1
|
Butler IAE, Butterfield T, Janda M, Gordon DM. Colony life history of the tropical arboreal ant, Cephalotes goniodontus De Andrade, 1999. INSECTES SOCIAUX 2024; 71:271-281. [PMID: 39286752 PMCID: PMC11401787 DOI: 10.1007/s00040-024-00974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 09/19/2024]
Abstract
Arboreal ants are ecologically important in tropical forests, but there are few studies using DNA markers to examine their population and colony structure. Colonies of the arboreal turtle ant Cephalotes goniodontus create trail networks through the canopy of the tropical forest, in dense vegetation where it is difficult to determine how long a nest is used and how neighboring colonies partition space. We monitored 53 nest sites for up to six years and, using seven microsatellite markers, genotyped samples of workers collected at or near 41 nests over 1-4 years. We calculated average relatedness within samples collected at a given location, and between samples collected at the same location in successive years, and performed pedigree analysis to predict the number of queens that produced each sample of workers. Fifteen samples were highly related (r ≥ 0.6) from single colonies, of which 11 were monogynous and the remaining four had two queens; 19 were of intermediate relatedness (0.1 ≤ r < 0.6) with 1-6 queens, and 7 were groups of unrelated workers (r < 0.1) from at least 4 queens. Colonies persisted at the same nest site for 2-6 years. The smallest distance we found separating nests of different colonies was 16.2 m. It appears that different colonies may share foraging trails. Our study demonstrates the feasibility of using a cost-efficient genotyping method to provide information on colony structure and life history of ant species. Supplementary Information The online version contains supplementary material available at 10.1007/s00040-024-00974-3.
Collapse
Affiliation(s)
- I A E Butler
- Instituto de Biología, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - T Butterfield
- Estudiantes Conservando La Naturaleza AC, 85760 Alamos, Sonora Mexico
| | - M Janda
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, 58190 Morelia, Michoacán Mexico
- Department of Zoology, Faculty of Science, Palacky University Olomouc, Olomouc, Czech Republic
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - D M Gordon
- Department of Biology, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
2
|
Trible W, Chandra V, Lacy KD, Limón G, McKenzie SK, Olivos-Cisneros L, Arsenault SV, Kronauer DJC. A caste differentiation mutant elucidates the evolution of socially parasitic ants. Curr Biol 2023; 33:1047-1058.e4. [PMID: 36858043 PMCID: PMC10050096 DOI: 10.1016/j.cub.2023.01.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023]
Abstract
Most ant species have two distinct female castes-queens and workers-yet the developmental and genetic mechanisms that produce these alternative phenotypes remain poorly understood. Working with a clonal ant, we discovered a variant strain that expresses queen-like traits in individuals that would normally become workers. The variants show changes in morphology, behavior, and fitness that cause them to rely on workers in wild-type (WT) colonies for survival. Overall, they resemble the queens of many obligately parasitic ants that have evolutionarily lost the worker caste and live inside colonies of closely related hosts. The prevailing theory for the evolution of these workerless social parasites is that they evolve from reproductively isolated populations of facultative intermediates that acquire parasitic phenotypes in a stepwise fashion. However, empirical evidence for such facultative ancestors remains weak, and it is unclear how reproductive isolation could gradually arise in sympatry. In contrast, we isolated these variants just a few generations after they arose within their WT parent colony, implying that the complex phenotype reported here was induced in a single genetic step. This suggests that a single genetic module can decouple the coordinated mechanisms of caste development, allowing an obligately parasitic variant to arise directly from a free-living ancestor. Consistent with this hypothesis, the variants have lost one of the two alleles of a putative supergene that is heterozygous in WTs. These findings provide a plausible explanation for the evolution of ant social parasites and implicate new candidate molecular mechanisms for ant caste differentiation.
