1
|
Chen W, Xu C, Wu W, Li W, Huang W, Li Z, Li X, Xie G, Li X, Zhang C, Liang J. Differences of regional homogeneity and cognitive function between psychotic depression and drug-naïve schizophrenia. BMC Psychiatry 2024; 24:835. [PMID: 39567972 PMCID: PMC11577850 DOI: 10.1186/s12888-024-06283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Psychotic depression (PD) and schizophrenia (SCZ) share overlapping symptoms yet differ in etiology, progression, and treatment approaches. Differentiating these disorders through symptom-based diagnosis is challenging, emphasizing the need for a clearer understanding of their distinct cognitive and neural mechanisms. AIM This study aims to compare cognitive impairments and brain functional activities in PD and SCZ to pinpoint distinguishing characteristics of each disorder. METHODS We evaluated cognitive function in 42 PD and 30 SCZ patients using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and resting-state functional magnetic resonance imaging (rs-fMRI). Regional homogeneity (ReHo) values were derived from rs-fMRI data, and group differences in RBANS scores were analyzed. Additionally, Pearson correlation analysis was performed to assess the relationship between cognitive domains and brain functional metrics. RESULTS (1) The SCZ group showed significantly lower RBANS scores than the PD group across all cognitive domains, particularly in visuospatial/constructional ability and delayed memory (p < 0.05); (2) The SCZ group exhibited a significantly higher ReHo value in the left precuneus compared to the PD group (p < 0.05); (3) A negative correlation was observed between visuospatial construction, delayed memory scores, and the ReHo value of the left precuneus. CONCLUSION Cognitive impairment is more pronounced in SCZ than in PD, with marked deficits in visuospatial and memory domains. Enhanced left precuneus activity further differentiates SCZ from PD and correlates with cognitive impairments in both disorders, providing neuroimaging-based evidence to aid differential diagnosis and insights into cognitive dysfunction mechanisms, while also paving a clearer path for psychiatric research.
Collapse
Affiliation(s)
- Wensheng Chen
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Wenxuan Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Wei Huang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Zhijian Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Xuesong Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China.
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, 528000, People's Republic of China.
| |
Collapse
|
2
|
Application of QPLEXTM biomarkers in cognitively normal individuals across a broad age range and diverse regions with cerebral amyloid deposition. Exp Mol Med 2022; 54:61-71. [PMID: 35058557 PMCID: PMC8814000 DOI: 10.1038/s12276-021-00719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
The deposition of beta-amyloid (Aβ) in the brain precedes the onset of symptoms such as cognitive impairment in Alzheimer’s disease (AD); therefore, the early detection of Aβ accumulation is crucial. We previously reported the applicability of the QPLEXTM Alz plus assay kit for the prescreening of Aβ accumulation. Here, we tested the specific application of the kit in a large cohort of cognitively normal (CN) individuals of varying ages for the early detection of Aβ accumulation. We included a total of 221 CN participants with or without brain Aβ. The QPLEXTM biomarkers were characterized based on age groups (1st–3rd tertile) and across various brain regions with cerebral amyloid deposition. The 3rd tertile group (>65 years) was found to be the most suitable age group for the application of our assay kit. Receiver operating characteristic curve analysis showed that the area under the curve (AUC, discrimination power) was 0.878 with 69.7% sensitivity and 98.4% specificity in the 3rd tertile group. Additionally, specific correlations between biomarkers and cerebral amyloid deposition in four different brain regions revealed an overall correlation with general amyloid deposition, consistent with previous findings. Furthermore, the combinational panel with plasma Aβ1–42 levels maximized the discrimination efficiency and achieved an AUC of 0.921 with 95.7% sensitivity and 67.3% specificity. Thus, we suggest that the QPLEXTM Alz plus assay is useful for prescreening brain Aβ levels in CN individuals, especially those aged >65 years, to prevent disease progression via the early detection of disease initiation. A novel assay kit called QPLEXTM Alz plus assay offers a convenient method for assessing brain levels of the beta-amyloid proteins implicated in Alzheimer’s disease in people with normal cognitive abilities, especially those aged over 65. South Korean researchers led by Inhee Mook-Jung at Seoul National University assessed the efficacy of blood tests using the QPLEXTM kit on 221 participants in the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer’s Disease (KBASE). The researchers developed the assay to identify several circulating biomarkers of brain beta-amyloid accumulation. They found the test can distinguish between people known to either have or not have beta-amyloid deposits in their brain. This suggests QPLEXTM Alz plus assay could offer an improved procedure for easy and early diagnosis of Alzheimer’s, increasing the opportunities for effective early treatment.
