1
|
Mutafova-Yambolieva VN. Mechanosensitive release of ATP in the urinary bladder mucosa. Purinergic Signal 2024:10.1007/s11302-024-10063-6. [PMID: 39541058 DOI: 10.1007/s11302-024-10063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.
Collapse
|
2
|
Farach-Carson MC, Wu D, França CM. Proteoglycans in Mechanobiology of Tissues and Organs: Normal Functions and Mechanopathology. PROTEOGLYCAN RESEARCH 2024; 2:e21. [PMID: 39584146 PMCID: PMC11584024 DOI: 10.1002/pgr2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 11/26/2024]
Abstract
Proteoglycans (PGs) are a diverse class of glycoconjugates that serve critical functions in normal mechanobiology and mechanopathology. Both the protein cores and attached glycosaminoglycan (GAG) chains function in mechanically-sensitive processes, and loss of either can contribute to development of pathological conditions. PGs function as key components of the extracellular matrix (ECM) where they can serve as mechanosensors in mechanosensitive tissues including bone, cartilage, tendon, blood vessels and soft organs. The mechanical properties of these tissues depend on the presence and function of PGs, which play important roles in tissue elasticity, osmolarity and pressure sensing, and response to physical activity. Tissue responses depend on cell surface mechanoreceptors that include integrins, CD44, voltage sensitive ion channels, transient receptor potential (TRP) and piezo channels. PGs contribute to cell and molecular interplay in wound healing, fibrosis, and cancer, where they transduce the mechanical properties of the ECM and influence the progression of various context-specific conditions and diseases. The PGs that are most important in mechanobiology vary depending on the tissue and its functions and functional needs. Perlecan, for example, is important in the mechanobiology of basement membranes, cardiac and skeletal muscle, while aggrecan plays a primary role in the mechanical properties of cartilage and joints. A variety of techniques have been used to study the mechanobiology of PGs, including atomic force microscopy, mouse knockout models, and in vitro cell culture experiments with 3D organoid models. These studies have helped to elucidate the tissue-specific roles that PGs play in cell-level mechanosensing and tissue mechanics. Overall, the study of PGs in mechanobiology is yielding fundamental new concepts in the molecular basis of mechanosensing that can open the door to the development of new treatments for a host of conditions related to mechanopathology.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Cristiane Miranda França
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, 97201
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201
| |
Collapse
|
3
|
Barge S, Wu A, Zhang L, Robson SC, Olumi A, Alper SL, Zeidel ML, Yu W. Role of ecto-5'-nucleotidase in bladder function. FASEB J 2024; 38:e23416. [PMID: 38198186 PMCID: PMC10783849 DOI: 10.1096/fj.202301393r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Purinergic signaling plays an important role in regulating bladder contractility and voiding. Abnormal purinergic signaling is associated with lower urinary tract symptoms (LUTS). Ecto-5'-nucleotidase (NT5E) catalyzes dephosphorylation of extracellular AMP to adenosine, which in turn promotes adenosine-A2b receptor signaling to relax bladder smooth muscle (BSM). The functional importance of this mechanism was investigated using Nt5e knockout (Nt5eKO) mice. Increased voiding frequency of small voids revealed by voiding spot assay was corroborated by urodynamic studies showing shortened voiding intervals and decreased bladder compliance. Myography indicated reduced contractility of Nt5eKO BSM. These data support a role for NT5E in regulating bladder function through modulation of BSM contraction and relaxation. However, the abnormal bladder phenotype of Nt5eKO mice is much milder than we previously reported in A2b receptor knockout (A2bKO) mice, suggesting compensatory response(s) in Nt5eKO mouse bladder. To better understand this compensatory mechanism, we analyzed changes in purinergic and other receptors controlling BSM contraction and relaxation in the Nt5eKO bladder. We found that the relative abundance of muscarinic CHRM3 (cholinergic receptor muscarinic 3), purinergic P2X1, and A2b receptors was unchanged, whereas P2Y12 receptor was significantly downregulated, suggesting a negative feedback response to elevated ADP signaling. Further studies of additional ecto-nucleotidases indicated significant upregulation of the nonspecific urothelial alkaline phosphatase ALPL, which might mitigate the degree of voiding dysfunction by compensating for Nt5e deletion. These data suggest a mechanistic complexity of the purinergic signaling network in bladder and imply a paracrine mechanism in which urothelium-released ATP and its rapidly produced metabolites coordinately regulate BSM contraction and relaxation.
Collapse
Affiliation(s)
- Sagar Barge
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Ali Wu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Aria Olumi
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Seth L. Alper
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark L. Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Lamouroux A, Tournier M, Iaculli D, Caufriez A, Rusiecka OM, Martin C, Bes V, Carpio LE, Girardin Y, Loris R, Tabernilla A, Molica F, Gozalbes R, Mayán MD, Vinken M, Kwak BR, Ballet S. Structure-Based Design and Synthesis of Stapled 10Panx1 Analogues for Use in Cardiovascular Inflammatory Diseases. J Med Chem 2023; 66:13086-13102. [PMID: 37703077 PMCID: PMC10544015 DOI: 10.1021/acs.jmedchem.3c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/14/2023]
Abstract
Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of 10Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues SBL-PX1-42 and SBL-PX1-44 outperformed the linear native peptide. During in vitro adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native 10Panx1 sequence. The introduction of triazole-based cross-links within the peptide backbones increased helical content and enhanced in vitro proteolytic stability in human plasma (>30-fold longer half-lives, compared to 10Panx1). In adhesion assays, a "double-stapled" peptide, SBL-PX1-206 inhibited ATP release from endothelial cells, thereby efficiently reducing THP-1 monocyte adhesion to a TNF-α-activated endothelial monolayer and making it a promising candidate for future in vivo investigations in animal models of cardiovascular inflammatory disease.
Collapse
Affiliation(s)
- Arthur Lamouroux
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Malaury Tournier
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Debora Iaculli
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Anne Caufriez
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Olga M. Rusiecka
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Charlotte Martin
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Viviane Bes
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Laureano E. Carpio
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
| | - Yana Girardin
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrés Tabernilla
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Filippo Molica
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Rafael Gozalbes
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
- MolDrug
AI Systems SL, c/Olimpia
Arozena 45, 46018 Valencia, Spain
| | - María D. Mayán
- CellCOM
Research Group, Instituto de Investigación Biomédica
de A Coruña, Servizo Galego de Saúde, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mathieu Vinken
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Brenda R. Kwak
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
5
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
6
|
Aresta Branco MSL, Gutierrez Cruz A, Peri LE, Mutafova-Yambolieva VN. The Pannexin 1 Channel and the P2X7 Receptor Are in Complex Interplay to Regulate the Release of Soluble Ectonucleotidases in the Murine Bladder Lamina Propria. Int J Mol Sci 2023; 24:9964. [PMID: 37373111 PMCID: PMC10298213 DOI: 10.3390/ijms24129964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The bladder urothelium releases ATP into the lamina propria (LP) during filling, which can activate P2X receptors on afferent neurons and trigger the micturition reflex. Effective ATP concentrations are largely dependent on metabolism by membrane-bound and soluble ectonucleotidases (s-ENTDs), and the latter are released in the LP in a mechanosensitive manner. Pannexin 1 (PANX1) channel and P2X7 receptor (P2X7R) participate in urothelial ATP release and are physically and functionally coupled, hence we investigated whether they modulate s-ENTDs release. Using ultrasensitive HPLC-FLD, we evaluated the degradation of 1,N6-etheno-ATP (eATP, substrate) to eADP, eAMP, and e-adenosine (e-ADO) in extraluminal solutions that were in contact with the LP of mouse detrusor-free bladders during filling prior to substrate addition, as an indirect measure of s-ENDTS release. Deletion of Panx1 increased the distention-induced, but not the spontaneous, release of s-ENTDs, whereas activation of P2X7R by BzATP or high concentration of ATP in WT bladders increased both. In Panx1-/- bladders or WT bladders treated with the PANX1 inhibitory peptide 10Panx, however, BzATP had no effect on s-ENTDS release, suggesting that P2X7R activity depends on PANX1 channel opening. We concluded, therefore, that P2X7R and PANX1 are in complex interaction to regulate s-ENTDs release and maintain suitable ATP concentrations in the LP. Thus, while stretch-activated PANX1 hinders s-ENTDS release possibly to preserve effective ATP concentration at the end of bladder filling, P2X7R activation, presumably in cystitis, would facilitate s-ENTDs-mediated ATP degradation to counteract excessive bladder excitability.