Collapse
Affiliation(s)
- Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; John Harvard Distinguished Science Fellowship Program, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | - Vikram Chandra
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Kip D Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gina Limón
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| | - Sean K McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Oxford Nanopore Technologies, Oxford OX4 4DQ, UK
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Samuel V Arsenault
- John Harvard Distinguished Science Fellowship Program, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
3
|
Gómez R, Neri-Bazán RM, Posadas-Mondragon A, Vizcaíno-Dorado PA, Magaña JJ, Aguilar-Faisal JL. Molecular Assessments, Statistical Effectiveness Parameters and Genetic Structure of Captive Populations of Tursiops truncatus Using 15 STRs. Animals (Basel) 2022; 12:ani12141857. [PMID: 35883404 PMCID: PMC9312175 DOI: 10.3390/ani12141857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The bottlenose dolphins are one of the most used species in entertainment, assisted therapy, education, and research on welfare. However, their maintenance in captivity requires powerful and sensitive tools for preserving their diversity. The number of genetic markers for this purpose remains controversial, restraining the marine species’ genetic diversity determination. We aimed to select 15 hypervariable molecular markers whose statistical parameters were made in 210 captive dolphins from 18 Mexican centers to support their usefulness. The proposed set of markers allowed us to obtain a genetic fingerprint of each dolphin. Additionally, we identified the structure of the captive population, analyzing the groups according to the capture location. Such characterization is key for maintaining the captive species’ biodiversity rates within conservation and reintroduction programs. However, these 15 genetic markers can also be helpful for small- isolated populations, subspecies and other genera of endangered and vulnerable species. Abstract Genetic analysis is a conventional way of identifying and monitoring captive and wildlife species. Knowledge of statistical parameters reinforcing their usefulness and effectiveness as powerful tools for preserving diversity is crucial. Although several studies have reported the diversity of cetaceans such as Tursiops truncatus using microsatellites, its informative degree has been poorly reported. Furthermore, the genetic structure of this cetacean has not been fully studied. In the present study, we selected 15 microsatellites with which 210 dolphins were genetically characterized using capillary electrophoresis. The genetic assertiveness of this set of hypervariable markers identified one individual in the range of 6.927e13 to 1.806e16, demonstrating its substantial capability in kinship relationships. The genetic structure of these 210 dolphins was also determined regarding the putative capture origin; a genetic stratification (k = 2) was found. An additional dolphin group of undetermined origin was also characterized to challenge the proficiency of our chosen markers. The set of markers proposed herein could be a helpful tool to guarantee the maintenance of the genetic diversity rates in conservation programs both in Tursiops truncatus and across other odontocetes, Mysticeti and several genera of endangered and vulnerable species.
Collapse
Affiliation(s)
- Rocío Gómez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Rocío M. Neri-Bazán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina-Instituto Politécnico Nacional (ESM-IPN), Mexico City 11340, Mexico; (R.M.N.-B.); (A.P.-M.)
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra-Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Araceli Posadas-Mondragon
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina-Instituto Politécnico Nacional (ESM-IPN), Mexico City 11340, Mexico; (R.M.N.-B.); (A.P.-M.)
| | - Pablo A. Vizcaíno-Dorado
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra-Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra-Ibarra (INR-LGII), Mexico City 14389, Mexico;
- Departamento de Bioingenieria, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey-Campus Ciudad de México (ITESM-CCM), Mexico City 14380, Mexico
- Correspondence: (J.J.M.); (J.L.A.-F.)
| | - José Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina-Instituto Politécnico Nacional (ESM-IPN), Mexico City 11340, Mexico; (R.M.N.-B.); (A.P.-M.)
- Correspondence: (J.J.M.); (J.L.A.-F.)
