1
|
Pollak A. 40 years neonatology : An academic life. Wien Klin Wochenschr 2025; 137:69-78. [PMID: 38634910 DOI: 10.1007/s00508-024-02360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND A complete review of the development of neonatology in the last 40 years would probably require a compendium with several volumes, to bring to view the remarkable improvements in survival rates and neurodevelopmental outcomes of ill babies in Austria, most industrial countries and to some extent worldwide. The challenge I had to solve here was to integrate my own contributions to the field of neonatology during this period and particularly the contributions of my team from the Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescence Medicine, Medical University Vienna where I was working first as an intern and resident and later had the privilege to become head of department. AIM This very personal review was conceived to showcase the milestones of neonatology where, in my opinion, our department made some meaningful contributions in research and clinical practice during the past 40 years. METHODS A total of 10 areas of interest were selected which most likely influenced survival rates of preterm infants born at increasingly younger gestational ages and ameliorated long-term clinical and neurodevelopmental outcomes, including: 1) Construction and continuous modernization of neonatal intensive care units (NICUs). 2) Installation of the "Regionalization Program for NICUs in Vienna". 3) Treatment of respiratory distress syndrome (RDS) of premature babies. 4) Fine tuning of glucose metabolism for growth and outcome. 5) Neurodevelopmental care. 6) Neonatal hematology. 7) Infection control. 8) The toxoplasma screening program. 9) The newborn screening program. 10) Quality control: the Vermont Oxford Neonatal Network (VONN). RESULTS Over the past four decades advancements in research and technology have allowed a transformative development of neonatal medicine. Survival rates without increased morbidity for very premature infants with gestational ages reaching to what we consider nowadays the border of viability have constantly increased. In my professional life as a neonatologist in Austria I have had the possibility to support and shape some of these developments together with my team. CONCLUSION As we look ahead it is imperative to build upon the progress made, harnessing the power of science and technology to further improve the survival and quality of life for preterm infants in Austria and worldwide. At the same time, neonatology must continue to prioritize ethical reflection and education, fostering a culture of integrity, interdisciplinary collaboration, and the development of guidelines and protocols that uphold ethical standards while addressing the evolving needs and complexities of neonatal medicine.
Collapse
Affiliation(s)
- Arnold Pollak
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Korkor MS, Khashaba M, Mohamed SA, Darwish A. Effect of different timings of umbilical cord clamping on the level of CD34 + cells in full-term neonates. Sci Rep 2023; 13:22917. [PMID: 38129640 PMCID: PMC10739938 DOI: 10.1038/s41598-023-50100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Despite the fact that delayed cord clamping (DCC) is recommended by many international organizations, early cord clamping is still widely practiced worldwide. The overarching goal of the DCC practice is to maximize neonatal benefits as achieving higher hemoglobin levels and decreasing the incidence of anemia as well as avoiding the adverse consequences. The current study was conducted to identify the effect of of DCC on the number of CD34+ stem cells in cord blood of full term neonates after two different timings (30 and 60 s after birth). One hundred and three full-term (FT) newborn babies (gestational age 37-40 weeks) delivered by elective cesarean section were randomly assigned into 2 groups: Group 1: babies were subjected to DCC 30 s after birth (50 newborns). Group 2: babies were subjected to DCC 60 s after birth (53 newborns). Neonates in group 2 had significantly higher levels of hemoglobin, hematocrit, total nucleated cells and CD34+ cells compared to those in group 1. The practice of DCC 60 s after birth achieved better CD34+ stem cells transfer in FT neonates than clamping the cord after 30 s.
Collapse
Affiliation(s)
- Mai S Korkor
- Pediatric Department, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mohamed Khashaba
- Neonatology Unit, Pediatric Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sara A Mohamed
- Obstetric and Gynecology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Mansoura Research Center for Cord Stem Cells (MARC-CSC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmad Darwish
- Mansoura Research Center for Cord Stem Cells (MARC-CSC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Hematology/Oncology/Bone Marrow Transplantation Unit, Pediatric Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Filippi L, Pascarella F, Pini A, Cammalleri M, Bagnoli P, Morganti R, Innocenti F, Castagnini N, Melosi A, Scaramuzzo RT. Fetal Oxygenation from the 23rd to the 36th Week of Gestation Evaluated through the Umbilical Cord Blood Gas Analysis. Int J Mol Sci 2023; 24:12487. [PMID: 37569862 PMCID: PMC10419490 DOI: 10.3390/ijms241512487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The embryo and fetus grow in a hypoxic environment. Intrauterine oxygen levels fluctuate throughout the pregnancy, allowing the oxygen to modulate apparently contradictory functions, such as the expansion of stemness but also differentiation. We have recently demonstrated that in the last weeks of pregnancy, oxygenation progressively increases, but the trend of oxygen levels during the previous weeks remains to be clarified. In the present retrospective study, umbilical venous and arterial oxygen levels, fetal oxygen extraction, oxygen content, CO2, and lactate were evaluated in a cohort of healthy newborns with gestational age < 37 weeks. A progressive decrease in pO2 levels associated with a concomitant increase in pCO2 and reduction in pH has been observed starting from the 23rd week until approximately the 33-34th week of gestation. Over this period, despite the increased hypoxemia, oxygen content remains stable thanks to increasing hemoglobin concentration, which allows the fetus to become more hypoxemic but not more hypoxic. Starting from the 33-34th week, fetal oxygenation increases and ideally continues following the trend recently described in term fetuses. The present study confirms that oxygenation during intrauterine life continues to vary even after placenta development, showing a clear biphasic trend. Fetuses, in fact, from mid-gestation to near-term, become progressively more hypoxemic. However, starting from the 33-34th week, oxygenation progressively increases until birth. In this regard, our data suggest that the placenta is the hub that ensures this variable oxygen availability to the fetus, and we speculate that this biphasic trend is functional for the promotion, in specific tissues and at specific times, of stemness and intrauterine differentiation.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Francesca Pascarella
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Maurizio Cammalleri
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.)