Collapse
|
3
|
Yang YC, Cai GQ, Yang QC, Li B, Ge QM, Li QY, Shi WQ, Min YL, Liang RB, Shao Y. Brain Functional Connectivity Changes in Patients with Acute Eye Pain: A Resting-State Functional Magnetic Resonance Imaging (fMRI) Study. Med Sci Monit 2021; 27:e930588. [PMID: 34388144 PMCID: PMC8369943 DOI: 10.12659/msm.930588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background By using functional magnetic resonance imaging (fMRI), we aimed to study the changes in potential brain function network activity in patients with acute eye pain. Also, by using the voxel-wise degree centrality (DC) method, we aimed to explore the relationship between spontaneous brain activity and the clinical features of patients with acute eye pain. Material/Methods A total of 15 patients with acute eye pain (5 women and 10 men; EP group) and 15 healthy controls (5 women and 10 men; HC group), were scanned by fMRI. The DC method was used to evaluate changes in spontaneous brain activity. Receiver operating characteristic (ROC) curves were analyzed, and Pearson correlation analysis was used to study the relationship between DC values and clinical manifestations in different regions of brain. Results The area of the left limbic lobe showed a reduction in DC value in patients in the EP group. DC values were elevated in the left cerebellum posterior lobe, left inferior parietal lobule, left inferior temporal gyrus, left precuneus, and right cerebellum posterior lobe in the EP group. The visual analog scale value of the eyes in the EP group was negatively correlated with the left limbic lobe signal value and positively correlated with the left inferior parietal lobule signal value. Further, the scores of the hospital anxiety and depression scale and DC value of the left limbic lobe were negatively correlated. Conclusions Compared with the HC group, patients with acute eye pain had abnormal patterns of intrinsic brain activity in different brain regions, which may help reveal the potential neural mechanisms involved in eye pain.
Collapse
Affiliation(s)
- Yan-Chang Yang
- Department of Anesthesiology, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Guo-Qian Cai
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Qi-Chen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China (mainland)
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang, Jiangxi, China (mainland)
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center,, Nanchang, Jiangxi, China (mainland)
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center,, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
4
|
Brief Mindfulness Meditation Induces Gray Matter Changes in a Brain Hub. Neural Plast 2020; 2020:8830005. [PMID: 33299395 PMCID: PMC7704181 DOI: 10.1155/2020/8830005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/11/2020] [Accepted: 10/30/2020] [Indexed: 01/03/2023] Open
Abstract
Previous studies suggest that the practice of long-term (months to years) mindfulness meditation induces structural plasticity in gray matter. However, it remains unknown whether short-term (<30 days) mindfulness meditation in novices could induce similar structural changes. Our previous randomized controlled trials (RCTs) identified white matter changes surrounding the anterior cingulate cortex (ACC) and the posterior cingulate cortex (PCC) within 2 to 4 weeks, following 5-10 h of mindfulness training. Furthermore, these changes were correlated with emotional states in healthy adults. The PCC is a key hub in the functional anatomy implicated in meditation and other perspectival processes. In this longitudinal study using a randomized design, we therefore examined the effect of a 10 h of mindfulness training, the Integrative Body-Mind Training (IBMT) on gray matter volume of the PCC compared to an active control-relaxation training (RT). We found that brief IBMT increased ventral PCC volume and that baseline temperamental trait-an index of individual differences was associated with a reduction in training-induced gray matter increases. Our findings indicate that brief mindfulness meditation induces gray matter plasticity, suggesting that structural changes in ventral PCC-a key hub associated with self-awareness, emotion, cognition, and aging-may have important implications for protecting against mood-related disorders and aging-related cognitive declines.