| |
Collapse
|
4
|
Cordonnier M, Felten D, Trindl A, Heinze J, Bernadou A. Absence of genetic isolation across highly fragmented landscape in the ant Temnothorax nigriceps. BMC Ecol Evol 2022; 22:91. [PMID: 35840881 PMCID: PMC9284864 DOI: 10.1186/s12862-022-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human activities, including changes in agricultural landscapes, often impact biodiversity through habitat fragmentation. This potentially reduces genetic exchange between previously connected populations. Using a combination of nuclear and mitochondrial markers, we investigated (i) genetic diversity and population structure at multiple spatial scales and (ii) colony genetic structure and queen mating frequency in the ant species Temnothorax nigriceps in a highly anthropized environment. RESULTS Although the results highlighted genetic structure on a European spatial scale, they did not reveal an impact of fragmentation on a regional scale, and we did not observe any genetic population structure on a regional scale. Across all populations, regardless of their geographical location, colony structure suggested monogyny (a single queen per colony) and monandry (single mating). However, nestmates were more related than expected, indicating that large-scale dispersal does not fully prevent genetic isolation. CONCLUSIONS Despite living in fragmented patches of habitat, populations of Temnothorax nigriceps are apparently genetically not isolated at a regional scale. However, large-scale dispersal alone does not prevent genetic isolation. The ecological requirements of T. nigriceps may explain their resilience to habitat fragmentation by allowing them to survive in very small patches of suitable habitat. The deeper investigation of the diversity of functional habitats for this species should allow to appreciate better the mechanisms permitting this species to overcome the negative impacts of fragmentation.
Collapse
Affiliation(s)
- Marion Cordonnier
- Lehrstuhl Für Zoologie/Evolutionsbiologie, University of Regensburg, Regensburg, Germany.
| | - Dominik Felten
- Lehrstuhl Für Zoologie/Evolutionsbiologie, University of Regensburg, Regensburg, Germany
| | - Andreas Trindl
- Lehrstuhl Für Zoologie/Evolutionsbiologie, University of Regensburg, Regensburg, Germany
| | - Jürgen Heinze
- Lehrstuhl Für Zoologie/Evolutionsbiologie, University of Regensburg, Regensburg, Germany
| | - Abel Bernadou
- Lehrstuhl Für Zoologie/Evolutionsbiologie, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Blumenfeld AJ, Eyer PA, Helms AM, Buczkowski G, Vargo EL. Consistent signatures of urban adaptation in a native, urban invader ant Tapinoma sessile. Mol Ecol 2021; 31:4832-4850. [PMID: 34551170 DOI: 10.1111/mec.16188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Biological invasions are becoming more prevalent due to the rise of global trade and expansion of urban areas. Ants are among the most prolific invaders with many exhibiting a multiqueen colony structure, dependent colony foundation and reduced internest aggression. Although these characteristics are generally associated with the invasions of exotic ants, they may also facilitate the spread of native ants into novel habitats. Native to diverse habitats across North America, the odorous house ant Tapinoma sessile has become abundant in urban environments throughout the United States. Natural colonies typically have a small workforce, inhabit a single nest, and are headed by a single queen, whereas urban colonies tend to be several orders of magnitude larger, inhabit multiple nests (i.e., polydomy) and are headed by multiple queens (i.e., polygyny). Here, we explore and compare the population genetic and breeding structure of T. sessile within and between urban and natural environments in several localities across its distribution range. We found the social structure of a colony to be a plastic trait in both habitats, although extreme polygyny was confined to urban habitats. Additionally, polydomous colonies were only present in urban habitats, suggesting T. sessile can only achieve supercoloniality within urbanized areas. Finally, we identified strong differentiation between urban and natural populations in each locality and continent-wide, indicating cities may restrict gene flow and exert intense selection pressure. Overall, our study highlights urbanization's influence in charting the evolutionary course for species.