| | - Paola Bagnoli
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.)
| | - Riccardo Morganti
- Section of Statistics, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Francesca Innocenti
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Nicola Castagnini
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Alice Melosi
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Rosa Teresa Scaramuzzo
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| |
Collapse
|
4
|
Mende N, Bastos HP, Santoro A, Mahbubani KT, Ciaurro V, Calderbank EF, Londoño MQ, Sham K, Mantica G, Morishima T, Mitchell E, Lidonnici MR, Meier-Abt F, Hayler D, Jardine L, Curd A, Haniffa M, Ferrari G, Takizawa H, Wilson NK, Göttgens B, Saeb-Parsy K, Frontini M, Laurenti E. Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans. Blood 2022; 139:3387-3401. [PMID: 35073399 PMCID: PMC7612845 DOI: 10.1182/blood.2021013450] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/05/2022] [Indexed: 02/02/2023] Open
Abstract
Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and β-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction.
Collapse
Affiliation(s)
- Nicole Mende
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hugo P. Bastos
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Antonella Santoro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Krishnaa T. Mahbubani
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Valerio Ciaurro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Emily F. Calderbank
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Mariana Quiroga Londoño
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Kendig Sham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Giovanna Mantica
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Centre for Medical Sciences, and Centre for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, 860-0811 Kumamoto, Japan
| | - Emily Mitchell
- Cancer, Ageing and Somatic Mutation Group, Wellcome Sanger Institute, Hinxton, UK
| | - Maria Rosa Lidonnici
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabienne Meier-Abt
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology (IMSB), ETH Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Daniel Hayler
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Abbie Curd
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Centre for Medical Sciences, and Centre for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Nicola K. Wilson
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Institute of Biomedical & Clinical Science, College of Medicine and Health, University of Exeter Medical School, Exeter, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
5
|
Zhou L, McDonald C, Yawno T, Jenkin G, Miller S, Malhotra A. Umbilical Cord Blood and Cord Tissue-Derived Cell Therapies for Neonatal Morbidities: Current Status and Future Challenges. Stem Cells Transl Med 2022; 11:135-145. [PMID: 35259278 PMCID: PMC8929446 DOI: 10.1093/stcltm/szab024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022] Open
Abstract
Cell therapies are an emerging focus for neonatal research, with benefits documented for neonatal respiratory, neurological, and cardiac conditions in pre-clinical studies. Umbilical cord blood (UCB) and umbilical cord (UC) tissue-derived cell therapy is particularly appealing for preventative or regenerative treatment of neonatal morbidities; they are a resource that can be collected at birth and used as an autologous or allogeneic therapy. Moreover, UCB contains a diverse mix of stem and progenitor cells that demonstrate paracrine actions to mitigate damaging inflammatory, immune, oxidative stress, and cell death pathways in several organ systems. In the past decade, published results from early-phase clinical studies have explored the use of these cells as a therapeutic intervention in neonates. We present a systematic review of published and registered clinical trials of UCB and cord tissue-derived cell therapies for neonatal morbidities. This search yielded 12 completed clinical studies: 7 were open-label phase I and II safety and feasibility trials, 3 were open-label dose-escalation trials, 1 was a open-label placebo-controlled trial, and 1 was a phase II randomized controlled trial. Participants totaled 206 infants worldwide; 123 (60%) were full-term infants and 83 (40%) were preterm. A majority (64.5%) received cells via an intravenous route; however, 54 (26.2%) received cells via intratracheal administration, 10 (4.8%) intraoperative cardiac injection, and 9 (4.3%) by direct intraventricular (brain) injection. Assessment of efficacy to date is limited given completed studies have principally been phase I and II safety studies. A further 24 trials investigating UCB and UC-derived cell therapies in neonates are currently registered.