Collapse
Affiliation(s)
| | | | | | - Violeta N. Mutafova-Yambolieva
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA; (M.S.L.A.B.); (A.G.C.); (L.E.P.)
| |
Collapse
|
7
|
Perkins ME, Vizzard MA. Transient receptor potential vanilloid type 4 (TRPV4) in urinary bladder structure and function. CURRENT TOPICS IN MEMBRANES 2022; 89:95-138. [PMID: 36210154 PMCID: PMC10486315 DOI: 10.1016/bs.ctm.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bladder pain syndrome (BPS)/interstitial cystitis (IC) is a urologic, chronic pelvic pain syndrome characterized by pelvic pain, pressure, or discomfort with urinary symptoms. Symptom exacerbation (flare) is common with multiple, perceived triggers including stress. Multiple transient receptor potential (TRP) channels (TRPA1, TRPV1, TRPV4) expressed in the bladder have specific tissue distributions in the lower urinary tract (LUT) and are implicated in bladder disorders including overactive bladder (OAB) and BPS/IC. TRPV4 channels are strong candidates for mechanosensors in the urinary bladder and TRPV4 antagonists are promising therapeutic agents for OAB. In this perspective piece, we address the current knowledge of TRPV4 distribution and function in the LUT and its plasticity with injury or disease with an emphasis on BPS/IC. We review our studies that extend the knowledge of TRPV4 in urinary bladder function by focusing on (i) TRPV4 involvement in voiding dysfunction, pelvic pain, and non-voiding bladder contractions in NGF-OE mice; (ii) distention-induced luminal ATP release mechanisms and (iii) involvement of TRPV4 and vesicular release mechanisms. Finally, we review our lamina propria studies in postnatal rat studies that demonstrate: (i) the predominance of the TRPV4+ and PDGFRα+ lamina propria cellular network in early postnatal rats; (ii) the ability of exogenous mediators (i.e., ATP, TRPV4 agonist) to activate and increase the number of lamina propria cells exhibiting active Ca2+ events; and (iii) the ability of ATP and TRPV4 agonist to increase the rate of integrated Ca2+ activity corresponding to coupled lamina propria network events and the formation of propagating wavefronts.
Collapse
Affiliation(s)
- Megan Elizabeth Perkins
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Margaret A Vizzard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States.
| |
Collapse
|
8
|
Kono J, Ueda M, Sengiku A, Suadicani SO, Woo JT, Kobayashi T, Ogawa O, Negoro H. Flavonoid Nobiletin Attenuates Cyclophosphamide-Induced Cystitis in Mice through Mechanisms That Involve Inhibition of IL-1β Induced Connexin 43 Upregulation and Gap Junction Communication in Urothelial Cells. Int J Mol Sci 2022; 23:5037. [PMID: 35563427 PMCID: PMC9102543 DOI: 10.3390/ijms23095037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Bladder inflammatory diseases cause various urinary symptoms, such as urinary frequency and painful urination, that impair quality of life. In this study, we used a mouse model of cyclophosphamide (CYP)-induced bladder inflammation and immortalized human urothelial (TRT-HU1) cells to explore the preventive potential of nobiletin (NOB), a polymethoxylated flavone enriched in citrus fruit peel, and investigate its mechanism of action in the bladder. Prophylaxis with PMF90 (60% NOB) attenuated the development of bladder inflammation and urinary symptoms in CYP-treated mice. PMF90 also reduced the upregulation of connexin 43 (Cx43), a major component of gap junction channels, in the bladder mucosa of CYP-treated mice. Stimulation of TRT-HU1 cells with the pro-inflammatory cytokine IL-1β increased Cx43 mRNA and protein expression and enhanced gap junction coupling-responses that were prevented by pre-treatment with NOB. In urothelium-specific Cx43 knockout (uCx43KO) mice, macroscopic signs of bladder inflammation and changes in voiding behavior induced by CYP treatment were significantly attenuated when compared to controls. These findings indicate the participation of urothelial Cx43 in the development of bladder inflammation and urinary symptoms in CYP-treated mice and provide pre-clinical evidence for the preventive potential of NOB through its anti-inflammatory effects on IL-1β signaling and urothelial Cx43 expression.
Collapse
Affiliation(s)
- Jin Kono
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
| | - Masakatsu Ueda
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
- Department of Urology, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Atsushi Sengiku
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
- Sengiku Urology Clinic, Shiga 524-0045, Japan
| | - Sylvia O. Suadicani
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Je Tae Woo
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan;
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
| | - Hiromitsu Negoro
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (J.K.); (M.U.); (A.S.); (T.K.); (O.O.)
- Department of Urology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
9
|
Li CF, Chan TC, Pan CT, Vejvisithsakul PP, Lai JC, Chen SY, Hsu YW, Shiao MS, Shiue YL. EMP2 induces cytostasis and apoptosis via the TGFβ/SMAD/SP1 axis and recruitment of P2RX7 in urinary bladder urothelial carcinoma. Cell Oncol (Dordr) 2021; 44:1133-1150. [PMID: 34339014 DOI: 10.1007/s13402-021-00624-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Urinary bladder urothelial carcinoma (UBUC) is a common malignant disease, and its high recurrence rates impose a heavy clinical burden. The objective of this study was to identify signaling pathways downstream of epithelial membrane protein 2 (EMP2), which induces cytostasis and apoptosis in UBUC. METHODS A series of in vitro and in vivo assays using different UBUC-derived cell lines and mouse xenograft models were performed, respectively. In addition, primary UBUC specimens were evaluated by immunohistochemistry. RESULTS Exogenous expression of EMP2 in J82 UBUC cells significantly decreased DNA replication and altered the expression levels of several TGFβ signaling-related proteins. EMP2 knockdown in BFTC905 UBUC cells resulted in opposite effects. EMP2-dysregulated cell cycle progression was found to be mediated by the TGFβ/TGFBR1/SP1 family member SMAD. EMP2 or purinergic receptor P2X7 (P2RX7) gene expression upregulation induced apoptosis via both intrinsic and extrinsic pathways. In 242 UBUC patient samples, P2RX7 protein levels were found to be significantly and positively correlated with EMP2 protein levels. Low P2RX7 levels conferred poor disease-specific and metastasis-free survival rates, and significantly decreased apoptotic cell rates. EMP2 was found to physically interact with P2RX7. In the presence of a P2RX7 agonist, BzATP, overexpression of both EMP2 and P2RX7 significantly increased apoptotic cell rates compared to overexpression of EMP2 or P2RX7 alone. CONCLUSIONS EMP2 induces cytostasis via the TGFβ/SMAD/SP1 axis and recruits P2RX7 to enhance apoptosis in UBUC. Our data provide new insights that may be employed for the design of UBUC targeting therapies.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoblotting
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred NOD
- Mice, SCID
- Proteins/genetics
- Proteins/metabolism
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Smad Proteins/genetics
- Smad Proteins/metabolism
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Transplantation, Heterologous
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Mice
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- National Cancer Research Institute, National Health Research Institutes, Tainan, Taiwan
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- National Cancer Research Institute, National Health Research Institutes, Tainan, Taiwan
| | - Cheng-Tang Pan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Pichpisith Pierre Vejvisithsakul
- Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lienhai Rd, 80424, Kaohsiung, Taiwan
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jia-Chen Lai
- Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lienhai Rd, 80424, Kaohsiung, Taiwan
| | - Szu-Yu Chen
- Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lienhai Rd, 80424, Kaohsiung, Taiwan
| | - Ya-Wen Hsu
- Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lienhai Rd, 80424, Kaohsiung, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yow-Ling Shiue
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-sen University, 70 Lienhai Rd, 80424, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Kong Q, Quan Y, Tian G, Zhou J, Liu X. Purinergic P2 Receptors: Novel Mediators of Mechanotransduction. Front Pharmacol 2021; 12:671809. [PMID: 34025431 PMCID: PMC8138185 DOI: 10.3389/fphar.2021.671809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanosensing and mechanotransduction are vital processes in mechanobiology and play critical roles in regulating cellular behavior and fate. There is increasing evidence that purinergic P2 receptors, members of the purinergic family, play a crucial role in cellular mechanotransduction. Thus, information on the specific mechanism of P2 receptor-mediated mechanotransduction would be valuable. In this review, we focus on purinergic P2 receptor signaling pathways and describe in detail the interaction of P2 receptors with other mechanosensitive molecules, including transient receptor potential channels, integrins, caveolae-associated proteins and hemichannels. In addition, we review the activation of purinergic P2 receptors and the role of various P2 receptors in the regulation of various pathophysiological processes induced by mechanical stimuli.