Collapse
Affiliation(s)
| | - Pierre-André Eyer
- Department of Entomology, TAMU, Texas A&M University, College Station, Texas, USA
| | - Anjel M Helms
- Department of Entomology, TAMU, Texas A&M University, College Station, Texas, USA
| | | | - Edward L Vargo
- Department of Entomology, TAMU, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Development of a Set of Microsatellite Markers to Investigate Sexually Antagonistic Selection in the Invasive Ant Nylanderia fulva. INSECTS 2021; 12:insects12070643. [PMID: 34357303 PMCID: PMC8306888 DOI: 10.3390/insects12070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary The two sexes of a species usually exhibit phenotypic differences, such as in behavior, body size or color. They, however, share most of their genomes, preventing fixation of distinct alleles for genes coding for those traits in each sex. The different optima between the sexes on these loci lead to genomic conflicts, called sexually antagonistic selection (SAS). Under SAS, distinct alleles are therefore selected in each sex. In the invasive tawny crazy ant, Nylanderia fulva, a genomic region is under SAS, while the rest of the genome is randomly selected in males and females. Here, we provide a suite of 15 polymorphic microsatellite markers located in the SAS genomic region to study the origin and evolution of SAS in N. fulva. These markers have allelic frequencies that are highly different between males and females. All males carry only a subset of the alleles present in the population, while females are reliably heterozygous, with one allele from the male gene pool and a different allele inherited from their mother. The SAS markers may be used to test for the strength and the extent of the genomic regions under SAS in both the native and introduced ranges of N. fulva. These markers may serve to answer similar questions in other introduced species of the Nylanderia genus, yielding insights into the origin and evolution of SAS within and among species of the genus Nylanderia. Abstract Sexually antagonistic selection (SAS) occurs when distinct alleles are differentially selected in each sex. In the invasive tawny crazy ant, Nylanderia fulva, a genomic region is under SAS, while the rest of the genome is randomly selected in males and females. In this study, we designed a suite of 15 microsatellite markers to study the origin and evolution of SAS in N. fulva. These SAS markers were polymorphic, with allelic frequencies that are highly different between males and females. All haploid males carry only a subset of the alleles present in the population, while females are reliably heterozygous, with one allele from the male gene pool and a different allele inherited from their mother. In addition, we identified six polymorphic markers not associated with SAS and six markers yielding consistent, yet monomorphic, amplification in the introduced range of this species. Reaction condition optimizations allowed all retained markers to be co-amplified in four PCR mixes. The SAS markers may be used to test for the strength and the extent of the genomic regions under SAS in both the native and introduced ranges of N. fulva, while the set of non-SAS loci may be used to assess the invasion route of this species. Overall, the application of these microsatellite markers will yield insights into the origin and evolution of SAS within and among species of the genus Nylanderia.
Collapse
|
7
|
Lim LY, Ab Majid AH. Development and Characterization of Novel Polymorphic Microsatellite Markers for Tapinoma indicum (Hymenoptera: Formicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6326714. [PMID: 34297812 PMCID: PMC8300939 DOI: 10.1093/jisesa/ieab047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Tapinoma indicum (Forel) (Hymenoptera: Formicidae) is a nuisance pest in Asia countries. However, studies on T. indicum are limited, especially in the field of molecular biology, to investigate the species characteristic at the molecular level. This paper aims to provide valuable genetic markers as tools with which to study the T. indicum population. In this study, a total of 143,998 microsatellite markers were developed based on the 2.61 × 106 microsatellites isolated from T. indicum genomic DNA sequences. Fifty selected microsatellite markers were amplified with varying numbers of alleles ranging from 0 to 19. Seven out of fifty microsatellite markers were characterized for polymorphism with the Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) analysis. All seven microsatellite markers demonstrated a high polymorphic information content (PIC) value ranging from 0.87 to 0.93, with a mean value of 0.90. There is no evidence of scoring errors caused by stutter peaks, no large allele dropout, and no linkage disequilibrium among the seven loci; although loci Ti-Tr04, Ti-Tr09, Ti-Te04, Ti-Te13, and Ti-Pe5 showed signs of null alleles and deviation from the HWE due to excessive homozygosity. In conclusion, a significant amount of microsatellite markers was developed from the data set of next-generation sequencing, and seven of microsatellite markers were validated as informative genetic markers that can be utilized to study the T. indicum population.