Collapse
Affiliation(s)
- Lindsay Zhou
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
- Monash Children’s Hospital, Monash Health, Clayton, VIC, Australia
| | - Courtney McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Suzanne Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
- Monash Children’s Hospital, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
6
|
Sharma R, Prakash S, Jain A, Pahwa D, Kalra J. Maternal and neonatal variables affecting CD34+ cell count in the umbilical cord blood. JOURNAL OF APPLIED HEMATOLOGY 2022. [DOI: 10.4103/joah.joah_68_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Erlandsson L, Masoumi Z, Hansson LR, Hansson SR. The roles of free iron, heme, haemoglobin, and the scavenger proteins haemopexin and alpha-1-microglobulin in preeclampsia and fetal growth restriction. J Intern Med 2021; 290:952-968. [PMID: 34146434 DOI: 10.1111/joim.13349] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preeclampsia (PE) is a complex pregnancy syndrome characterised by maternal hypertension and organ damage after 20 weeks of gestation and is associated with an increased risk of cardiovascular disease later in life. Extracellular haemoglobin (Hb) and its metabolites heme and iron are highly toxic molecules and several defence mechanisms have evolved to protect the tissue. OBJECTIVES We will discuss the roles of free iron, heme, Hb, and the scavenger proteins haemopexin and alpha-1-microglobulin in pregnancies complicated by PE and fetal growth restriction (FGR). CONCLUSION In PE, oxidative stress causes syncytiotrophoblast (STB) stress and increased shedding of placental STB-derived extracellular vesicles (STBEV). The level in maternal circulation correlates with the severity of hypertension and supports the involvement of STBEVs in causing maternal symptoms in PE. In PE and FGR, iron homeostasis is changed, and iron levels significantly correlate with the severity of the disease. The normal increase in plasma volume taking place during pregnancy is less for PE and FGR and therefore have a different impact on, for example, iron concentration, compared to normal pregnancy. Excess iron promotes ferroptosis is suggested to play a role in trophoblast stress and lipotoxicity. Non-erythroid α-globin regulates vasodilation through the endothelial nitric oxide synthase pathway, and hypoxia-induced α-globin expression in STBs in PE placentas is suggested to contribute to hypertension in PE. Underlying placental pathology in PE with and without FGR might be amplified by iron and heme overload causing oxidative stress and ferroptosis. As the placenta becomes stressed, the release of STBEVs increases and affects the maternal vasculature.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Zahra Masoumi
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lucas R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Obstetrics and Gynecology, Skåne University Hospital, Lund/Malmö, Sweden
| |
Collapse
|
8
|
Mohd Idris MR, Nordin F, Mahdy ZA, Abd Wahid SF. Gestational Diabetes Mellitus in Pregnancy Increased Erythropoietin Level Affecting Differentiation Potency of Haematopoietic Stem Cell of Umbilical Cord Blood. Front Med (Lausanne) 2021; 8:727179. [PMID: 34490314 PMCID: PMC8416672 DOI: 10.3389/fmed.2021.727179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The in utero environment has many factors that can support cell differentiation. Cytokines, chemokines and growth factors play big roles in haematopoietic mechanisms. Some diseases like gestational diabetes mellitus (GDM) might affect the environment and haematopoietic stem cell (HSC) quality. The aim of this study is to investigate the adverse effects of GDM on umbilical cord blood (UCB) HSC in terms of differentiation potency including the UCB parameters used for banking and transplantation purposes. Methods: UCB-HSC was collected from 42 GDM and 38 normal pregnancies. UCB-HSC was isolated and further enriched using immuno-magnetic separation beads (MACS). The UCB-HSC were cultured in methylcellulose media to investigate the differentiation potency. The level of erythropoietin (EPO) and insulin in the UCB plasma was measured using enzyme linked immunoassay (ELISA) technique. Result: The UCB parameters; volume, total nucleated count (TNC) and total CD34+ cells were significantly reduced in the GDM group compared to the control group. The number of HSC progenitors' colonies were significantly reduced in the GDM group except for progenitor BFU-E, which was significantly increased (GDM = 94.19 ± 6.21, Control = 73.61 ± 2.73, p = 0.010). This data was associated with higher EPO level in GDM group. However, the insulin level in the GDM group was comparable to the Control group. Conclusion: Our results suggest that the changes in the in utero environment due to abnormalities during pregnancy such as GDM might affect the differentiation potency of UCB-HSC. These findings can be considered as an additional parameter for the inclusion and exclusion criteria for UCB banking, particularly for mothers with GDM.
Collapse
Affiliation(s)
- Mohd Razif Mohd Idris
- Cell Therapy Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Zaleha Abdullah Mahdy
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - S. Fadilah Abd Wahid
- Cell Therapy Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Placental transfusion: may the "force" be with the baby. J Perinatol 2021; 41:1495-1504. [PMID: 33850284 DOI: 10.1038/s41372-021-01055-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/26/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Placental transfusion results in a significant decrease in the risk of death for extremely preterm infants. With immediate cord clamping (ICC), these infants can leave up to one-half of their normal circulating in utero blood volume in the placenta. Extremely preterm infants are at highest risk of harm from ICC yet are currently the most likely to receive ICC. Receiving a placenta transfusion provides infants with life-saving components and enhanced perfusion. We present some lesser-known but important effects of placental transfusion. New research reveals that enhanced vascular perfusion causes an organ's endothelial cells to release angiocrine responses to guide essential functions. High progesterone levels and pulmonary artery pressure in the first few hours of life assist with neonatal adaptation. We propose that lack of essential blood volume may be a major factor contributing to inflammation, morbidities, and mortality that preterm infants frequently encounter.
