not associated with the clinical grading of the disease. 'Wait and see' was the most common therapeutic approach. In a small number of cases, drugs were used in the treatment, with variable response. In conclusion, there is no clear correlation between the genotype and the phenotype of the disease, but additional genomic and gene expression regulation information is necessary for a better understanding of cherubism.
Collapse
|
9
|
Akagi T, Mukai T, Mito T, Kawahara K, Tsuji S, Fujita S, Uchida HA, Morita Y. Effect of Angiotensin II on Bone Erosion and Systemic Bone Loss in Mice with Tumor Necrosis Factor-Mediated Arthritis. Int J Mol Sci 2020; 21:ijms21114145. [PMID: 32532031 PMCID: PMC7312645 DOI: 10.3390/ijms21114145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin II (Ang II) is the main effector peptide of the renin-angiotensin system (RAS), which regulates the cardiovascular system. The RAS is reportedly also involved in bone metabolism. The upregulation of RAS components has been shown in arthritic synovial tissues, suggesting the potential involvement of Ang II in arthritis. Accordingly, in the present study, we investigated the role of Ang II in bone erosion and systemic bone loss in arthritis. Ang II was infused by osmotic pumps in tumor necrosis factor-transgenic (TNFtg) mice. Ang II infusion did not significantly affect the severity of clinical and histological inflammation, whereas bone erosion in the inflamed joints was significantly augmented. Ang II administration did not affect the bone mass of the tibia or vertebra. To suppress endogenous Ang II, Ang II type 1 receptor (AT1R)-deficient mice were crossed with TNFtg mice. Genetic deletion of AT1R did not significantly affect inflammation, bone erosion, or systemic bone loss. These results suggest that excessive systemic activation of the RAS can be a risk factor for progressive joint destruction. Our findings indicate an important implication for the pathogenesis of inflammatory bone destruction and for the clinical use of RAS inhibitors in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Takahiko Akagi
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Tomoyuki Mukai
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
- Correspondence: ; Tel.: +81-86-462-1111
| | - Takafumi Mito
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Kyoko Kawahara
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Shoko Tsuji
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Shunichi Fujita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| | - Haruhito A. Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-0914, Japan;
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan; (T.A.); (T.M.); (K.K.); (S.T.); (S.F.); (Y.M.)
| |
Collapse
|
10
|
Kittaka M, Yoshimoto T, Schlosser C, Rottapel R, Kajiya M, Kurihara H, Reichenberger EJ, Ueki Y. Alveolar Bone Protection by Targeting the SH3BP2-SYK Axis in Osteoclasts. J Bone Miner Res 2020; 35:382-395. [PMID: 31613396 PMCID: PMC7012678 DOI: 10.1002/jbmr.3882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 12/18/2022]
Abstract
Periodontitis is a bacterially induced chronic inflammatory condition of the oral cavity where tooth-supporting tissues including alveolar bone are destructed. Previously, we have shown that the adaptor protein SH3-domain binding protein 2 (SH3BP2) plays a critical role in inflammatory response and osteoclastogenesis of myeloid lineage cells through spleen tyrosine kinase (SYK). In this study, we show that SH3BP2 is a novel regulator for alveolar bone resorption in periodontitis. Micro-CT analysis of SH3BP2-deficient (Sh3bp2 -/- ) mice challenged with ligature-induced periodontitis revealed that Sh3bp2 -/- mice develop decreased alveolar bone loss (male 14.9% ± 10.2%; female 19.0% ± 6.0%) compared with wild-type control mice (male 25.3% ± 5.8%; female 30.8% ± 5.8%). Lack of SH3BP2 did not change the inflammatory cytokine expression and osteoclast induction. Conditional knockout of SH3BP2 and SYK in myeloid lineage cells with LysM-Cre mice recapitulated the reduced bone loss without affecting both inflammatory cytokine expression and osteoclast induction, suggesting that the SH3BP2-SYK axis plays a key role in regulating alveolar bone loss by mechanisms that regulate the bone-resorbing function