Collapse
Affiliation(s)
- Li Yang Lim
- Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, 11800 Minden, Malaysia
| | - Abdul Hafiz Ab Majid
- Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang, 11800 Minden, Malaysia
| |
Collapse
|
8
|
Eyer PA, Vargo EL, Peeters C. One tree, many colonies: colony structure, breeding system and colonization events of host trees in tunnelling Melissotarsus ants. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Ants exhibit a striking variety of lifestyles, including highly specialist or mutualist species. The minute blind workers of the African genus Melissotarsus chew tunnels in live trees to accommodate their obligate partner scale insects. Their modified legs are adapted for tunnelling, but are unsuited for walking outside, confining these ants to their initial host tree. Here, we investigated whether this unique lifestyle results in complex patterns of genetic diversity at different scales, from the same tree to different populations. Using 19 microsatellite markers, we assessed their mating strategy and colony structure among and across populations in South Africa. We showed that only one queen reproduces within a colony, mated with up to three males. However, several inseminated dealate queens are present in colonies; one probably replaces the older queen as the colony ages. The reproduction of a single queen per colony at a given time results in genetic differences between colonies, even those located on the same tree. We discuss how the slow process of colony digging under the bark and the lack of workers patrolling above the bark might result in reduced competition between colonies and allow several secluded colonies to cohabit the cramped space on a single tree.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, Texas A&M University, College Station, TXUSA
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TXUSA
| | - Christian Peeters
- Institut d’Écologie et des Sciences de l’Environnement, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Giehr J, Heinze J. Queen execution in a monogynous ant. Ecol Evol 2021; 11:1843-1849. [PMID: 33614007 PMCID: PMC7882922 DOI: 10.1002/ece3.7173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Workers in many species of social insects are capable of laying unfertilized eggs, which can develop into haploid males. This causes a conflict about male parentage between queens and workers. In a few species, this may result in matricide, that is, workers kill the colony's queen. Queen killing has so far been observed mainly in multi-queen colonies or in annual species, when the queen's fecundity declines at the end of the reproductive period. Here, we report queen expulsion and matricide in a monogynous, monandrous ant with perennial societies. Workers were seen to aggressively expel both related and unrelated queens from their nest shortly after the end of hibernation. Queen expulsion and matricide led to a significant decrease in the number of workers and brood, but eventually increased the direct fitness of workers through significant male production. Long-term observations revealed a short lifespan of queens, while workers in orphaned colonies survived and produced male offspring over several years.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/Evolutionary BiologyUniversity of RegensburgRegensburgGermany
| | - Jürgen Heinze
- Zoology/Evolutionary BiologyUniversity of RegensburgRegensburgGermany
| |
Collapse
|
10
|
Bujan J, Charavel E, Bates OK, Gippet JMW, Darras H, Lebas C, Bertelsmeier C. Increased acclimation ability accompanies a thermal niche shift of a recent invasion. J Anim Ecol 2020; 90:483-491. [PMID: 33131068 DOI: 10.1111/1365-2656.13381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Globalization is removing dispersal barriers for the establishment of invasive species and enabling their spread to novel climates. New thermal environments in the invaded range will be particularly challenging for ectotherms, as their metabolism directly depends on environmental temperature. However, we know little about the role climatic niche shifts play in the invasion process, and the underlining physiological mechanisms. We tested if a thermal niche shift accompanies an invasion, and if native and introduced populations differ in their ability to acclimate thermal limits. We used an alien ant species-Tapinoma magnum-which recently started to spread across Europe. Using occurrence data and accompanying climatic variables, we measured the amount of overlap between thermal niches in the native and invaded range. We then experimentally tested the acclimation ability in native and introduced populations by incubating T. magnum at 18, 25 and 30°C. We measured upper and lower critical thermal limits after 7 and 21 days. We found that T. magnum occupies a distinct thermal niche in its introduced range, which is on average 3.5°C colder than its native range. Critical thermal minimum did not differ between populations from the two ranges when colonies were maintained at 25 or 30°C, but did differ after colony acclimation at a lower temperature. We found twofold greater acclimation ability of introduced populations to lower temperatures, after prolonged incubation at 18°C. Increased acclimation ability of lower thermal limits could explain the expansion of the realized thermal niche in the invaded range, and likely contributed to the spread of this species to cooler climates. Such thermal plasticity could be an important, yet so far understudied, factor underlying the expansion of invasive insects into novel climates.