Collapse
|
10
|
Nagy M, Nasef N, Gibreel A, Sarhan M, Aldomiaty H, Darwish M, Nour I. Impact of Umbilical Cord Milking on Hematological Parameters in Preterm Neonates With Placental Insufficiency. Front Pediatr 2021; 9:827219. [PMID: 35310142 PMCID: PMC8930845 DOI: 10.3389/fped.2021.827219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Data is still lacking about the expediency of umbilical cord milking (UCM) in preterm neonates born to mothers with placental insufficiency (PI). OBJECTIVE To study the effect of UCM in preterm neonates who had ante-natal evidence of placental insufficiency on peripheral blood cluster of differentiation 34 (CD34) percentage, hematological indices, and clinical outcomes. METHODS Preterm neonates, <34 weeks' gestation, born to mothers with evidence of placental insufficiency that underwent UCM (PI+UCM group) were compared with historical controls whose umbilical stumps were immediately clamped [PI+ICC (immediate cord clamping) group] in a case-control study. Peripheral blood CD34 percentage as a measure of hematopoietic stem cell transfusion was the primary outcome. Early and late-onset anemia; polycythemia; frequency of packed red blood cells (PRBCs) transfusion during NICU stay; peak total serum bilirubin (TSB); incidence of phototherapy, admission rectal temperature; first 24 h hypothermia and hypoglycemia; episodes of hypotension and need for volume expander boluses and inotropic support during the first 24 h of age; duration of oxygen therapy; bronchopulmonary dysplasia (BPD); severe intra-ventricular hemorrhage (IVH); necrotizing enterocolitis (NEC); culture-proven late-onset sepsis; length of hospital stay; and in-hospital mortality were secondary outcomes. RESULTS In preterm infants with placental insufficiency, umbilical cord milking was associated with greater peripheral blood CD34 percentage, hemoglobin levels initially and at postnatal age of 2 months, alongside significantly shorter duration of oxygen therapy compared with ICC group. Frequency of packed RBCs transfusion during hospital stay was comparable. Neonates in UCM group had a greater peak TSB level during admission with significantly higher need for phototherapy initiation compared with ICC. Logistic regression, adjusted for gestational age, revealed that UCM resulted in greater CD34 percentage, higher initial hemoglobin level, higher peak serum bilirubin, significant increase of phototherapy initiation, and higher hemoglobin level at 2 months. CONCLUSIONS UCM in preterm neonates born to mothers with placental insufficiency was feasible and resulted in greater CD34 percentage, higher initial hemoglobin level, higher peak serum bilirubin, significant increase of phototherapy initiation, and higher hemoglobin level at 2 months.
Collapse
Affiliation(s)
- Mohammed Nagy
- Neonatal Intensive Care Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Nehad Nasef
- Neonatal Intensive Care Unit, Mansoura University Children's Hospital, Mansoura, Egypt.,Departement of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Ahmed Gibreel
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Mohamed Sarhan
- Departement of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura, Egypt.,Hematology Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Hoda Aldomiaty
- Departement of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura, Egypt.,Hematology Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Mohammed Darwish
- Departement of Clinical Pathology, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Islam Nour
- Neonatal Intensive Care Unit, Mansoura University Children's Hospital, Mansoura, Egypt.,Departement of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
11
|
Ghosh A. Breast Milk Stem Cell Survival in Neonate's Gut, Entery into Neonate Circulation and Adaption by the Body. Curr Stem Cell Res Ther 2020; 15:98-101. [PMID: 31702516 DOI: 10.2174/1574888x14666191107095728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/18/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
The stem cell exchange during pregnancy is thought to remain chimeras for life. Few studies recently revealed that maternal transfer of viable stem cells to the offspring continues even after birth during breastfeeding. Some of these stem cells are likely to be integrated into different organs (brain, blood, kidneys, and pancreas) including neurons and insulin-producing cells in the pancreas to become functional cells. This finding opens a new avenue for research on therapeutic uses of breast milk- derived stem cells. Recently Dr. Foteini Hassiotou used glowing mice, which were genetically modified to express a gene called tdTomato that causes cells to appear red under fluorescence light. These mice were mated, and their babies were swapped with the pups of another, unmodified mother mouse. The new pups suckled the modified mouse and, as a result, obtained glowing red stem cells from breast milk. The study has never been replicated in humans, so it is not clear yet if the findings apply to humans as in the case of mice. However, the results of the study are the jumping-off points for future research on human breast milk stem cells and their possible application in stem cell therapies. Additional studies are necessary to understand the passage of human breast milk stem cells through the neonate's GI tract, and passage to the systemic circulation.
Collapse
Affiliation(s)
- Amit Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
12
|
Bergallo M, Marozio L, Botta G, Tancredi A, Daprà V, Galliano I, Montanari P, Coscia A, Benedetto C, Tovo PA. Human Endogenous Retroviruses Are Preferentially Expressed in Mononuclear Cells From Cord Blood Than From Maternal Blood and in the Fetal Part of Placenta. Front Pediatr 2020; 8:244. [PMID: 32478020 PMCID: PMC7240011 DOI: 10.3389/fped.2020.00244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Placenta shows high transcription levels of human endogenous retroviruses (HERVs) that are overexpressed during embryonic and fetal development. Methods: In order to gather further information on the degree of HERV activation in maternal and fetal tissues we assessed the transcription levels of pol genes of HERV-H, -K, and -W in PBMCs of newborns and their mothers as well as in chorion (fetal part) and decidua basalis (maternal part) of the placenta using a real time PCR assay. Results: Transcripts of pol genes of the three HERV families were significantly higher in mononuclear cells from cord blood than from maternal blood and in the fetal part than in the maternal part of the placenta. Conclusions: The HERV over-expressions in cells and tissues of the offspring are further clues that they play pivotal physiologic roles during early life events and suggest that HERV-driven abnormalities of pregnancy and fetal development may derive mostly from the conceptus, not from the mother.