of osteoclasts rather than differentiation. Administration of a new SYK inhibitor GS-9973 before or after periodontitis induction reduced bone resorption without affecting inflammatory reaction in gingival tissues. In vitro, GS-9973 treatment of bone marrow-derived M-CSF-dependent macrophages suppressed tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation with decreased mineral resorption capacity even when GS-9973 was added after RANKL stimulation. Thus, the data suggest that SH3BP2-SYK is a novel signaling axis for regulating alveolar bone loss in periodontitis and that SYK can be a potential therapeutic target to suppress alveolar bone resorption in periodontal diseases. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mizuho Kittaka
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tetsuya Yoshimoto
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Collin Schlosser
- Department of Orthodontics and Dentofacial Orthopedics, University of Missouri-Kansas City, School of Dentistry, Kansas City, MO, USA
| | - Robert Rottapel
- Department of Medicine, Immunology and Medical Biophysics, University of Toronto, Toronto, Canada
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical and Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Sh3bp2 Gain-Of-Function Mutation Ameliorates Lupus Phenotypes in B6.MRL- Faslpr Mice. Cells 2019; 8:cells8050402. [PMID: 31052273 PMCID: PMC6562867 DOI: 10.3390/cells8050402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/11/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
SH3 domain-binding protein 2 (SH3BP2) is an adaptor protein that is predominantly expressed in immune cells, and it regulates intracellular signaling. We had previously reported that a gain-of-function mutation in SH3BP2 exacerbates inflammation and bone loss in murine arthritis models. Here, we explored the involvement of SH3BP2 in a lupus model. Sh3bp2 gain-of-function (P416R knock-in; Sh3bp2KI/+) mice and lupus-prone B6.MRL-Faslpr mice were crossed to yield double-mutant (Sh3bp2KI/+Faslpr/lpr) mice. We monitored survival rates and proteinuria up to 48 weeks of age and assessed renal damage and serum anti-double-stranded DNA antibody levels. Additionally, we analyzed B and T cell subsets in lymphoid tissues by flow cytometry and determined the expression of apoptosis-related molecules in lymph nodes. Sh3bp2 gain-of-function mutation alleviated the poor survival rate, proteinuria, and glomerulosclerosis and significantly reduced serum anti-dsDNA antibody levels in Sh3bp2KI/+Faslpr/lpr mice. Additionally, B220+CD4−CD8− T cell population in lymph nodes was decreased in Sh3bp2KI/+Faslpr/lpr mice, which is possibly associated with the observed increase in cleaved caspase-3 and tumor necrosis factor levels. Sh3bp2 gain-of-function mutation ameliorated clinical and immunological phenotypes in lupus-prone mice. Our findings offer better insight into the unique immunopathological roles of SH3BP2 in autoimmune diseases.
Collapse
|
12
|
Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2. Cells 2019; 8:cells8020195. [PMID: 30813388 PMCID: PMC6406327 DOI: 10.3390/cells8020195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
There is considerable interest in tankyrase because of its potential use in cancer therapy. Tankyrase catalyzes the ADP-ribosylation of a variety of target proteins and regulates various cellular processes. The anti-cancer effects of tankyrase inhibitors are mainly due to their suppression of Wnt signaling and inhibition of telomerase activity, which are mediated by AXIN and TRF1 stabilization, respectively. In this review, we describe the underappreciated effects of another substrate, SH3 domain-binding protein 2 (SH3BP2). Specifically, SH3BP2 is an adaptor protein that regulates intracellular signaling pathways. Additionally, in the human genetic disorder cherubism, the gain-of-function mutations in SH3BP2 enhance osteoclastogenesis. The pharmacological inhibition of tankyrase in mice induces bone loss through the accumulation of SH3BP2 and the subsequent increase in osteoclast formation. These findings reveal the novel functions of tankyrase influencing bone homeostasis, and imply that tankyrase inhibitor treatments in a clinical setting may be associated with adverse effects on bone mass.