Collapse
Affiliation(s)
- Qihang Kong
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Quan
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Geer Tian
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Thakore P, Alvarado MG, Ali S, Mughal A, Pires PW, Yamasaki E, Pritchard HA, Isakson BE, Tran CHT, Earley S. Brain endothelial cell TRPA1 channels initiate neurovascular coupling. eLife 2021; 10:63040. [PMID: 33635784 PMCID: PMC7935492 DOI: 10.7554/elife.63040] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cerebral blood flow is dynamically regulated by neurovascular coupling to meet the dynamic metabolic demands of the brain. We hypothesized that TRPA1 channels in capillary endothelial cells are stimulated by neuronal activity and instigate a propagating retrograde signal that dilates upstream parenchymal arterioles to initiate functional hyperemia. We find that activation of TRPA1 in capillary beds and post-arteriole transitional segments with mural cell coverage initiates retrograde signals that dilate upstream arterioles. These signals exhibit a unique mode of biphasic propagation. Slow, short-range intercellular Ca2+ signals in the capillary network are converted to rapid electrical signals in transitional segments that propagate to and dilate upstream arterioles. We further demonstrate that TRPA1 is necessary for functional hyperemia and neurovascular coupling within the somatosensory cortex of mice in vivo. These data establish endothelial cell TRPA1 channels as neuronal activity sensors that initiate microvascular vasodilatory responses to redirect blood to regions of metabolic demand.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - Michael G Alvarado
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - Amreen Mughal
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, United States
| | - Paulo W Pires
- Department of Physiology, College of Medicine, University of Arizona, Tucson, United States
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - Harry At Pritchard
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, United States
| | - Cam Ha T Tran
- Department of Physiology & Cell Biology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
12
|
Wen J, Chen Z, Zhao M, Zu S, Zhao S, Wang S, Zhang X. Cell Deformation at the Air-Liquid Interface Evokes Intracellular Ca 2+ Increase and ATP Release in Cultured Rat Urothelial Cells. Front Physiol 2021; 12:631022. [PMID: 33613324 PMCID: PMC7886682 DOI: 10.3389/fphys.2021.631022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Urothelial cells have been implicated in bladder mechanosensory transduction, and thus, initiation of the micturition reflex. Cell deformation caused by tension forces at an air-liquid interface (ALI) can induce an increase in intracellular Ca2+ concentration ([Ca2+]i) and ATP release in some epithelial cells. In this study, we aimed to examine the cellular mechanisms underlying ALI-induced [Ca2+]i increase in cultured urothelial cells. The ALI was created by stopping the influx of the perfusion but maintaining efflux. The [Ca2+]i increase was measured using the Ca2+ imaging method. The ALI evoked a reversible [Ca2+]i increase and ATP release in urothelial cells, which was almost abolished by GdCl3. The specific antagonist of the transient receptor potential vanilloid (TRPV4) channel (HC0674) and the antagonist of the pannexin 1 channel (10panx) both diminished the [Ca2+]i increase. The blocker of Ca2+-ATPase pumps on the endoplasmic reticulum (thapsigargin), the IP3 receptor antagonist (Xest-C), and the ryanodine receptor antagonist (ryanodine) all attenuated the [Ca2+]i increase. Degrading extracellular ATP with apyrase or blocking ATP receptors (P2X or P2Y) with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) significantly attenuated the [Ca2+]i increase. Our results suggest that both Ca2+ influx via TRPV4 or pannexin 1 and Ca2+ release from intracellular Ca2+ stores via IP3 or ryanodine receptors contribute to the mechanical responses of urothelial cells. The release of ATP further enhances the [Ca2+]i increase by activating P2X and P2Y receptors via autocrine or paracrine mechanisms.
Collapse
Affiliation(s)
- Jiliang Wen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenghao Chen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shulu Zu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengtian Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Bladder urothelium converts bacterial lipopolysaccharide information into neural signaling via an ATP-mediated pathway to enhance the micturition reflex for rapid defense. Sci Rep 2020; 10:21167. [PMID: 33273625 PMCID: PMC7713076 DOI: 10.1038/s41598-020-78398-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
When bacteria enter the bladder lumen, a first-stage active defensive mechanism flushes them out. Although urinary frequency induced by bacterial cystitis is a well-known defensive response against bacteria, the underlying mechanism remains unclear. In this study, using a mouse model of acute bacterial cystitis, we demonstrate that the bladder urothelium senses luminal extracellular bacterial lipopolysaccharide (LPS) through Toll-like receptor 4 and releases the transmitter ATP. Moreover, analysis of purinergic P2X2 and P2X3 receptor-deficient mice indicated that ATP signaling plays a pivotal role in the LPS-induced activation of L6–S1 spinal neurons through the bladder afferent pathway, resulting in rapid onset of the enhanced micturition reflex. Thus, we revealed a novel defensive mechanism against bacterial infection via an epithelial-neural interaction that induces urinary frequency prior to bacterial clearance by neutrophils of the innate immune system. Our results indicate an important defense role for the bladder urothelium as a chemical-neural transducer, converting bacterial LPS information into neural signaling via an ATP-mediated pathway, with bladder urothelial cells acting as sensory receptor cells.
Collapse
|
14
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Mechanosensitive Vaginal Epithelial Adenosine Triphosphate Release and Pannexin 1 Channels in Healthy, in Type 1 Diabetic, and in Surgically Castrated Female Mice. J Sex Med 2020; 17:870-880. [PMID: 32241676 DOI: 10.1016/j.jsxm.2020.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/15/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Distension of hollow organs is known to release adenosine triphosphate (ATP) from the lining epithelium, which triggers local responses and activates sensory nerves to convey information to the central nervous system. However, little is known regarding participation of ATP and mediators of ATP release, such as Pannexin 1 (Panx1) channels, in mechanisms of vaginal mechanosensory transduction and of changes imposed by diabetes and menopause, conditions associated with vaginal dysfunction and risk for impaired genital arousal. AIM To investigate if intravaginal mechanical stimulation triggers vaginal ATP release and if (a) this response involves Panx1 channels and (b) this response is altered in animal models of diabetes and menopause. METHODS Diabetic Akita female mice were used as a type 1 diabetes (T1D) model and surgical castration (ovariectomy [OVX]) as a menopause model. Panx1-null mice were used to evaluate Panx1 participation in mechanosensitive vaginal ATP release. Vaginal washes were collected from anesthetized mice at baseline (non-stimulated) and at 5 minutes after intravaginal stimulation. For the OVX and Sham groups, samples were collected before surgery and at 4, 12, 22, 24, and 28 weeks after surgery. ATP levels in vaginal washes were measured using the luciferin-luciferase assay. Panx1 mRNA levels in vaginal epithelium were quantified by quantitative polymerase chain reaction. OUTCOMES The main outcome measures are quantification of mechanosensitive vaginal ATP release and evaluation of impact of Panx1 deletion, OVX, and T1D on this response. RESULTS Intravaginal mechanical stimulation-induced vaginal ATP release was 84% lower in Panx1-null (P < .001) and 76% lower in diabetic (P < .0001) mice compared with controls and was reduced in a progressive and significant manner in OVX mice when compared with Sham. Panx1 mRNA expression in vaginal epithelium was 44% lower in diabetics than that in controls (P < .05) and 40% lower in OVX than that in the Sham (P < .05) group. CLINICAL TRANSLATION Panx1 downregulation and consequent attenuation of mechanosensitive vaginal responses may be implicated in mechanisms of female genital arousal disorder, thereby providing potential targets for novel therapies to manage this condition. STRENGTHS & LIMITATIONS Using animal models, we demonstrated Panx1 involvement in mechanosensitive vaginal ATP release and effects of T1D and menopause on this response and on Panx1 expression. A limitation is that sex steroid hormone levels were not measured, precluding correlations and insights into mechanisms that may regulate Panx1 expression in the vaginal epithelium. CONCLUSIONS Panx1 channel is a component of the vaginal epithelial mechanosensory transduction system that is essential for proper vaginal response to mechanical stimulation and is targeted in T1D and menopause. Harroche J, Urban-Maldonado M, Thi MM, et al. Mechanosensitive Vaginal Epithelial Adenosine Triphosphate Release and Pannexin 1 Channels in Healthy, in Type 1 Diabetic, and in Surgically Castrated Female Mice. J Sex Med 2020;17:870-880.
Collapse
|
16
|
Mukhopadhyay S, Stowers L. Choosing to urinate. Circuits and mechanisms underlying voluntary urination. Curr Opin Neurobiol 2020; 60:129-135. [PMID: 31875530 PMCID: PMC7055485 DOI: 10.1016/j.conb.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/23/2023]
Abstract
The decision to urinate is a social behavior that is calculated multiple times a day. Many animals perform urine scent-marking which broadcasts their pheromones to regulate the behavior of others and humans are trained at an early age to urinate only at a socially acceptable time and place. The inability to control when and where to void, that is incontinence, causes extreme social discomfort yet targeted therapeutics are lacking because little is known about the underlying circuits and mechanisms. The use of animal models, neurocircuit analysis, and functional manipulation is beginning to reveal basic logic of the circuit that modulates the decision of when and where to void.