Collapse
Affiliation(s)
- Massimiliano Bergallo
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy.,Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy
| | - Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, Turin, Italy
| | - Giovanni Botta
- Department of Pathology AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Annalisa Tancredi
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, Turin, Italy
| | - Valentina Daprà
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy.,Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy
| | - Ilaria Galliano
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy.,Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy
| | - Paola Montanari
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy.,Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatology Unit, Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy
| | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, Turin, Italy
| | - Pier Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Singh S, Singh VK, Rai G. Identification of Differentially Expressed Hematopoiesis-associated Genes in Term Low Birth Weight Newborns by Systems Genomics Approach. Curr Genomics 2020; 20:469-482. [PMID: 32655286 PMCID: PMC7327969 DOI: 10.2174/1389202920666191203123025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 11/22/2022] Open
Abstract
Background Low Birth Weight (LBW) (birth weight <2.5 Kg) newborns are associated with a high risk of infection, morbidity and mortality during their perinatal period. Compromised innate immune responses and inefficient hematopoietic differentiation in term LBW newborns led us to evaluate the gene expression status of hematopoiesis. Materials and Methods In this study, we compared our microarray datasets of LBW-Normal Birth Weight (NBW) newborns with two reference datasets to identify hematopoietic stem cells genes, and their differential expression in the LBW newborns, by hierarchical clustering algorithm using gplots and RcolorBrewer package in R. Results Comparative analysis revealed 108 differentially expressed hematopoiesis genes (DEHGs), of which 79 genes were up-regulated, and 29 genes were down-regulated in LBW newborns compared to their NBW counterparts. Moreover, protein-protein interactions, functional annotation and pathway analysis demonstrated that the up-regulated genes were mainly involved in cell proliferation and differentiation, MAPK signaling and Rho GTPases signaling, and the down-regulated genes were engaged in cell proliferation and regulation, immune system regulation, hematopoietic cell lineage and JAK-STAT pathway. The binding of down-regulated genes (LYZ and GBP1) with growth factor GM-CSF using docking and MD simulation techniques, indicated that GM-CSF has the potential to alleviate the repressed hematopoiesis in the term LBW newborns. Conclusion Our study revealed that DEHGs belonged to erythroid and myeloid-specific lineages and may serve as potential targets for improving hematopoiesis in term LBW newborns to help build up their weak immune defense against life-threatening infections.
Collapse
Affiliation(s)
- Sakshi Singh
- 1Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India; 2Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinay K Singh
- 1Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India; 2Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Geeta Rai
- 1Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India; 2Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Preeclampsia is Associated with Sex-Specific Transcriptional and Proteomic Changes in Fetal Erythroid Cells. Int J Mol Sci 2019; 20:ijms20082038. [PMID: 31027199 PMCID: PMC6514549 DOI: 10.3390/ijms20082038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia (PE) has been associated with placental dysfunction, resulting in fetal hypoxia, accelerated erythropoiesis, and increased erythroblast count in the umbilical cord blood (UCB). Although the detailed effects remain unknown, placental dysfunction can also cause inflammation, nutritional, and oxidative stress in the fetus that can affect erythropoiesis. Here, we compared the expression of surface adhesion molecules and the erythroid differentiation capacity of UCB hematopoietic stem/progenitor cells (HSPCs), UCB erythroid profiles along with the transcriptome and proteome of these cells between male and female fetuses from PE and normotensive pregnancies. While no significant differences were observed in UCB HSPC migration/homing and in vitro erythroid colony differentiation, the UCB HSPC transcriptome and the proteomic profile of the in vitro differentiated erythroid cells differed between PE vs. normotensive samples. Accordingly, despite the absence of significant differences in the UCB erythroid populations in male or female fetuses from PE or normotensive pregnancies, transcriptional changes were observed during erythropoiesis, particularly affecting male fetuses. Pathway analysis suggested deregulation in the mammalian target of rapamycin complex 1/AMP-activated protein kinase (mTORC1/AMPK) signaling pathways controlling cell cycle, differentiation, and protein synthesis. These results associate PE with transcriptional and proteomic changes in fetal HSPCs and erythroid cells that may underlie the higher erythroblast count in the UCB in PE.