Collapse
|
13
|
Abstract
Bone is a crucial element of the skeletal-locomotor system, but also functions as an immunological organ that harbors hematopoietic stem cells (HSCs) and immune progenitor cells. Additionally, the skeletal and immune systems share a number of regulatory molecules, including cytokines and signaling molecules. Osteoimmunology was created as an interdisciplinary field to explore the shared molecules and interactions between the skeletal and immune systems. In particular, the importance of an inseparable link between the two systems has been highlighted by studies on the pathogenesis of rheumatoid arthritis (RA), in which pathogenic helper T cells induce the progressive destruction of multiple joints through aberrant expression of receptor activator of nuclear factor (NF)-κB ligand (RANKL). The conceptual bridge of osteoimmunology provides not only a novel framework for understanding these biological systems but also a molecular basis for the development of therapeutic approaches for diseases of bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Wen X, Chen X, Liang X, Zhao H, Li Y, Sun X, Lu J. The small molecule NSM00191 specifically represses the TNF-α/NF-кB axis in foot and ankle rheumatoid arthritis. Int J Biol Sci 2018; 14:1732-1744. [PMID: 30416388 PMCID: PMC6216029 DOI: 10.7150/ijbs.24232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
The activation of TNF-α/NF-кB signaling is involved in the regulation of a wide range of biological processes, such as cell proliferation, differentiation and apoptosis, eventually causing a number of diseases, such as cancer and inflammation. Here, we found that TNF-α/NF-кB signaling was activated in a large number of blood samples taken from foot and ankle rheumatoid arthritis (RA) patients. By applying a microarray assay to the human synovial sarcoma cell line SW982 and the human fibroblast-like synoviocyte cell line HFLS-RA, as well as in their corresponding p65 knockdown and -overexpressing cells, we identified and verified the activation of many p65 targets, including cytokines (e.g., TNF-α and IL-6), chemokines (e.g., MCP-1 and PANTES), protein receptors (e.g., CD-40 and MHC-1), and inducible enzymes (e.g., COX2). In addition, we subjected microRNAs from foot and ankle RA patients to a microRNA-specific microarray and found that miR-7-5p targeted the 3'-UTR of p65, negatively regulating its expression. By applying an in vitro screen to identify small molecules that specifically inhibited the interaction between TRADD and TNFR2, we found that NSM00191 strongly inhibited the activation of TNF-α/NF-кB signaling in vitro and in vivo, causing the downregulation of NF-кB targets and the decrease of arthritis scores. Collectively, our findings shed new light on the regulation of the TNF-α/NF-кB axis and might provide a new avenue for RA treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangxiang Sun
- Department of Orthopaedics, HongHui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Jun Lu
- Department of Orthopaedics, HongHui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
15
|
Fujita S, Mukai T, Mito T, Kodama S, Nagasu A, Kittaka M, Sone T, Ueki Y, Morita Y. Pharmacological inhibition of tankyrase induces bone loss in mice by increasing osteoclastogenesis. Bone 2018; 106:156-166. [PMID: 29055830 PMCID: PMC6912859 DOI: 10.1016/j.bone.2017.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/05/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
Abstract
Tankyrase is a poly (ADP-ribose) polymerase that leads to ubiquitination and degradation of target proteins. Since tankyrase inhibitors suppress the degradation of AXIN protein, a negative regulator of the canonical Wnt pathway, they effectively act as Wnt inhibitors. Small molecule tankyrase inhibitors are being investigated as drug candidates for cancer and fibrotic diseases, in which the Wnt pathways are aberrantly activated. Tankyrase is also reported to degrade the adaptor protein SH3BP2 (SH3 domain-binding protein 2). We have previously shown that SH3BP2 gain-of-function mutation enhances receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in murine bone marrow-derived macrophages (BMMs). Although the interaction between tankyrase and SH3BP2 has been reported, it is not clear whether and how the inhibition of tankyrase affects bone cells and bone mass. Here, we have demonstrated that tankyrase inhibitors (IWR-1, XAV939, and G007-LK) enhanced RANKL-induced osteoclast formation and function in murine BMMs and human peripheral blood mononuclear cells through the accumulation of SH3BP2, subsequent phosphorylation of SYK, and nuclear translocation of NFATc1. Tankyrase inhibitors also enhanced osteoblast differentiation and maturation, represented by increased expression of osteoblast-associated genes accompanied by the accumulation of SH3BP2 protein and enhanced nuclear translocation of ABL, TAZ, and Runx2 in primary osteoblasts. Most importantly, pharmacological inhibition of tankyrase in mice significantly decreased tibia and lumbar vertebrae bone volumes in association with increased numbers of osteoclasts. Our findings uncover the role of tankyrase inhibition in bone cells and highlight the potential adverse effects of the inhibitor on bone.