Collapse
Affiliation(s)
- Sourish Mukhopadhyay
- Department of Neuroscience, La Jolla, CA, USA; Biomedical Sciences Graduate Program, Scripps Research, La Jolla, CA, USA
| | | |
Collapse
|
17
|
Stewart TA, Davis FM. Formation and Function of Mammalian Epithelia: Roles for Mechanosensitive PIEZO1 Ion Channels. Front Cell Dev Biol 2019; 7:260. [PMID: 31750303 PMCID: PMC6843007 DOI: 10.3389/fcell.2019.00260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
Mechanical forces play important roles in shaping mammalian development. In the embryo, cells experience force both during the formation of the mammalian body plan and in the ensuing phase of organogenesis. Physical forces - including fluid flow, compression, radial pressure, contraction, and osmotic pressure - continue to play central roles as organs mature, function, and ultimately dysfunction. Multiple mechanisms exist to receive, transduce, and transmit mechanical forces in mammalian epithelial tissues and to integrate these cues, which can both fluctuate and coincide, with local and systemic chemical signals. Drawing near a decade since the discovery of the bona fide mechanically activated ion channel, PIEZO1, we discuss in this mini-review established and emerging roles for this protein in the form and function of mammalian epithelia.
Collapse
Affiliation(s)
- Teneale A. Stewart
- Faculty of Medicine, Mater Research-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Felicity M. Davis
- Faculty of Medicine, Mater Research-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Girard BM, Campbell SE, Perkins M, Hsiang H, Tooke K, Drescher C, Hennig GW, Heppner TJ, Nelson MT, Vizzard MA. TRPV4 blockade reduces voiding frequency, ATP release, and pelvic sensitivity in mice with chronic urothelial overexpression of NGF. Am J Physiol Renal Physiol 2019; 317:F1695-F1706. [PMID: 31630542 DOI: 10.1152/ajprenal.00147.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transient receptor potential vanilloid family member 4 (TRPV4) transcript and protein expression increased in the urinary bladder and lumbosacral dorsal root ganglia of transgenic mice with chronic urothelial overexpression of nerve growth factor (NGF-OE). We evaluated the functional role of TRPV4 in bladder function with open-outlet cystometry, void spot assays, and natural voiding (Urovoid) assays with the TRPV4 antagonist HC-067047 (1 μM) or vehicle in NGF-OE and littermate wild-type (WT) mice. Blockade of TRPV4 at the level of the urinary bladder significantly (P ≤ 0.01) increased the intercontraction interval (2.2-fold) and void volume (2.6-fold) and decreased nonvoiding contractions (3.0-fold) in NGF-OE mice, with lesser effects (1.3-fold increase in the intercontraction interval and 1.3-fold increase in the void volume) in WT mice. Similar effects of TRPV4 blockade on bladder function in NGF-OE mice were demonstrated with natural voiding assays. Intravesical administration of HC-067047 (1 µM) significantly (P ≤ 0.01) reduced pelvic sensitivity in NGF-OE mice but was without effect in littermate WT mice. Blockade of urinary bladder TRPV4 or intravesical infusion of brefeldin A significantly (P ≤ 0.01) reduced (2-fold) luminal ATP release from the urinary bladder in NGF-OE and littermate WT mice. The results of the present study suggest that TRPV4 contributes to luminal ATP release from the urinary bladder and increased voiding frequency and pelvic sensitivity in NGF-OE mice.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Susan E Campbell
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Megan Perkins
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Harrison Hsiang
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Katharine Tooke
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Carolyn Drescher
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Grant W Hennig
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas J Heppner
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Mark T Nelson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Margaret A Vizzard
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
19
|
Taidi Z, Mansfield KJ, Bates L, Sana-Ur-Rehman H, Liu L. Purinergic P2X7 receptors as therapeutic targets in interstitial cystitis/bladder pain syndrome; key role of ATP signaling in inflammation. Bladder (San Franc) 2019; 6:e38. [PMID: 32775480 PMCID: PMC7401983 DOI: 10.14440/bladder.2019.789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic lower urinary tract condition. Patients with IC/BPS suffer from debilitating pain and urinary urgency. The underlying etiology of IC/BPS is unknown and as such current treatments are mostly symptomatic with no real cure. Many theories have been proposed to describe the etiology of IC/BPS, but this review focuses on the role of inflammation. In IC/BPS patients, the permeability of the urothelium barrier is compromised and inflammatory cells infiltrate the bladder wall. There are increased levels of many inflammatory mediators in patients with IC/BPS and symptoms such as pain and urgency that have been associated with the degree of inflammation. Recent evidence has highlighted the role of purinergic receptors, specifically the P2X7 receptor, in the process of inflammation. The results from studies in animals including cyclophosphamide-induced hemorrhagic cystitis strongly support the role of P2X7 receptors in inflammation. Furthermore, the deletion of the P2X7 receptor or antagonism of this receptor significantly reduces inflammatory mediator release from the bladder and improves symptoms. Research results from IC/BPS patients and animal models of IC/BPS strongly support the crucial role of inflammation in the pathophysiology of this painful disease. Purinergic signaling and purinergic receptors, especially the P2X7 receptor, play an undisputed role in inflammation. Purinergic receptor antagonists show positive results in treating different symptoms of IC/BPS.
Collapse
Affiliation(s)
- Zhinoos Taidi
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Kylie J Mansfield
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lucy Bates
- Westmead Hospital, Westmead, NSW 2145, Australia
| | - Hafiz Sana-Ur-Rehman
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Lu Liu
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
20
|
Dunton CL, Purves JT, Hughes FM, Jin H, Nagatomi J. Elevated hydrostatic pressure stimulates ATP release which mediates activation of the NLRP3 inflammasome via P2X 4 in rat urothelial cells. Int Urol Nephrol 2018; 50:1607-1617. [PMID: 30099658 PMCID: PMC6129973 DOI: 10.1007/s11255-018-1948-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Partial bladder outlet obstruction (pBOO) is a prevalent urological condition commonly accompanied by increased intravesical pressure, inflammation, and fibrosis. Studies have demonstrated that pBOO results in increased NLRP3 inflammasome and caspase-1 activation and that ATP is released from urothelial cells in response to elevated pressure. In the present study, we investigated the role of elevated pressure in triggering caspase-1 activation via purinergic receptors activation in urothelial cells. Rat urothelial cell line, MYP3 cells, was subjected to hydrostatic pressures of 15 cmH2O for 60 min, or 40 cmH2O for 1 min to simulate elevated storage and voiding pressure conditions, respectively. ATP concentration in the supernatant media and intracellular caspase-1 activity in cell lysates were measured. Pressure experiments were repeated in the presence of antagonists for purinergic receptors to determine the mechanism for pressure-induced caspase-1 activation. Exposure of MYP3 cells to both pressure conditions resulted in an increase in extracellular ATP levels and intracellular caspase-1 activity. Treatment with P2X7 antagonist led to a decrease in pressure-induced ATP release by MYP3 cells, while P2X4 antagonist had no effect but both antagonists inhibited pressure-induced caspase-1 activation. Moreover, when MYP3 cells were treated with extracellular ATP (500 µM), P2X4 antagonist inhibited ATP-induced caspase-1 activation, but not P2X7 antagonist. We concluded that pressure-induced extracellular ATP in urothelial cells is amplified by P2X7 receptor activation and ATP-induced-ATP release. The amplified ATP signal then activates P2X4 receptors, which mediate activation of the caspase-1 inflammatory response.
Collapse
Affiliation(s)
- Cody L Dunton
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - J Todd Purves
- Department of Bioengineering, Clemson University, Clemson, SC, USA.,Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA.,Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Francis M Hughes
- Department of Bioengineering, Clemson University, Clemson, SC, USA.,Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Huixia Jin
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jiro Nagatomi
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
21
|
Seref-Ferlengez Z, Urban-Maldonado M, Sun HB, Schaffler MB, Suadicani SO, Thi MM. Role of pannexin 1 channels in load-induced skeletal response. Ann N Y Acad Sci 2018; 1442:79-90. [PMID: 29952014 DOI: 10.1111/nyas.13914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/18/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022]
Abstract
The pannexin 1 (Panx1) channel is a mechanosensitive channel that interacts with P2X7 receptors (P2X7R) to form a functional complex that has been shown in vitro to play an essential role in osteocyte mechanosignaling. While the participation of P2X7R in skeletal responses to mechanical loading has been demonstrated, the role of Panx1 and its interplay with P2X7R still remain to be determined. In this study, we use a global Panx1-/- mouse model and in vivo mechanical loading to demonstrate that Panx1 channels play an essential role in load-induced skeletal responses. We found that absence of Panx1 not only disrupts the P2X7R-Panx1 signaling complex, but also alters load-induced regulation of P2X7R expression. Moreover, lack of Panx1 completely abolished load-induced periosteal bone formation. Load-induced regulation of β-catenin and sclerostin expression was dysregulated in Panx1-/- , compared to wild-type, bone. This finding suggests that Panx1 deficiency disrupts Wnt/β-catenin signaling by lowering β-catenin while favoring inhibition of bone formation by increasing load-induced sclerostin expression. This study demonstrates the existence of a Panx1-dependent mechanosensitive mechanism that not only modulates ATP signaling but also coordinates Wnt/β-catenin signaling that is essential for proper skeletal response to mechanical loading.