Collapse
|
5
|
Lee S, Lee H, Kim KW. Magnetic resonance imaging texture predicts progression to dementia due to Alzheimer disease earlier than hippocampal volume. J Psychiatry Neurosci 2020; 45:7-14. [PMID: 31228173 PMCID: PMC6919919 DOI: 10.1503/jpn.180171] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Early identification of people at risk of imminent progression to dementia due to Alzheimer disease is crucial for timely intervention and treatment. We investigated whether the texture of MRI brain scans could predict the progression of mild cognitive impairment (MCI) to Alzheimer disease earlier than volume. METHODS We constructed a development data set (121 people who were cognitively normal and 145 who had mild Alzheimer disease) and a validation data set (113 patients with stable MCI who did not progress to Alzheimer disease for 3 years; 40 with early MCI who progressed to Alzheimer disease after 12–36 months; and 41 with late MCI who progressed to Alzheimer disease within 12 months) from the Alzheimer’s Disease Neuroimaging Initiative. We analyzed the texture of the hippocampus, precuneus and posterior cingulate cortex using a grey-level co-occurrence matrix. We constructed texture and volume indices from the development data set using logistic regression. Using area under the curve (AUC) of receiver operator characteristics, we compared the accuracy of hippocampal volume, hippocampal texture and the composite texture of the hippocampus, precuneus and posterior cingulate cortex in predicting conversion from MCI to Alzheimer disease in the validation data set. RESULTS Compared with hippocampal volume, hippocampal texture (0.790 v. 0.739, p = 0.047) and composite texture (0.811 v. 0.739, p = 0.007) showed larger AUCs for conversion to Alzheimer disease from both early and late MCI. Hippocampal texture showed a marginally larger AUC than hippocampal volume in early MCI (0.795 v. 0.726, p = 0.060). Composite texture showed a larger AUC for conversion to Alzheimer disease than hippocampal volume in both early (0.817 v. 0.726, p = 0.027) and late MCI (0.805 v. 0.753, p = 0.019). LIMITATIONS This study was limited by the absence of histological data, and the pathology reflected by the texture measures remains to be validated. CONCLUSION Textures of the hippocampus, precuneus and posterior cingulate cortex predicted conversion from MCI to Alzheimer disease at an earlier time point and with higher accuracy than hippocampal volume.
Collapse
Affiliation(s)
- Subin Lee
- From the Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea (S. Lee, Kim); the Health Innovation Big Data Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea (H. Lee); the Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea (Kim); and the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Kim)
| | - Hyunna Lee
- From the Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea (S. Lee, Kim); the Health Innovation Big Data Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea (H. Lee); the Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea (Kim); and the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Kim)
| | - Ki Woong Kim
- From the Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea (S. Lee, Kim); the Health Innovation Big Data Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea (H. Lee); the Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea (Kim); and the Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea (Kim)
| |
Collapse
|
6
|
Takano Y, Mutoh T, Tatewaki Y, Seki T, Yamamoto S, Odagiri H, Arai H, Taki Y. Hypoperfusion in the posterior cingulate cortex is associated with lower bone mass density in elderly women with osteopenia and Alzheimer’s disease. Clin Exp Pharmacol Physiol 2019; 47:365-371. [DOI: 10.1111/1440-1681.13217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Yumi Takano
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Tatsushi Mutoh
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Yasuko Tatewaki
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Toshiki Seki
- Tohoku University Graduate School of Medicine Sendai Japan
| | - Shuzo Yamamoto
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Hayato Odagiri
- Department of Diagnostic Radiology Tohoku University Hospital Sendai Japan
| | - Hiroyuki Arai
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology Institute of Development, Aging and Cancer Tohoku University Sendai Japan
- Department of Geriatric Medicine and Neuroimaging Tohoku University Hospital Sendai Japan
| |
Collapse
|
7
|
McAvoy MP, Tagliazucchi E, Laufs H, Raichle ME. Human non-REM sleep and the mean global BOLD signal. J Cereb Blood Flow Metab 2019; 39:2210-2222. [PMID: 30073858 PMCID: PMC6827126 DOI: 10.1177/0271678x18791070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/27/2018] [Indexed: 12/28/2022]
Abstract
A hallmark of non-rapid eye movement (REM) sleep is the decreased brain activity as measured by global reductions in cerebral blood flow, oxygen metabolism, and glucose metabolism. It is unknown whether the blood oxygen level dependent (BOLD) signal undergoes similar changes. Here we show that, in contrast to the decreases in blood flow and metabolism, the mean global BOLD signal increases with sleep depth in a regionally non-uniform manner throughout gray matter. We relate our findings to the circulatory and metabolic processes influencing the BOLD signal and conclude that because oxygen consumption decreases proportionately more than blood flow in sleep, the resulting decrease in paramagnetic deoxyhemoglobin accounts for the increase in mean global BOLD signal.