Collapse
|
15
|
Chaudhury S, Saqibuddin J, Birkett R, Falcon-Girard K, Kraus M, Ernst LM, Grobman W, Mestan KK. Variations in Umbilical Cord Hematopoietic and Mesenchymal Stem Cells With Bronchopulmonary Dysplasia. Front Pediatr 2019; 7:475. [PMID: 31799226 PMCID: PMC6867971 DOI: 10.3389/fped.2019.00475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022] Open
Abstract
Objective: To test the hypothesis that umbilical cord blood-derived CD34+ hematopoietic stem cells (HPSC), cord tissue-derived CD90+ and CD105+ mesenchymal stem cells (MSC) vary with bronchopulmonary dysplasia (BPD). Methods: We conducted a prospective longitudinal study at a large birth center (Prentice Women's Hospital in Chicago, IL). Premature infants (N = 200) were enrolled in 2:1:1 ratio based on gestational age (GA): mildly preterm (31-32 weeks), moderately preterm (29-30 weeks), and extremely preterm (23-28 weeks). Cord blood (CB) and cord tissues (CT) were collected at birth using commercial banking kits, and analyzed for collection blood volume, tissue mass, CD34+, CD90+, CD105+ counts, and concentrations. Multiplex immunoassay was used to measure 12 cytokines and growth factors in CB plasma of 74 patients. BPD severity was defined according to NIH consensus definitions. Univariate and multivariate regression models were used to identify perinatal covariates and assess associations between stem cell concentrations, cytokines, and BPD outcomes. Results: Of 200 patients enrolled (mean GA = 30 ± 2 weeks), 30 developed mild, 24 moderate, and 19 severe BPD. Concentrations of HPSC and MSC, as measured by %CD34+, %CD90+, and %CD105+ of total cells, increased with degree of prematurity. Collection parameters varied with GA, birth weight (BW), gender, prolonged rupture of membranes, mode of delivery, chorioamnionitis, and multiple gestation. Moderate-severe BPD or death was increased with lower GA, BW, Apgar scores, and documented delayed cord clamping. %CD34+ and %CD90+ were increased with BPD and directly correlated with BPD severity. Severe BPD was positively associated with %CD34+ (beta-coefficient = 0.9; 95% CI = 0.4-1.5; P < 0.01) and %CD90+ (beta-coefficient = 0.4; 95% CI = 0.2-0.6; P < 0.001) after adjustment for covariates. CB plasma granulocyte-colony stimulating factor (G-CSF) was inversely associated with %CD90+, and decreased with BPD. Below median G-CSF combined with elevated %CD90+ predicted BPD (positive predictive value = 100%). Conclusions: CB and CT collections yielded high concentrations of HPSCs and MSCs in BPD infants, accompanied by low circulating G-CSF. These variations suggest possible mechanisms by which stem cell differentiation and function predict BPD.
Collapse
Affiliation(s)
- Sonali Chaudhury
- Division of Hematology/Stem Cell Transplant, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Juanita Saqibuddin
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Robert Birkett
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Morey Kraus
- ViaCord LLC, A Perkin Elmer Company, Cambridge, MA, United States
| | - Linda M Ernst
- Department of Pathology, NorthShore University, Evanston, IL, United States
| | - William Grobman
- Department of Obstetrics & Gynecology and Maternal Fetal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Karen K Mestan
- Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
16
|
Transcriptional activity of human endogenous retroviruses is higher at birth in inversed correlation with gestational age. INFECTION GENETICS AND EVOLUTION 2018; 68:273-279. [PMID: 30578937 DOI: 10.1016/j.meegid.2018.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 11/23/2022]
Abstract
Human endogenous retroviruses (HERVs) have been studied in relation to the onset and/or progression of several diseases. However, increasing evidence highlights that they also have important physiologic roles, for instance they are involved in preimplantation embryonic growth and in placentation. We assessed the transcriptional activity of HERVs in PBMCs of healthy newborns, infants and children to gather further information on their potential physiological roles. mRNA expression of HERV-H, K and W was evaluated in PBMCs of 63 preterm newborns, 47 term newborns, 38 infants (1-24 months of age), and 36 children (25-131 months of age) using a PCR real time Taqman amplification assay and normalization to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The expression levels of HERV-H, K, and W were significantly higher at birth than in infancy and childhood. Furthermore, HERV activation was highest in preterm newborns and a significant inverse correlation was found between HERV transcripts and duration of pregnancy. The overexpression of HERVs at birth in inversed correlation with gestational age are further clues of their potential involvement in early life events.
Collapse
|
17
|
Schüller SS, Kramer BW, Villamor E, Spittler A, Berger A, Levy O. Immunomodulation to Prevent or Treat Neonatal Sepsis: Past, Present, and Future. Front Pediatr 2018; 6:199. [PMID: 30073156 PMCID: PMC6060673 DOI: 10.3389/fped.2018.00199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Despite continued advances in neonatal medicine, sepsis remains a leading cause of death worldwide in neonatal intensive care units. The clinical presentation of sepsis in neonates varies markedly from that in older children and adults, and distinct acute inflammatory responses results in age-specific inflammatory and protective immune response to infection. This review first provides an overview of the neonatal immune system, then covers current mainstream, and experimental preventive and adjuvant therapies in neonatal sepsis. We also discuss how the distinct physiology of the perinatal period shapes early life immune responses and review strategies to reduce neonatal sepsis-related morbidity and mortality. A summary of studies that characterize immune ontogeny and neonatal sepsis is presented, followed by discussion of clinical trials assessing interventions such as breast milk, lactoferrin, probiotics, and pentoxifylline. Finally, we critically appraise future treatment options such as stem cell therapy, other antimicrobial protein and peptides, and targeting of pattern recognition receptors in an effort to prevent and/or treat sepsis in this highly vulnerable neonatal population.