Collapse
Affiliation(s)
- Jelena Bujan
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Ellouène Charavel
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Olivia K Bates
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Jérôme M W Gippet
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Hugo Darras
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Claude Lebas
- Antarea (www.antarea.fr), Association pour l'étude et la cartographie des fourmis de France métropolitaine, Canohès, France
| | - Cleo Bertelsmeier
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Shik JZ, Kooij PW, Donoso DA, Santos JC, Gomez EB, Franco M, Crumière AJJ, Arnan X, Howe J, Wcislo WT, Boomsma JJ. Nutritional niches reveal fundamental domestication trade-offs in fungus-farming ants. Nat Ecol Evol 2020; 5:122-134. [PMID: 33106603 PMCID: PMC7610523 DOI: 10.1038/s41559-020-01314-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
During crop domestication, human farmers traded greater productivity for higher crop vulnerability outside specialized cultivation conditions. We found a similar domestication tradeoff across the major co-evolutionary transitions in farming systems of attine ants. First, the fundamental nutritional niches (FNNs) of cultivars narrowed during ~ 60 million years of naturally selected domestication, and laboratory experiments showed that ant farmers representing subsequent domestication stages strictly regulate protein harvest relative to cultivar FNNs. Second, ants with different farming systems differed in their abilities to harvest the resources that best matched the nutritional needs of their fungal cultivars. This was assessed by quantifying realized nutritional niches (RNNs) from analyses of items collected from the mandibles of laden ant foragers in the field. Third, extensive field collections suggest that among-colony genetic diversity of cultivars in small-scale farms may offer population-wide resilience benefits that species with large-scale farming colonies achieve by more elaborate and demanding cultivation practices of less diverse crops. Our results underscore that naturally selected farming systems have potential to shed light on nutritional tradeoffs that shaped the course of culturally evolved human farming.
Collapse
Affiliation(s)
- Jonathan Z Shik
- Section of Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Smithsonian Tropical Research Institute, Panama City, Republic of Panama.
| | - Pepijn W Kooij
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Comparative Fungal Biology, Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, London, UK.,Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
| | - David A Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador.,Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, New York, NY, USA
| | - Ernesto B Gomez
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Mariana Franco
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Antonin J J Crumière
- Section of Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xavier Arnan
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, Spain.,Department of Biological Sciences, University of Pernambuco, Garanhuns, Brazil
| | - Jack Howe
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Department of Zoology, University of Oxford, Oxford, UK
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Jacobus J Boomsma
- Section of Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Lemos ASM, Azevedo-Silva M, Gonçalves-Neto S, Souza AP, Oliveira PS. Microsatellites for the Neotropical Ant, Odontomachus chelifer (Hymenoptera: Formicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5937568. [PMID: 33098430 PMCID: PMC7585319 DOI: 10.1093/jisesa/ieaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 05/01/2023]
Abstract
Odontomachus chelifer (Latreille) (Ponerinae) is a ground-dwelling, predominantly carnivorous ant whose colonies may contain multiple egg-laying queens and are potentially susceptible to border effects in the Brazilian savanna known as Cerrado. The ecology and natural history of O. chelifer is well studied, but very little is known about the genetic diversity of O. chelifer colonies. In this study, we developed microsatellite markers for the study of genetic variation in O. chelifer. We created a microsatellite-enriched library that resulted in the development and characterization of 22 markers, of which 18 were found to be polymorphic in the population studied. The mean expected heterozygosity was 0.59, whereas the mean rarified allelic richness was determined as 4.27 alleles per locus. The polymorphism level detected was similar to genetic diversity estimates found in other poneromorph ant species. The microsatellites developed here are likely to be useful for the investigation of colony structure, functional polygyny, breeding system, and population genetics in O. chelifer. Moreover, the description of O. chelifer's genetic diversity is crucial for its conservation and maintenance of its ecological role in the Cerrado savanna.