Collapse
Affiliation(s)
- Zeynep Seref-Ferlengez
- Department of Orthopaedic Surgery.,Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE)
| | - Marcia Urban-Maldonado
- Department of Orthopaedic Surgery.,Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE).,Department of Urology
| | - Hui B Sun
- Department of Orthopaedic Surgery.,Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE).,Department of Radiation Oncology
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, New York
| | - Sylvia O Suadicani
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE).,Department of Urology.,Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Mia M Thi
- Department of Orthopaedic Surgery.,Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE).,Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
22
|
Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 2018; 11:273-288. [PMID: 29950881 PMCID: PMC6016592 DOI: 10.2147/jir.s128401] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pannexins belong to a family of ATP-release channels expressed in almost all cell types. An increasing body of literature on pannexins suggests that these channels play dual and sometimes contradictory roles, contributing to normal cell function, as well as to the pathological progression of disease. In this review, we summarize our understanding of pannexin "protective" and "harmful" functions in inflammation, regeneration and mechanical signaling. We also suggest a possible basis for pannexin's dual roles, related to extracellular ATP and K+ levels and the activation of various types of P2 receptors that are associated with pannexin. Finally, we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and peripheral nerves as examples of interesting therapeutic targets.
Collapse
Affiliation(s)
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California.,Research Division, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Valery I Shestopalov
- Bascom Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.,Vavilov Institute for General Genetics, Russian Academy of Sciences.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Modulation of lower urinary tract smooth muscle contraction and relaxation by the urothelium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:675-694. [DOI: 10.1007/s00210-018-1510-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
|
24
|
Sengiku A, Ueda M, Kono J, Sano T, Nishikawa N, Kunisue S, Tsujihana K, Liou LS, Kanematsu A, Shimba S, Doi M, Okamura H, Ogawa O, Negoro H. Circadian coordination of ATP release in the urothelium via connexin43 hemichannels. Sci Rep 2018; 8:1996. [PMID: 29386573 PMCID: PMC5792455 DOI: 10.1038/s41598-018-20379-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
Day-night changes in the storage capacity of the urinary bladder are indispensable for sound sleep. Connexin 43 (Cx43), a major gap junction protein, forms hemichannels as a pathway of ATP in other cell types, and the urinary bladder utilizes ATP as a mechanotransduction signals to modulate its capacity. Here, we demonstrate that the circadian clock of the urothelium regulates diurnal ATP release through Cx43 hemichannels. Cx43 was expressed in human and mouse urothelium, and clock genes oscillated in the mouse urothelium accompanied by daily cycles in the expression of Cx43 and extracellular ATP release into the bladder lumen. Equivalent chronological changes in Cx43 and ATP were observed in immortalized human urothelial cells, but these diurnal changes were lost in both arrhythmic Bmal1-knockout mice and in BMAL1-knockdown urothelial cells. ATP release was increased by Cx43 overexpression and was decreased in Cx43 knockdown or in the presence of a selective Cx43 hemichannel blocker, which indicated that Cx43 hemichannels are considered part of the components regulating ATP release in the urothelium. Thus, a functional circadian rhythm exists in the urothelium, and coordinates Cx43 expression and function as hemichannels that provide a direct pathway of ATP release for mechanotransduction and signalling in the urothelium.
Collapse
Affiliation(s)
- Atsushi Sengiku
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masakatsu Ueda
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Jin Kono
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Sano
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Nobuyuki Nishikawa
- Department of Urology, Japanese Red Cross Otsu Hospital, Shiga, 520-8511, Japan
| | - Sumihiro Kunisue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kojiro Tsujihana
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Louis S Liou
- Department of Urology, Cambridge Health Alliance, Cambridge, MA, 02139, USA
| | - Akihiro Kanematsu
- Department of Urology, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, Chiba, 245-8555, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiromitsu Negoro
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
25
|
Wang Y, Deng GG, Davies KP. Urothelial MaxiK-activity regulates mucosal and detrusor metabolism. PLoS One 2017; 12:e0189387. [PMID: 29281667 PMCID: PMC5744919 DOI: 10.1371/journal.pone.0189387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
There is increasing evidence for a role of MaxiK potassium channel-activity in regulating the metabolism and intracellular signaling of non-contractile bladder mucosal tissues. At present however no studies have determined the impact of urothelial MaxiK-activity on overall bladder metabolism. To address this we have investigated the effect of bladder lumen instillation of the MaxiK inhibitor, iberiotoxin (IBTX), on mucosal and detrusor metabolism using metabolomics. Since IBTX does not cross plasma membranes, when instilled into the bladder lumen it would only effect urothelially expressed MaxiK-activity. Surprisingly IBTX treatment caused more effect on the metabolome of the detrusor than mucosa (the levels of 17% of detected detrusor metabolites were changed in comparison to 6% of metabolites in mucosal tissue following IBTX treatment). In mucosal tissues, the major effects can be linked to mitochondrial-associated metabolism whereas in detrusor there were additional changes in energy generating pathways (such as glycolysis and the TCA cycle). In the detrusor, changes in metabolism are potentially a result of IBTX effecting MaxiK-linked signaling pathways between the mucosa and detrusor, secondary to changes in physiological activity or a combination of both. Overall we demonstrate that urothelial MaxiK-activity plays a significant role in determining mitochondrially-associated metabolism in mucosal tissues, which effects the metabolism of detrusor tissue. Our work adds further evidence that the urothelium plays a major role in determining overall bladder physiology. Since decreased MaxiK-activity is associated with several bladder pathophysiology's, the changes in mucosal metabolism reported here may represent novel downstream targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gary G. Deng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Kelvin P. Davies
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
26
|
Janssen DAW, Schalken JA, Heesakkers JPFA. Urothelium update: how the bladder mucosa measures bladder filling. Acta Physiol (Oxf) 2017; 220:201-217. [PMID: 27804256 DOI: 10.1111/apha.12824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/18/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
AIM This review critically evaluates the evidence on mechanoreceptors and pathways in the bladder urothelium that are involved in normal bladder filling signalling. METHODS Evidence from in vitro and in vivo studies on (i) signalling pathways like the adenosine triphosphate pathway, cholinergic pathway and nitric oxide and adrenergic pathway, and (ii) different urothelial receptors that are involved in bladder filling signalling like purinergic receptors, sodium channels and TRP channels will be evaluated. Other potential pathways and receptors will also be discussed. RESULTS Bladder filling results in continuous changes in bladder wall stretch and exposure to urine. Both barrier and afferent signalling functions in the urothelium are constantly adapting to cope with these dynamics. Current evidence shows that the bladder mucosa hosts essential pathways and receptors that mediate bladder filling signalling. Intracellular calcium ion increase is a dominant factor in this signalling process. However, there is still no complete understanding how interacting receptors and pathways create a bladder filling signal. Currently, there are still novel receptors investigated that could also be participating in bladder filling signalling. CONCLUSIONS Normal bladder filling sensation is dependent on multiple interacting mechanoreceptors and signalling pathways. Research efforts need to focus on how these pathways and receptors interact to fully understand normal bladder filling signalling.
Collapse
Affiliation(s)
- D. A. W. Janssen
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - J. A. Schalken
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| | - J. P. F. A. Heesakkers
- Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen The Netherlands
| |
Collapse
|
27
|
Sana-Ur-Rehman H, Markus I, Moore KH, Mansfield KJ, Liu L. Expression and localization of pannexin-1 and CALHM1 in porcine bladder and their involvement in modulating ATP release. Am J Physiol Regul Integr Comp Physiol 2017; 312:R763-R772. [PMID: 28254749 DOI: 10.1152/ajpregu.00039.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022]
Abstract
ATP release from urinary bladder is vital for afferent signaling. The aims of this study were to localize calcium homeostasis modulator 1 (CALHM1) and pannexin-1 expression and to determine their involvement in mediating ATP release in the bladder. To determine gene expression and cellular distribution, PCR and immunohistochemistry were performed, respectively, in the porcine bladder. CALHM1 and pannexin-1-mediated ATP release in response to hypotonic solution (0.45% NaCl)-induced stretch, and extracellular Ca2+ depletion ([Ca2+]0) was measured in isolated urothelial, suburothelial, and detrusor muscle cells. CALHM1 and pannexin-1 mRNA and immunoreactivity were detected in urothelial, suburothelial, and detrusor muscle layers, with the highest expression on urothelium. Hypotonic stretch caused a 2.7-fold rise in ATP release from all three cell populations (P < 0.01), which was significantly attenuated by the pannexin-1 inhibitor, 10Panx1, and by the CALHM1 antibody. Brefeldin A, a vesicular transport inhibitor, and ruthenium red, a nonselective CALHM1 channel blocker, also significantly inhibited stretch-mediated ATP release from urothelial cells. [Ca2+]0 caused a marked, but transient, elevation of extracellular ATP level in all three cell populations. CALHM1 antibody and ruthenium red inhibited [Ca2+]0-induced ATP release from urothelial cells, but their effects on suburothelial and detrusor cells were insignificant. 10Panx1 showed no significant inhibition of [Ca2+]0-induced ATP release in any types of cells. The results presented here provide compelling evidence that pannexin-1 and CALHM1, which are densely expressed in the porcine bladder, function as ATP release channels in response to bladder distension. Modulation of extracellular Ca2+ may also regulate ATP release in the porcine bladder through voltage-gated CALHM1 ion channels.