Collapse
Affiliation(s)
- Shunichi Fujita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomoyuki Mukai
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan.
| | - Takafumi Mito
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Shoko Kodama
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Akiko Nagasu
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| | - Mizuho Kittaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Teruki Sone
- Department of Nuclear Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Yasuyoshi Ueki
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO, USA
| | - Yoshitaka Morita
- Department of Rheumatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
16
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
17
|
Yang Y, Hu X, Cheng L, Tang W, Zhao W, Yang Y, Zuo J. Periplocoside A ameliorated type II collagen-induced arthritis in mice via regulation of the balance of Th17/Treg cells. Int Immunopharmacol 2017; 44:43-52. [DOI: 10.1016/j.intimp.2016.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 01/23/2023]
|
18
|
Yoshitaka T, Kittaka M, Ishida S, Mizuno N, Mukai T, Ueki Y. Bone marrow transplantation improves autoinflammation and inflammatory bone loss in SH3BP2 knock-in cherubism mice. Bone 2015; 71:201-9. [PMID: 25445458 PMCID: PMC4274253 DOI: 10.1016/j.bone.2014.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/17/2014] [Accepted: 10/25/2014] [Indexed: 12/31/2022]
Abstract
Cherubism (OMIM#118400) is a genetic disorder in children characterized by excessive jawbone destruction with proliferation of fibro-osseous lesions containing a large number of osteoclasts. Mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for cherubism. Analysis of the knock-in (KI) mouse model of cherubism showed that homozygous cherubism mice (Sh3bp2(KI/KI)) spontaneously develop systemic autoinflammation and inflammatory bone loss and that cherubism is a TNF-α-dependent hematopoietic disorder. In this study, we investigated whether bone marrow transplantation (BMT) is effective for the treatment of inflammation and bone loss in Sh3bp2(KI/KI) mice. Bone marrow (BM) cells from wild-type (Sh3bp2(+/+)) mice were transplanted to 6-week-old Sh3bp2(KI/KI) mice with developing inflammation and to 10-week-old Sh3bp2(KI/KI) mice with established inflammation. Six-week-old Sh3bp2(KI/KI) mice transplanted with Sh3bp2(+/+) BM cells exhibited improved body weight loss, facial swelling, and survival rate. Inflammatory lesions in the liver and lung as well as bone loss in calvaria and mandibula were ameliorated at 10weeks after BMT compared to Sh3bp2(KI/KI) mice transplanted with Sh3bp2(KI/KI) BM cells. Elevation of serum TNF-α levels was not detected after BMT. BMT was effective for up to 20weeks in 6-week-old Sh3bp2(KI/KI) mice transplanted with Sh3bp2(+/+) BM cells. BMT also ameliorated the inflammation and bone loss in 10-week-old Sh3bp2(KI/KI) mice. Thus our study demonstrates that BMT improves the inflammation and bone loss in cherubism mice. BMT may be effective for the treatment of cherubism patients.
Collapse
Affiliation(s)
- Teruhito Yoshitaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO 64108, USA.
| | - Mizuho Kittaka
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO 64108, USA.
| | - Shu Ishida
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO 64108, USA; Department of Periodontal Medicine, Division of Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734, Japan; Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734, Japan.
| | - Noriyoshi Mizuno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO 64108, USA; Department of Periodontal Medicine, Division of Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734, Japan; Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734, Japan.
| | - Tomoyuki Mukai
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO 64108, USA.
| | - Yasuyoshi Ueki
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO 64108, USA.
| |
Collapse
|