Collapse
Affiliation(s)
- Simone S. Schüller
- Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Precision Vaccines Program, Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Boris W. Kramer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Centre (MUMC+), Maastricht, Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, Netherlands
| | - Andreas Spittler
- Department of Surgery, Research Labs & Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Boston, MA, United States
| |
Collapse
|
18
|
Balgi-Agarwal S, Winter C, Corral A, Mustafa SB, Hornsby P, Moreira A. Comparison of Preterm and Term Wharton's Jelly-Derived Mesenchymal Stem Cell Properties in Different Oxygen Tensions. Cells Tissues Organs 2018; 205:137-150. [PMID: 29949803 PMCID: PMC6117836 DOI: 10.1159/000489256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/15/2018] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have shown promise as therapeutic agents in treating morbidities associated with premature birth. MSCs derived from the human umbilical cord are easy to isolate and have low immunogenicity and a robust ability to secrete paracrine factors. To date, there are no studies evaluating preterm versus term umbilical cord tissue-derived MSCs. Therefore, our aim was twofold: (1) to compare stem cell properties in preterm versus term MSCs and (2) to examine the impact of oxygen tension on stem cell behavior. Umbilical cord tissue was obtained from 5 preterm and 5 term neonates. The cells were isolated and characterized as MSCs in accordance with the International Society for Cellular Therapy. We exposed MSCs to different oxygen tensions to examine the impact of environmental factors on cell performance. We studied the following stem cell properties: (i) motility, (ii) proliferation, (iii) senescence, (iv) cell viability, (v) colony-forming unit efficiency, and (vi) inflammatory cytokine expression. Under normoxia (21% O2), cells from preterm and term infants had similar properties. Under hypoxic conditions (1% O2), term MSCs had better cell proliferation; however, cells exposed to hyperoxia (90% O2) had the slowest motility and lowest cell viability (p < 0.05). There was no difference in the expression of senescence or cytokine expression between the groups. The term cells demonstrated more colony-forming efficiency than the preterm cells. In sum, our preliminary findings suggest that MSCs derived from term and preterm umbilical cords have similar characteristics, offering the potential of future autologous/allogeneic MSC transplants in neonates.
Collapse
Affiliation(s)
- Saloni Balgi-Agarwal
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Caitlyn Winter
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Alexis Corral
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Shamimunisa B Mustafa
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Peter Hornsby
- Department of Cellular and Integrative Physiology, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Alvaro Moreira
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| |
Collapse
|
19
|
Schwandt S, Korschgen L, Peters S, Kogler G. Cord blood collection and processing with hydroxyethyl starch or non-hydroxyethyl starch. Cytotherapy 2016; 18:642-52. [PMID: 27059201 DOI: 10.1016/j.jcyt.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/12/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Collection and processing characteristics influencing quality of cord blood (CB) units play an essential role to cord blood banks (CBBs). At many CBBs, volume reduction is performed using hydroxyethyl starch (HES) and the Sepax (Biosafe) automated cell processing system. Due to the withdrawal of HES from the European market, a validation of the nonHES protocol was performed. METHODS This partially retrospective study identified CB characteristics such as gestational age and CB volume/cell count correlated with higher quality. For the nonHES validation, CB was analyzed for total nucleated cell (TNC), mononuclear cell (MNC) recovery, hematocrit (HCT) and colony-forming units (CFUs). Viabilities of CD34(+) and CD45(+) cells were determined by 7-aminoactinomycin D (7-AAD) and AnnexinV (AnnV) staining and compared for 21 mL and 42 mL buffy coat (BC) samples applying the HES/nonHES protocol. RESULTS Factors affecting the potency of CB transplants were the gestational age and the volume reduction to a defined BC volume. High initial cell counts and CB volumes correlated negatively with post-processing TNC recovery for lower BC volumes. Post-processing HES and nonHES results were comparable, but nonHES revealed a significantly lower post-thaw recovery of viable CD34(+) cells measured by 7-AAD/AnnV (21 mL: 45.4 ± 16.4%; 42 mL: 67.3 ± 14.5%) as compared with HES (21 mL: 72.7 ± 14.4%, P = 0.0164; 42 mL: 83.4 ± 14.7%, P = 0.0203). DISCUSSION Due to the lower post-thaw CD34(+) cell viability (AnnV(-)/7-AAD(-)) for nonHES samples, the use of HES is recommended, ideally combined with a high BC volume. The post-processing HCT has no statistically significant impact on the post-thaw CD34(+) cell viability (AnnV(-)/7-AAD(-)).
Collapse
Affiliation(s)
- Svenja Schwandt
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Medical Center, Duesseldorf, Germany
| | - Lutz Korschgen
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Medical Center, Duesseldorf, Germany
| | - Svenja Peters
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Medical Center, Duesseldorf, Germany
| | - Gesine Kogler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Medical Center, Duesseldorf, Germany.