Collapse
Affiliation(s)
- Hafiz Sana-Ur-Rehman
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Irit Markus
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Kate Hilda Moore
- St. George Hospital, University of New South Wales, Kogarah, Australia; and
| | - Kylie Jan Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
| | - Lu Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia;
| |
Collapse
|
28
|
Sano T, Kobayashi T, Negoro H, Sengiku A, Hiratsuka T, Kamioka Y, Liou LS, Ogawa O, Matsuda M. Intravital imaging of mouse urothelium reveals activation of extracellular signal-regulated kinase by stretch-induced intravesical release of ATP. Physiol Rep 2016; 4:4/21/e13033. [PMID: 27905300 PMCID: PMC5112504 DOI: 10.14814/phy2.13033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023] Open
Abstract
To better understand the roles played by signaling molecules in the bladder, we established a protocol of intravital imaging of the bladder of mice expressing a Förster/fluorescence resonance energy transfer (FRET) biosensor for extracellular signal‐regulated kinase (ERK), which plays critical roles not only in cell growth but also stress responses. With an upright two‐photon excitation microscope and a vacuum‐stabilized imaging window, cellular ERK activity was visualized in the whole bladder wall, from adventitia to urothelium. We found that bladder distention caused by elevated intravesical pressure (IVP) activated ERK in the urothelium, but not in the detrusor smooth muscle. When bladder distension was prevented, high IVP failed to activate ERK, suggesting that mechanical stretch, but not the high IVP, caused ERK activation. To delineate its molecular mechanism, the stretch‐induced ERK activation was reproduced in an hTERT‐immortalized human urothelial cell line (TRT‐HU1) in vitro. We found that uniaxial stretch raised the ATP concentration in the culture medium and that inhibition of ATP signaling by apyrase or suramin suppressed the stretch‐induced ERK activation in TRT‐HU1 cells. In agreement with this in vitro observation, pretreatment with apyrase or suramin suppressed the high IVP‐induced urothelial ERK activation in vivo. Thus, we propose that mechanical stretch induces intravesical secretion of ATP and thereby activates ERK in the urothelium. Our method of intravital imaging of the bladder of FRET biosensor‐expressing mice should open a pathway for the future association of physiological stimuli with the activities of intracellular signaling networks.
Collapse
Affiliation(s)
- Takeshi Sano
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromitsu Negoro
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Sengiku
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Hiratsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Louis S Liou
- Department of Urology, Cambridge Health Alliance, Cambridge, Massachusetts
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Durnin L, Hayoz S, Corrigan RD, Yanez A, Koh SD, Mutafova-Yambolieva VN. Urothelial purine release during filling of murine and primate bladders. Am J Physiol Renal Physiol 2016; 311:F708-F716. [PMID: 27465992 DOI: 10.1152/ajprenal.00387.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/26/2016] [Indexed: 01/15/2023] Open
Abstract
During urinary bladder filling the bladder urothelium releases chemical mediators that in turn transmit information to the nervous and muscular systems to regulate sensory sensation and detrusor muscle activity. Defects in release of urothelial mediators may cause bladder dysfunctions that are characterized with aberrant bladder sensation during bladder filling. Previous studies have demonstrated release of ATP from the bladder urothelium during bladder filling, and ATP remains the most studied purine mediator that is released from the urothelium. However, the micturition cycle is likely regulated by multiple purine mediators, since various purine receptors are found present in many cell types in the bladder wall, including urothelial cells, afferent nerves, interstitial cells in lamina propria, and detrusor smooth muscle cells. Information about the release of other biologically active purines during bladder filling is still lacking. Decentralized bladders from C57BL/6 mice and Cynomolgus monkeys (Macaca fascicularis) were filled with physiological solution at different rates. Intraluminal fluid was analyzed by high-performance liquid chromatography with fluorescence detection for simultaneous evaluation of ATP, ADP, AMP, adenosine, nicotinamide adenine dinucleotide (NAD+), ADP-ribose, and cADP-ribose content. We also measured ex vivo bladder filling pressures and performed cystometry in conscious unrestrained mice at different filling rates. ATP, ADP, AMP, NAD+, ADPR, cADPR, and adenosine were detected released intravesically at different ratios during bladder filling. Purine release increased with increased volumes and rates of filling. Our results support the concept that multiple urothelium-derived purines likely contribute to the complex regulation of bladder sensation during bladder filling.
Collapse
Affiliation(s)
- Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sebastien Hayoz
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Robert D Corrigan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Andrew Yanez
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | | |
Collapse
|
30
|
Seref-Ferlengez Z, Maung S, Schaffler MB, Spray DC, Suadicani SO, Thi MM. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes. PLoS One 2016; 11:e0155107. [PMID: 27159053 PMCID: PMC4861344 DOI: 10.1371/journal.pone.0155107] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood. We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP release. To simulate in vitro the glucose levels to which bone cells are exposed in healthy vs. diabetic bones, we cultured osteoblast and osteocyte cell lines for 10 days in medium containing 5.5 or 25 mM glucose. High glucose effects on expression and function of P2Rs and Panx1 channels were determined by Western Blot analysis, quantification of Ca2+ responses to P2R agonists and oscillatory fluid shear stress (± 10 dyne/cm2), and measurement of flow-induced ATP release. Diabetic C57BL/6J-Ins2Akita mice were used to evaluate in vivo effects of high glucose on P2R and Panx1. Western blotting indicated altered P2X7R, P2Y2R and P2Y4R expression in high glucose exposed bone cells, and in diabetic bone tissue. Moreover, high glucose blunted normal P2R- and flow-induced Ca2+ signaling and ATP release from osteocytes. These findings indicate that T1D impairs load-induced ATP signaling in osteocytes and affects osteoblast function, which are essential for maintaining bone health.