Collapse
Affiliation(s)
- Alessandra S M Lemos
- Graduação em Ciências Biológicas, Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marianne Azevedo-Silva
- Programa de Pós-Graduação em Ecologia, Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Salatiel Gonçalves-Neto
- Graduação em Ciências Biológicas, Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anete P Souza
- Departamento de Biologia Vegetal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo S Oliveira
- Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Corresponding author, e-mail:
| |
Collapse
|
13
|
Giehr J, Wallner J, Senninger L, Ruhland K, Krüger T, Heinze J. Substantial direct fitness gains of workers in a highly eusocial ant. Mol Ecol 2020; 29:3720-3730. [PMID: 32869398 DOI: 10.1111/mec.15586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Hamilton's theory of inclusive fitness suggests that helpers in animal societies gain fitness indirectly by increasing the reproductive performance of a related beneficiary. Helpers in cooperatively breeding birds, mammals and primitively eusocial wasps may additionally obtain direct fitness through inheriting the nest or mating partner of the former reproductive. Here, we show that also workers of a highly eusocial ant may achieve considerable direct fitness by producing males in both queenless and queenright colonies. We investigated the reproductive success of workers of the ant Temnothorax crassispinus in nature and the laboratory by dissecting workers and determining the origin of males by microsatellite analysis. We show that workers are capable of activating their ovaries and successfully producing their sons independently of the presence of a queen. Genotypes revealed that at least one fifth of the males in natural queenright colonies were not offspring of the queen. Most worker-produced males could be assigned to workers that were unrelated to the queen, suggesting egg-laying by drifting workers.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Jennifer Wallner
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Lisa Senninger
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Katja Ruhland
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Theresa Krüger
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Environmental and genetic constraints on cuticular hydrocarbon composition and nestmate recognition in ants. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2019.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Butler IA, Peters MK, Kronauer DJC. Low levels of hybridization in two species of African driver ants. J Evol Biol 2018; 31:556-571. [PMID: 29380454 DOI: 10.1111/jeb.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 11/28/2022]
Abstract
Hybridization in ants can have consequences different from those observed in most other species, with many of the potential deleterious effects being mitigated due to haplodiploidy and eusociality. In some species where colonies are either headed by multiple queens or single queens that mate with many males, hybridization is associated with genetic caste determination, where hybrids develop into workers and purebred individuals develop into queens. A previous study suggested that hybridization occurs between two Dorylus army ant species with multiply mated queens. However, the extent and exact pattern of hybridization have remained unclear, and its possible effect on caste determination has not been investigated. In this study, we aimed to determine the extent and direction of hybridization by measuring how frequently hybrids occur in colonies of both species, and to investigate the possibility of genetic caste determination. We show that hybridization is bidirectional and occurs at equal rates in both species. Hybrid workers make up only 1-2% of the population, and successful interspecific matings represent approximately 2% of all matings in both species. This shows that, although interspecific matings that give rise to worker offspring occur regularly, they are much rarer than intraspecific mating. Finally, we find no evidence of an association between hybridization and genetic caste determination in this population. This means that genetic caste determination is not a necessary outcome of hybridization in ants, even in species where queens mate with multiple males.