Collapse
Affiliation(s)
- Mark P McAvoy
- Department of Radiology, Washington University, Saint Louis, MO, USA
| | - Enzo Tagliazucchi
- PICNIC Lab, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Helmut Laufs
- Department of Neurology, Brain Imaging Center, Goethe-Universität Frankfurt am Main, Frankfurt, Germany
- Department of Neurology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Marcus E Raichle
- Department of Radiology, Washington University, Saint Louis, MO, USA
- Alan and Edith L. Wolff Distinguished Professor of Medicine, Washington University, Saint Louis, MO, USA
| |
Collapse
|
8
|
Alperin N, Wiltshire J, Lee SH, Ramos AR, Hernandez-Cardenache R, Rundek T, Curiel Cid R, Loewenstein D. Effect of sleep quality on amnestic mild cognitive impairment vulnerable brain regions in cognitively normal elderly individuals. Sleep 2019; 42:zsy254. [PMID: 30541112 PMCID: PMC6424074 DOI: 10.1093/sleep/zsy254] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/22/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
STUDY OBJECTIVES This study aims to evaluate the extent to which sleep quality impacts amnestic mild cognitive impairment (aMCI)-related brain regions in a cognitively normal cohort of individuals. METHODS Seventy-four participants were rigorously evaluated using a battery of cognitive tests and a detailed clinical assessment to verify normal cognitive status. We then screened for sleep quality using the Pittsburgh Sleep Quality Index (PSQI) and depressive symptoms using the Geriatric Depression Scale (GDS). Five subjects were excluded due to mild depression. Overall 38 individuals with mean age 70.7 ± 7 were classified as poor sleepers and 31 with mean age of 69.6 ± 6 years as normal sleepers. Structural MRI and Freesurfer brain parcellation were used to measure aMCI-related brain regions. RESULTS Relative to normal sleepers, poor sleepers exhibited significant reductions in cortical and subcortical volumes bilaterally in the hippocampi, as well as in the superior parietal lobules and left amygdala. The effects were strongest in the left superior parietal lobule (p < .015), followed by the hippocampi. Diffuse patterns of cortical thinning were observed in the frontal lobes, but significant effects were concentrated in the right mesial frontal cortex. Lower sleep duration was most correlated with cortical volume and thickness reductions among all subjects. CONCLUSIONS Atrophy related to poor sleep quality impacted a number of regions implicated in aMCI and Alzheimer's disease (AD). As such, interventions targeted towards improving sleep quality amongst the elderly may prove an effective tool for modulating the course of aMCI and AD.