Collapse
Affiliation(s)
- Zeynep Seref-Ferlengez
- Departments of Orthopaedic Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
| | - Stephanie Maung
- Departments of Orthopaedic Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
| | - Mitchell B. Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, United States of America
| | - David C. Spray
- Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
| | - Sylvia O. Suadicani
- Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Department of Urology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
| | - Mia M. Thi
- Departments of Orthopaedic Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- Laboratories of Musculoskeletal Orthopedic Research at Einstein-Montefiore (MORE), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States of America
- * E-mail:
| |
Collapse
|
31
|
Gonzalez EJ, Heppner TJ, Nelson MT, Vizzard MA. Purinergic signalling underlies transforming growth factor-β-mediated bladder afferent nerve hyperexcitability. J Physiol 2016; 594:3575-88. [PMID: 27006168 DOI: 10.1113/jp272148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/17/2016] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS The sensory components of the urinary bladder are responsible for the transduction of bladder filling and are often impaired with neurological injury or disease. Elevated extracellular ATP contributes, in part, to bladder afferent nerve hyperexcitability during urinary bladder inflammation or irritation. Transforming growth factor-β1 (TGF-β1) may stimulate ATP release from the urothelium through vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels to increase bladder afferent nerve discharge. Bladder afferent nerve hyperexcitability and urothelial ATP release with CYP-induced cystitis is decreased with TGF-β inhibition. These results establish a causal link between an inflammatory mediator, TGF-β, and intrinsic signalling mechanisms of the urothelium that may contribute to the altered sensory processing of bladder filling. ABSTRACT The afferent limb of the micturition reflex is often compromised following bladder injury, disease and inflammatory conditions. We have previously demonstrated that transforming growth factor-β (TGF-β) signalling contributes to increased voiding frequency and decreased bladder capacity with cystitis. Despite the functional presence of TGF-β in bladder inflammation, the precise mechanisms of TGF-β mediating bladder dysfunction are not yet known. Thus, the present studies investigated the sensory components of the urinary bladder that may underlie the pathophysiology of aberrant TGF-β activation. We utilized bladder-pelvic nerve preparations to characterize bladder afferent nerve discharge and the mechanisms of urothelial ATP release with distention. Our findings indicate that bladder afferent nerve discharge is sensitive to elevated extracellular ATP during pathological conditions of urinary bladder inflammation or irritation. We determined that TGF-β1 may increase bladder afferent nerve excitability by stimulating ATP release from the urothelium via vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels. Furthermore, blocking aberrant TGF-β signalling in cyclophosphamide-induced cystitis with TβR-1 inhibition decreased afferent nerve hyperexcitability with a concomitant decrease in urothelial ATP release. Taken together, these results establish a role for purinergic signalling mechanisms in TGF-β-mediated bladder afferent nerve activation that may ultimately facilitate increased voiding frequency. The synergy between intrinsic urinary bladder signalling mechanisms and an inflammatory mediator provides novel insight into bladder dysfunction and supports new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Thomas J Heppner
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, 05405, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
32
|
Cheung WY, Fritton JC, Morgan SA, Seref-Ferlengez Z, Basta-Pljakic J, Thi MM, Suadicani SO, Spray DC, Majeska RJ, Schaffler MB. Pannexin-1 and P2X7-Receptor Are Required for Apoptotic Osteocytes in Fatigued Bone to Trigger RANKL Production in Neighboring Bystander Osteocytes. J Bone Miner Res 2016; 31:890-9. [PMID: 26553756 PMCID: PMC4915221 DOI: 10.1002/jbmr.2740] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022]
Abstract
Osteocyte apoptosis is required to induce intracortical bone remodeling after microdamage in animal models, but how apoptotic osteocytes signal neighboring "bystander" cells to initiate the remodeling process is unknown. Apoptosis has been shown to open pannexin-1 (Panx1) channels to release adenosine diphosphate (ATP) as a "find-me" signal for phagocytic cells. To address whether apoptotic osteocytes use this signaling mechanism, we adapted the rat ulnar fatigue-loading model to reproducibly introduce microdamage into mouse cortical bone and measured subsequent changes in osteocyte apoptosis, receptor activator of NF-κB ligand (RANKL) expression and osteoclastic bone resorption in wild-type (WT; C57Bl/6) mice and in mice genetically deficient in Panx1 (Panx1KO). Mouse ulnar loading produced linear microcracks comparable in number and location to the rat model. WT mice showed increased osteocyte apoptosis and RANKL expression at microdamage sites at 3 days after loading and increased intracortical remodeling and endocortical tunneling at day 14. With fatigue, Panx1KO mice exhibited levels of microdamage and osteocyte apoptosis identical to WT mice. However, they did not upregulate RANKL in bystander osteocytes or initiate resorption. Panx1 interacts with P2X7 R in ATP release; thus, we examined P2X7 R-deficient mice and WT mice treated with P2X7 R antagonist Brilliant Blue G (BBG) to test the possible role of ATP as a find-me signal. P2X7 RKO mice failed to upregulate RANKL in osteocytes or induce resorption despite normally elevated osteocyte apoptosis after fatigue loading. Similarly, treatment of fatigued C57Bl/6 mice with BBG mimicked behavior of both Panx1KO and P2X7 RKO mice; BBG had no effect on osteocyte apoptosis in fatigued bone but completely prevented increases in bystander osteocyte RANKL expression and attenuated activation of resorption by more than 50%. These results indicate that activation of Panx1 and P2X7 R are required for apoptotic osteocytes in fatigued bone to trigger RANKL production in neighboring bystander osteocytes and implicate ATP as an essential signal mediating this process.
Collapse
Affiliation(s)
- Wing Yee Cheung
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Christopher Fritton
- Department of Orthopaedic Surgery, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Stacy Ann Morgan
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | | | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Mia M Thi
- Departments of Orthopaedic Surgery, Urology, and Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Sylvia O Suadicani
- Departments of Orthopaedic Surgery, Urology, and Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - David C Spray
- Departments of Orthopaedic Surgery, Urology, and Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Robert J Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| |
Collapse
|
33
|
Abstract
Pannexin channels are newly discovered ATP release channels expressed throughout the body. Pannexin 1 (Panx1) channels have become of great interest as they appear to participate in a multitude of signalling cascades, including regulation of vascular function. Although numerous Panx1 pharmacological inhibitors have been discovered, these inhibitors are not specific for Panx1 and have additional effects on other proteins. Therefore, molecular tools, such as RNA interference and knockout animals, are needed to demonstrate the role of pannexins in various cellular functions. This review focuses on the known roles of Panx1 related to purinergic signalling in the vasculature focusing on post-translational modifications and channel gating mechanisms that may participate in the regulated release of ATP.
Collapse
|
34
|
Krick S, Wang J, St-Pierre M, Gonzalez C, Dahl G, Salathe M. Dual Oxidase 2 (Duox2) Regulates Pannexin 1-mediated ATP Release in Primary Human Airway Epithelial Cells via Changes in Intracellular pH and Not H2O2 Production. J Biol Chem 2016; 291:6423-32. [PMID: 26823467 DOI: 10.1074/jbc.m115.664854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/06/2022] Open
Abstract
Human airway epithelial cells express pannexin 1 (Panx1) channels to release ATP, which regulates mucociliary clearance. Airway inflammation causes mucociliary dysfunction. Exposure of primary human airway epithelial cell cultures to IFN-γ for 48 h did not alter Panx1 protein expression but significantly decreased ATP release in response to hypotonic stress. The IFN-γ-induced functional down-regulation of Panx1 was due to the up-regulation of dual oxidase 2 (Duox2). Duox2 suppression by siRNA led to an increase in ATP release in control cells and restoration of ATP release in cells treated with IFN-γ. Both effects were reduced by the pannexin inhibitor probenecid. Duox2 up-regulation stoichiometrically increases H2O2 and proton production. H2O2 inhibited Panx1 function temporarily by formation of disulfide bonds at the thiol group of its terminal cysteine. Long-term exposure to H2O2, however, had no inhibitory effect. To assess the role of cellular acidification upon IFN-γ treatment, fully differentiated airway epithelial cells were exposed to ammonium chloride to alkalinize the cytosol. This led to a 2-fold increase in ATP release in cells treated with IFN-γ that was also inhibited by probenecid. Duox2 knockdown also partially corrected IFN-γ-mediated acidification. The direct correlation between intracellular pH and Panx1 open probability was shown in oocytes. Therefore, airway epithelial cells release less ATP in response to hypotonic stress in an inflammatory environment (IFN-γ exposure). Decreased Panx1 function is a response to cell acidification mediated by IFN-γ-induced up-regulation of Duox2, representing a novel mechanism for mucociliary dysfunction in inflammatory airway diseases.
Collapse
Affiliation(s)
- Stefanie Krick
- From the Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and
| | - Junjie Wang
- Department of Physiology and Biophysics, University of Miami, Miami, Florida 33136 and
| | - Melissa St-Pierre
- From the Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and
| | - Carlos Gonzalez
- the Interdisciplinary Center for Neuroscience of Valparaíso, Universidad de Valparaíso, Valparaíso, 2362735, Chile
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami, Miami, Florida 33136 and
| | - Matthias Salathe
- From the Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and
| |
Collapse
|
35
|
Yu W. Polarized ATP distribution in urothelial mucosal and serosal space is differentially regulated by stretch and ectonucleotidases. Am J Physiol Renal Physiol 2015; 309:F864-72. [PMID: 26336160 DOI: 10.1152/ajprenal.00175.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022] Open
Abstract
Purinergic signaling is a major pathway in regulating bladder function, and mechanical force stimulates urothelial ATP release, which plays an important role in bladder mechanotransduction. Although urothelial ATP release was first reported almost 20 years ago, the way in which release is regulated by mechanical force, and the presence of ATP-converting enzymes in regulating the availability of released ATP is still not well understood. Using a set of custom-designed Ussing chambers with the ability to manipulate mechanical forces applied on the urothelial tissue, we have demonstrated that it is stretch and not hydrostatic pressure that induces urothelial ATP release. The experiments reveal that urothelial ATP release is tightly controlled by stretch speed, magnitude, and direction. We have further shown that stretch-induced urothelial ATP release is insensitive to temperature (4°C). Interestingly, stretch-induced ATP release shows polarized distribution, with the ATP concentration in mucosal chamber (nanomolar level) about 10 times higher than the ATP concentration in serosal chamber (subnanomolar level). Furthermore, we have consistently observed differential ATP lifetime kinetics in the mucosal and serosal chambers, which is consistent with our immunofluorescent localization data, showing that ATP-converting enzymes ENTPD3 and alkaline phosphatase are expressed on urothelial basal surface, but not on the apical membrane. In summary, our data indicate that urothelial ATP release is finely regulated by stretch speed, magnitude, and direction, and extracellular ATP signaling is likely to be differentially regulated by ectonucleotidase, which results in temporally and spatially distinct ATP kinetics in response to mechanical stretch.