| |
Collapse
|
20
|
Ponder KL, Bárcena A, Bos FL, Gormley M, Zhou Y, Ona K, Kapidzic M, Zovein AC, Fisher SJ. Preeclampsia and Inflammatory Preterm Labor Alter the Human Placental Hematopoietic Niche. Reprod Sci 2016; 23:1179-92. [PMID: 26944948 DOI: 10.1177/1933719116632926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The human placenta is a source of hematopoietic stem and progenitor cells (HSPCs). The RUNX1 transcription factor is required for the formation of functional HSPCs. The impact of preeclampsia (PE) and preterm labor (PTL, spontaneous preterm labor [sPTL] and inflammatory preterm labor [iPTL]) on HSPC localization and RUNX1 expression in the human placenta is unknown. METHODS We compared the frequency and density of HSPC in control samples from sPTL (n = 6) versus PE (n = 6) and iPTL (n = 6). We examined RUNX1 protein and RNA expression in placentas from normal pregnancies (5-22 weeks, n = 8 total) and in placentas from the aforementioned pregnancy complications (n = 5/group). RESULTS Hematopoietic stem and progenitor cells were rare cell types, associated predominantly with the vasculature of placental villi. The HSPC density was greater in the chorionic plate (CP) compared to the villi (P < .001) and greater in PE and iPTL samples as compared to controls within the CP (not significant) and overall (P < .05). During the fetal period, RUNX1 was expressed in the mesenchyme of the CP and villi. Inflammatory PTL samples were more likely to exhibit intraluminal RUNX1(+) cell populations (P < .001) and RUNX1(+) cell clusters attached to arterial endothelial cells. CONCLUSION Placental HSPCs likely arise from hematopoietic niches comprised RUNX1(+) mesenchyme and vascular endothelium. Pregnancy complications that result in preterm birth differentially affect placental HSPC localization and RUNX1 expression. Our results support previous findings that inflammation positively regulates hematopoiesis. We present new evidence that hemogenic endothelium may be active at later stages of human fetal development in the context of inflammation.
Collapse
Affiliation(s)
- Kathryn L Ponder
- Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alicia Bárcena
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Frank L Bos
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Gormley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Yan Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Katherine Ona
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Mirhan Kapidzic
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ann C Zovein
- Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Susan J Fisher
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Association of CD34+ and CD90+ Stem Cells of Cord Blood with Neonatal Factors: A Cross-sectional Study. Indian J Pediatr 2016; 83:114-9. [PMID: 26245655 DOI: 10.1007/s12098-015-1839-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To characterize the primitive stem cell content of cord blood with regard to neonatal parameters. METHODS In this cross-sectional study, CD34+ and CD90+ cells content were enumerated by flow-cytometry method. Their associations with various neonatal parameters like birth weight, gender, gestational age and mode of delivery were analyzed by univariate analysis. Multivariable linear regression model was then developed to further explain the effect of neonatal factors on these primitive cell counts. RESULTS From a total of 106 recruited subjects, gender of the neonate did not have any influence on the expression of these proteins (CD34 and CD90) of cord blood stem cells or progenitors. Multi variable linear regression analysis using CD34+ and CD90+ cell counts as dependent variables revealed that birth weight and the mode of delivery were significant predictors of these cell counts. CONCLUSIONS The present study suggests that birth weight and mode of delivery of the neonates influences cord blood stem cell yield.
Collapse
|
22
|
Preterm Cord Blood Contains a Higher Proportion of Immature Hematopoietic Progenitors Compared to Term Samples. PLoS One 2015; 10:e0138680. [PMID: 26417990 PMCID: PMC4587939 DOI: 10.1371/journal.pone.0138680] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cord blood contains high number of hematopoietic cells that after birth disappear. In this paper we have studied the functional properties of the umbilical cord blood progenitor cells collected from term and preterm neonates to establish whether quantitative and/or qualitative differences exist between the two groups. METHODS AND RESULTS Our results indicate that the percentage of total CD34+ cells was significantly higher in preterm infants compared to full term: 0.61% (range 0.15-4.8) vs 0.3% (0.032-2.23) p = 0.0001 and in neonates <32 weeks of gestational age (GA) compared to those ≥32 wks GA: 0.95% (range 0.18-4.8) and 0.36% (0.15-3.2) respectively p = 0.0025. The majority of CD34+ cells co-expressed CD71 antigen (p<0.05 preterm vs term) and grew in vitro large BFU-E, mostly in the second generation. The subpopulations CD34+CD38- and CD34+CD45- resulted more represented in preterm samples compared to term, conversely, Side Population (SP) did not show any difference between the two group. The absolute number of preterm colonies (CFCs/10microL) resulted higher compared to term (p = 0.004) and these progenitors were able to grow until the third generation maintaining an higher proportion of CD34+ cells (p = 0.0017). The number of colony also inversely correlated with the gestational age (Pearson r = -0.3001 p<0.0168). CONCLUSIONS We found no differences in the isolation and expansion capacity of Endothelial Colony Forming Cells (ECFCs) from cord blood of term and preterm neonates: both groups grew in vitro large number of endothelial cells until the third generation and showed a transitional phenotype between mesenchymal stem cells and endothelial progenitors (CD73, CD31, CD34 and CD144)The presence, in the cord blood of preterm babies, of high number of immature hematopoietic progenitors and endothelial/mesenchymal stem cells with high proliferative potential makes this tissue an important source of cells for developing new cells therapies.
Collapse
|
23
|
Abstract
Stem cell transplantation (SCT) is an established first-line or adjunctive therapy for a variety of neonatal and adult diseases. New evidence in preclinical models as well as a few human studies show the potential utility of SCT in neuroprotection and in the modulation of inflammatory injury in at risk-neonates. This review briefly summarizes current understanding of human stem cell biology during ontogeny and present recent evidence supporting SCT as a viable approach for postinsult neonatal injury.
Collapse
Affiliation(s)
- Momoko Yoshimoto
- Assistant Research Professor, Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044W Walnut Street R4-W116, Indianapolis, IN 46202, Tel: 317-278-0598
| | - Joyce M Koenig
- Pediatrics, E Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St Louis, MO 63104, USA; Molecular Microbiology & Immunology, E Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Boulevard, St Louis, MO 63106, USA.
| |
Collapse
|