Collapse
Affiliation(s)
- Noam Alperin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL
| | - John Wiltshire
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL
| | - Sang H Lee
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL
| | - Alberto R Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Rene Hernandez-Cardenache
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Rosie Curiel Cid
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - David Loewenstein
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
9
|
Han Q, Hou Y, Shang H. A Voxel-Wise Meta-Analysis of Gray Matter Abnormalities in Essential Tremor. Front Neurol 2018; 9:495. [PMID: 29997568 PMCID: PMC6028592 DOI: 10.3389/fneur.2018.00495] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 02/05/2023] Open
Abstract
Objective: To identify the consistent gray matter (GM) volume changes from the whole brain voxel-based morphometry (VBM) studies on essential tremor (ET). Methods: The whole brain VBM studies comparing ET patients and healthy controls (HCs) were systematically searched in the PubMed, Embase and Web of Science from January 2000 to December 2017. Coordinates with significant differences in regional GM volume between ET patients and HCs were extracted from included studies and the meta-analysis was performed using effect size-based signed differential mapping (ES-SDM). Results: A total of 10 studies with 241 ET patients and 213 HCs were included in the meta-analysis. The consistent GM volume reduction was detected in the left precuneus extending to the left posterior cingulate gyrus. The subgroup meta-analysis which included studies performed on a 3.0 T scanner revealed significant GM volume increases in the bilateral frontal lobes, bilateral temporal lobes, left insula, left striatum and left pons, but obvious publication biases of these findings were detected through funnel plots and Egger's tests. Conclusions: The consistent result of our meta-analysis showed a structural damage in the left precuneus extending to the left posterior cingulate gyrus, which possibly played a role in the cognitive dysfunction and depression in ET patients. It might enhance our understanding of the pathophysiological mechanisms underlying ET.
Collapse
Affiliation(s)
- Qing Han
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Ferguson SA, Panos JJ, Sloper D, Varma V. Neurodegenerative Markers are Increased in Postmortem BA21 Tissue from African Americans with Alzheimer's Disease. J Alzheimers Dis 2018; 59:57-66. [PMID: 28582866 DOI: 10.3233/jad-170204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) presents with an earlier onset age and increased symptom severity in African Americans and Hispanics. OBJECTIVE Although the prevalence of plaques and tangles may not exhibit ethnicity-related differences, levels of neurodegenerative proteins have not been described. METHODS Here, levels of five proteins (i.e., S100B, sRAGE, GDNF, Aβ40, and Aβ42) and the Aβ42/Aβ40 ratio were measured in postmortem samples of the middle temporal gyrus (BA21) from age-matched African Americans and Caucasians with AD (n = 6/gender/ethnicity). RESULTS S100B levels were increased 17% in African Americans (p < 0.003) while sRAGE was mildly decreased (p < 0.09). Aβ42 levels were increased 121% in African Americans (p < 0.02), leading to a 493% increase in the Aβ42/Aβ40 ratio (p < 0.002). Analysis of GDNF levels did not indicate any significant effects. There were no significant effects of gender and no significant ethnicity with gender interactions on any analyte. Effect size calculations indicated "medium" to "very large" effects. CONCLUSION S100B is typically elevated in AD cases; however, the increased levels in African Americans here may be indicative of increased severity in specific populations. Increased Aβ42/Aβ40 ratios in the current study are compatible with increased disease severity and might indicate increased AD pathogenesis in African Americans. Overall, these results are compatible with a hypothesis of increased neuroinflammation in African Americans with AD.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, USA
| | - John J Panos
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, USA
| | - Daniel Sloper
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, USA
| | - Vijayalakshmi Varma
- Division of Systems Biology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
11
|
Walker DG, Lue LF, Tang TM, Adler CH, Caviness JN, Sabbagh MN, Serrano GE, Sue LI, Beach TG. Changes in CD200 and intercellular adhesion molecule-1 (ICAM-1) levels in brains of Lewy body disorder cases are associated with amounts of Alzheimer's pathology not α-synuclein pathology. Neurobiol Aging 2017; 54:175-186. [PMID: 28390825 DOI: 10.1016/j.neurobiolaging.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Enhanced inflammation has been associated with Alzheimer's disease (AD) and diseases with Lewy body (LB) pathology, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). One issue is whether amyloid and tangle pathology, features of AD, or α-synuclein LB pathology have similar or different effects on brain inflammation. An aim of this study was to examine if certain features of inflammation changed in brains with increasing LB pathology. To assess this, we measured levels of the anti-inflammatory protein CD200 and the pro-inflammatory protein intercellular adhesion molecule-1 (ICAM-1) in cingulate and temporal cortex from a total of 143 cases classified according to the Unified Staging System for LB disorders. Changes in CD200 and ICAM-1 levels did not correlate with LB pathology, but with AD pathology. CD200 negatively correlated with density of neurofibrillary tangles, phosphorylated tau, and amyloid plaque density. ICAM-1 positively correlated with these AD pathology measures. Double immunohistochemistry for phosphorylated α-synuclein and markers for microglia showed limited association of microglia with LB pathology, but microglia strongly associated with amyloid plaques or phosphorylated tau. These results suggest that there are different features of inflammatory pathology in diseases associated with abnormal α-synuclein compared with AD.