Collapse
Affiliation(s)
- Weiqun Yu
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Dietrich F, Pietrobon Martins J, Kaiser S, Madeira Silva RB, Rockenbach L, Albano Edelweiss MI, Ortega GG, Morrone FB, Campos MM, Battastini AMO. The Quinovic Acid Glycosides Purified Fraction from Uncaria tomentosa Protects against Hemorrhagic Cystitis Induced by Cyclophosphamide in Mice. PLoS One 2015; 10:e0131882. [PMID: 26154141 PMCID: PMC4496084 DOI: 10.1371/journal.pone.0131882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Uncaria tomentosa is widely used in folk medicine for the treatment of numerous diseases, such as urinary tract disease. Hemorrhagic cystitis (HE) is an inflammatory condition of the bladder associated with the use of anticancer drugs such as cyclophosphamide (CYP). Sodium 2-mercaptoethanesulfonate (Mesna) has been used to prevent the occurrence of HE, although this compound is not effective in established lesions. It has been demonstrated that the purinergic system is involved in several pathophysiological events. Among purinergic receptors, P2X7 deserves attention because it is involved in HE induced by CYP and, therefore, can be considered a therapeutic target. The objective of this study was to investigate the potential therapeutic effect of the quinovic acid glycosides purified fraction (QAPF) from U. tomentosa in the mouse model of CYP-induced HE. Pretreatment with QAPF not only had a protective effect on HE-induced urothelial damage (edema, hemorrhage and bladder wet weight) but was also able to control visceral pain, decrease IL-1β levels and down-regulates P2X7 receptors, most likely by inhibit the neutrophils migration to the bladder. This research clearly demonstrates the promising anti-inflammatory properties of QAPF, supporting its use as complementary therapy. QAPF represents a promising therapeutic option for this pathological condition.
Collapse
Affiliation(s)
- Fabrícia Dietrich
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | | | - Samuel Kaiser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Rodrigo Braccini Madeira Silva
- Laboratório de Farmacologia Aplicada, Faculdade de Farmácia, PUCRS, Porto Alegre, RS, Brazil
- Instituto de Toxicologia e Farmacologia, PUCRS, Porto Alegre, RS, Brazil
| | - Liliana Rockenbach
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | | | - George González Ortega
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Faculdade de Farmácia, PUCRS, Porto Alegre, RS, Brazil
- Instituto de Toxicologia e Farmacologia, PUCRS, Porto Alegre, RS, Brazil
| | - Maria Martha Campos
- Instituto de Toxicologia e Farmacologia, PUCRS, Porto Alegre, RS, Brazil
- Faculdade de Odontologia, PUCRS, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
37
|
Silva I, Ferreirinha F, Magalhães-Cardoso MT, Silva-Ramos M, Correia-de-Sá P. Activation of P2Y6 Receptors Facilitates Nonneuronal Adenosine Triphosphate and Acetylcholine Release from Urothelium with the Lamina Propria of Men with Bladder Outlet Obstruction. J Urol 2015; 194:1146-54. [PMID: 26004864 DOI: 10.1016/j.juro.2015.05.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Deregulation of purinergic bladder signaling may contribute to persistent detrusor overactivity in patients with bladder outlet obstruction. Activation of uridine diphosphate sensitive P2Y6 receptors increases voiding frequency in rats indirectly by releasing adenosine triphosphate from the urothelium. To our knowledge this mechanism has never been tested in the human bladder. MATERIALS AND METHODS We examined the role of the uridine diphosphate sensitive P2Y6 receptor on tetrodotoxin insensitive nonneuronal adenosine triphosphate and [(3)H]acetylcholine release from the human urothelium with the lamina propria of control organ donors and patients with benign prostatic hyperplasia. RESULTS The adenosine triphosphate-to-[(3)H]acetylcholine ratio was fivefold higher in mucosal urothelium/lamina propria strips from benign prostatic hyperplasia patients than control men. The selective P2Y6 receptor agonist PSB0474 (100 nM) augmented by a similar amount adenosine triphosphate and [(3)H]acetylcholine release from mucosal urothelium/lamina propria strips from both groups of individuals. The facilitatory effect of PSB0474 was prevented by MRS2578 (50 nM) and by carbenoxolone (10 μM), which block P2Y6 receptor and pannexin-1 hemichannels, respectively. Blockade of P2X3 (and/or P2X2/3) receptors with A317491 (100 nM) also attenuated release facilitation by PSB0474 in control men but not in patients with benign prostatic hyperplasia. Immunolocalization studies showed that P2Y6, P2X2 and P2X3 receptors were present in choline acetyltransferase positive urothelial cells. In contrast to P2Y6 staining, choline acetyltransferase, P2X2 and P2X3 immunoreactivity decreased in the urothelium of benign prostatic hyperplasia patients. CONCLUSIONS Activation of P2Y6 receptor amplifies mucosal adenosine triphosphate release underlying bladder overactivity in patients with benign prostatic hyperplasia. Therefore, we propose selective P2Y6 receptor blockade as a novel therapeutic strategy to control persistent storage symptoms in obstructed patients.
Collapse
Affiliation(s)
- Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Porto, Portugal; Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Porto, Portugal; Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Maria Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Porto, Portugal; Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto and Serviço de Urologia, Centro Hospitalar do Porto, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Porto, Portugal; Center for Drug Discovery and Innovative Medicines, Porto, Portugal.
| |
Collapse
|
38
|
Abstract
It is well established that in most species, exocytotic vesicular release of ATP from parasympathetic neurons contributes to contraction of the bladder. However, ATP is released not only from parasympathetic nerves, but also from the urothelium. During bladder filling, the urothelium is stretched and ATP is released from the umbrella cells thereby activating mechanotransduction pathways. ATP release can also be induced by various mediators present in the urine and and/or released from nerves or other components of the lamina propria. Urothelial release of ATP is mainly attributable to vesicular transport or exocytosis and, to a smaller extent, to pannexin hemichannel conductive efflux. After release, ATP acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex and to mediate the sensation of bladder filling and urgency. ATP also acts on suburothelial interstitial cells/myofibroblasts generating an inward Ca(2+) transient that via gap junctions could provide a mechanism for long-distance spread of signals from the urothelium to the detrusor muscle. ATP release can be affected by urological diseases, e.g., interstitial cystitis and both the mechanisms of release and the receptors activated by ATP may be targets for future drugs for treatment of lower urinary tract disorders.
Collapse
|
39
|
Pan HC, Chou YC, Sun SH. P2X7 R-mediated Ca(2+) -independent d-serine release via pannexin-1 of the P2X7 R-pannexin-1 complex in astrocytes. Glia 2015; 63:877-93. [PMID: 25630251 DOI: 10.1002/glia.22790] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/30/2014] [Indexed: 12/14/2022]
Abstract
D-serine is a coagonist of N-methyl-d-aspartate (NMDA) subtype of glutamate receptor and plays a role in regulating activity-dependent synaptic plasticity. In this study, we examined the mechanism by which extracellular ATP triggers the release of d-serine from astrocytes and discovered a novel Ca(2+) -independent release mechanism mediated by P2X7 receptors (P2X7 R). Using [(3) H] d-serine, which was loaded into astrocytes via the neutral amino acid transporter 2 (ASCT2), we observed that ATP and a potent P2X7 R agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate (BzATP), stimulated [(3) H]D-serine release and that were abolished by P2X7 R selective antagonists and by shRNAs, whereas enhanced by removal of intracellular or extracellular Ca(2+) . The P2X7 R-mediated d-serine release was inhibited by pannexin-1 antagonists, such as carbenoxolone (CBX), probenecid (PBN), and (10) Panx-1 peptide, and shRNAs, and stimulation of P2X7 R induced P2X7 R-pannexin-1 complex formation. Simply incubating astrocytes in Ca(2+) /Mg(2+) -free buffer also induced the complex formation, and that enhanced basal d-serine release through pannexin-1. The P2X7 R-mediated d-serine release assayed in Ca(2+) /Mg(2+) -free buffer was enhanced as well, and that was inhibited by CBX. Treating astrocytes with general protein kinase C (PKC) inhibitors, such as chelerythrine, GF109203X, and staurosporine, but not Ca(2+) -dependent PKC inhibitor, Gö6976, inhibited the P2X7 R-mediated d-serine release. Thus, we conclude that in astrocytes, P2X7 R-pannexin-1 complex formation is crucial for P2X7 R-mediated d-serine release through pannexin-1 hemichannel. The release is Ca(2+) -independent and regulates by a Ca(2+) -independent PKC. The activated P2X7 R per se is also functioned as a permeation channel to release d-serine in part. This P2X7 R-mediated d-serine release represents an important mechanism for activity-dependent neuron-glia interaction.
Collapse
Affiliation(s)
- Han-Chi Pan
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|