Collapse
Affiliation(s)
- Douglas G Walker
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Lih-Fen Lue
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tiffany M Tang
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - John N Caviness
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | | | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | |
Collapse
|
12
|
Zhu Y, Tang Y, Zhang T, Li H, Tang Y, Li C, Luo X, He Y, Lu Z, Wang J. Reduced functional connectivity between bilateral precuneus and contralateral parahippocampus in schizotypal personality disorder. BMC Psychiatry 2017; 17:48. [PMID: 28152990 PMCID: PMC5288938 DOI: 10.1186/s12888-016-1146-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/29/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Schizotypal personality disorder (SPD) is linked to schizophrenia in terms of shared genetics, biological markers and phenomenological characteristics. In the current study, we aimed to determine whether the previously reported altered functional connectivity (FC) with precuneus in patients with schizophrenia could be extended to individuals with SPD. METHODS Twenty subjects with SPD and 19 healthy controls were recruited from 4461 freshmen at a university in Shanghai and received a resting-state scan of MRI. All participants were evaluated by the Chinese version of Schizotypal Personality Questionnaire (SPQ) and the Chinese version of Symptom Checklist (SCL-90). The imaging data were analysed using the seed-based functional connectivity method. RESULTS Compared with the controls, SPD subjects exhibited reduced FC between bilateral precuneus and contralateral parahippocampus. In SPD group, SPQ total score was negatively correlated with FC between right precuneus and left parahippocampus (r = -0.603, p = 0.006); there was a negative trend between SPQ subscale score of suspiciousness and FC between left precuneus and right parahippocampus (r = -0.553, p = 0.014); and a positive trend was found between SPQ subscale score of odd or eccentric behaviour and FC between left precuneus and right superior temporal gyrus (r = 0.543, p = 0.016). As for the SCL-90 score, a similar negative trend was found between SCL-90 subscale score of suspiciousness and FC between right precuneus and left parahippocampus (r = -0.535, p = 0.018) in SPD group. CONCLUSIONS Our findings suggest that the decreased functional connectivity between precuneus and contralateral parahippocampus might play a key role in the pathophysiology of schizophrenia spectrum disorder.
Collapse
Affiliation(s)
- Yikang Zhu
- 0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, South Wan Ping Road 600, Shanghai, 200030 People’s Republic of China ,Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, TU München, Munich, Germany
| | - Yunxiang Tang
- 0000 0004 0369 1660grid.73113.37Department of Medical Psychology, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, People’s Republic of China
| | - Tianhong Zhang
- 0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, South Wan Ping Road 600, Shanghai, 200030 People’s Republic of China
| | - Hui Li
- 0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, South Wan Ping Road 600, Shanghai, 200030 People’s Republic of China
| | - Yingying Tang
- 0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, South Wan Ping Road 600, Shanghai, 200030 People’s Republic of China
| | - Chunbo Li
- 0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, South Wan Ping Road 600, Shanghai, 200030 People’s Republic of China ,0000 0004 0368 8293grid.16821.3cBio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xingguang Luo
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06516 USA
| | - Yongguang He
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, South Wan Ping Road 600, Shanghai, 200030, People's Republic of China.
| | - Zheng Lu
- Department of Psychiatry, Shanghai Tongji Hospital, Tongji University School of Medicine, 389 Xin Cun Road, Shanghai, 200065, People's Republic of China.
| | - Jijun Wang
- 0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, South Wan Ping Road 600, Shanghai, 200030 People’s Republic of China ,0000 0004 0368 8293grid.16821.3cBio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Uemura T, Green M, Warsh JJ. Chronic LiCl pretreatment suppresses thrombin-stimulated intracellular calcium mobilization through TRPC3 in astroglioma cells. Bipolar Disord 2016; 18:549-562. [PMID: 27870504 DOI: 10.1111/bdi.12447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/05/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Transient receptor potential canonical type 3 (TRPC3) channels are activated in B lymphoblast cell lines from patients with bipolar disorder (BD), and its expression is reduced by chronic lithium treatment, implicating TRPC3 in the intracellular calcium (Ca2+ ) dyshomeostasis of BD. Thrombin, via a protease-activated receptor, moderates Ca2+ signaling and TRPC3 in astrocytes, and also cell proliferation. We examined whether lithium pretreatment attenuates thrombin-stimulated TRPC3 expression and function in astrocytes, and levels of the calcium-binding peptide, S100B, which is expressed mainly in these cells. METHODS Human astroglioma, U-87MG, cells were pretreated with 1 mmol L-1 LiCl for 1 day (acute), 3 days (subacute), and 7 days (chronic). To examine the role of TRPC3, genetically stable knockdown TRPC3 cells (TRPC3Low cells) were constructed using U-87MG cells. Thrombin (2.0 U/mL)-stimulated Ca2+ mobilization was measured by ratiometric fluorimetry. Changes in TRPC3 and S100B expression levels were determined by quantitative reverse transcription-polymerase chain reaction and immunoblotting, respectively. Cell proliferation was also measured using the WST-8 assay. RESULTS In this cell model, thrombin-stimulated Ca2+ mobilization, and both TRPC3 and S100B expression were suppressed by chronic LiCl pretreatment and the knockdown of TRPC3. Additionally, cell proliferation was attenuated in TRPC3Low cells, compared with the negative control vector-transfected cell. CONCLUSIONS The reduced Ca2+ mobilization and S100B expression levels following chronic LiCl pretreatment and in TRPC3Low cells support the notion that TRPC3 modulates S100B expression and is the target of the LiCl effect. Downregulation of TRPC3 may be an important mechanism by which lithium ameliorates pathophysiological intracellular Ca2+ disturbances as observed in BD, accounting, in part, for its mood-stabilizing effects.
Collapse
Affiliation(s)
- Takuji Uemura
- Laboratory of Cellular and Molecular Pathophysiology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Neuropsychiatry, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Marty Green
- Laboratory of Cellular and Molecular Pathophysiology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jerry J Warsh
- Laboratory of Cellular and Molecular Pathophysiology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Program in Neuroscience, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Combined effects of physical exercise and education on age-related cortical thinning in cognitively normal individuals. Sci Rep 2016; 6:24284. [PMID: 27063336 PMCID: PMC4827124 DOI: 10.1038/srep24284] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/23/2016] [Indexed: 01/09/2023] Open
Abstract
We investigated the association between self-reported physical exercise and cortical thickness in a large sample of cognitively normal individuals. We also determined whether a combination of physical exercise and education had more protective effects on age-related cortical thinning than either parameter alone. A total of 1,842 participants were included in this analysis. Physical exercise was assessed using a questionnaire regarding intensity, frequency, and duration. Cortical thickness was measured using a surface-based method. Longer duration of exercise (≥1 hr/day), but not intensity or frequency, was associated with increased mean cortical thickness globally (P-value = 0.013) and in the frontal regions (P-value = 0.007). In particular, the association of exercise with cortical thinning had regional specificity in the bilateral dorsolateral prefrontal, precuneus, left postcentral, and inferior parietal regions. The combination of higher exercise level and higher education level showed greater global and frontal mean thickness than either parameter alone. Testing for a trend with the combination of high exercise level and high education level confirmed this finding (P-value = 0.001–0.003). Our findings suggest that combined exercise and education have important implications for brain health, especially considering the paucity of known protective factors for age-related cortical thinning.
Collapse
|