Collapse
Affiliation(s)
- I A Butler
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - M K Peters
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - D J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| |
Collapse
|
16
|
Gaynor KM, Solomon JW, Siller S, Jessell L, Duffy JE, Rubenstein DR. Development of genome- and transcriptome-derived microsatellites in related species of snapping shrimps with highly duplicated genomes. Mol Ecol Resour 2017; 17:e160-e173. [PMID: 28776934 DOI: 10.1111/1755-0998.12705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/16/2017] [Accepted: 07/25/2017] [Indexed: 11/28/2022]
Abstract
Molecular markers are powerful tools for studying patterns of relatedness and parentage within populations and for making inferences about social evolution. However, the development of molecular markers for simultaneous study of multiple species presents challenges, particularly when species exhibit genome duplication or polyploidy. We developed microsatellite markers for Synalpheus shrimp, a genus in which species exhibit not only great variation in social organization, but also interspecific variation in genome size and partial genome duplication. From the four primary clades within Synalpheus, we identified microsatellites in the genomes of four species and in the consensus transcriptome of two species. Ultimately, we designed and tested primers for 143 microsatellite markers across 25 species. Although the majority of markers were disomic, many markers were polysomic for certain species. Surprisingly, we found no relationship between genome size and the number of polysomic markers. As expected, markers developed for a given species amplified better for closely related species than for more distant relatives. Finally, the markers developed from the transcriptome were more likely to work successfully and to be disomic than those developed from the genome, suggesting that consensus transcriptomes are likely to be conserved across species. Our findings suggest that the transcriptome, particularly consensus sequences from multiple species, can be a valuable source of molecular markers for taxa with complex, duplicated genomes.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Joseph W Solomon
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Stefanie Siller
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Linnet Jessell
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - J Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian Institution, Washington, DC, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Department of Ornithology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
17
|
Winston ME, Thompson A, Trujillo G, Burchill AT, Moreau CS. Novel approach to heritability detection suggests robustness to paternal genotype in a complex morphological trait. Ecol Evol 2017. [PMID: 28649331 PMCID: PMC5478049 DOI: 10.1002/ece3.2932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heritable variation is essential for evolution by natural selection. In Neotropical army ants, the ecological role of a given species is linked intimately to the morphological variation within the sterile worker caste. Furthermore, the army ant Eciton burchellii is highly polyandrous, presenting a unique opportunity to explore heritability of morphological traits among related workers sharing the same colonial environment. In order to exploit the features of this organismal system, we generated a large genetic and morphological dataset and applied our new method that employs geometric morphometrics (GM) to detect the heritability of complex morphological traits. After validating our approach with an existing dataset of known heritability, we simulated our ability to detect heritable variation given our sampled genotypes, demonstrating the method can robustly recover heritable variation of small effect size. Using this method, we tested for genetic caste determination and heritable morphological variation using genetic and morphological data on 216 individuals of E. burchellii. Results reveal this ant lineage (1) has the highest mating frequency known in ants, (2) demonstrates no paternal genetic caste determination, and (3) suggests a lack of heritable morphological variation in this complex trait associated with paternal genotype. We recommend this method for leveraging the increased resolution of GM data to explore and understand heritable morphological variation in nonmodel organisms.
Collapse
Affiliation(s)
- Max E Winston
- Committee on Evolutionary Biology University of Chicago Chicago IL USA.,Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA
| | - Andrea Thompson
- Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA
| | - Gabriel Trujillo
- Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA
| | - Andrew T Burchill
- Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA.,School of Life Sciences Arizona State University Tempe AZ USA
| | - Corrie S Moreau
- Department of Science and Education Integrative Research Center Field Museum of Natural History Chicago IL USA
| |
Collapse
|
18
|
An Unbiased Estimator of Gene Diversity with Improved Variance for Samples Containing Related and Inbred Individuals of any Ploidy. G3-GENES GENOMES GENETICS 2017; 7:671-691. [PMID: 28040781 PMCID: PMC5295611 DOI: 10.1534/g3.116.037168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene diversity, or expected heterozygosity (H), is a common statistic for assessing genetic variation within populations. Estimation of this statistic decreases in accuracy and precision when individuals are related or inbred, due to increased dependence among allele copies in the sample. The original unbiased estimator of expected heterozygosity underestimates true population diversity in samples containing relatives, as it only accounts for sample size. More recently, a general unbiased estimator of expected heterozygosity was developed that explicitly accounts for related and inbred individuals in samples. Though unbiased, this estimator's variance is greater than that of the original estimator. To address this issue, we introduce a general unbiased estimator of gene diversity for samples containing related or inbred individuals, which employs the best linear unbiased estimator of allele frequencies, rather than the commonly used sample proportion. We examine the properties of this estimator, [Formula: see text] relative to alternative estimators using simulations and theoretical predictions, and show that it predominantly has the smallest mean squared error relative to others. Further, we empirically assess the performance of [Formula: see text] on a global human microsatellite dataset of 5795 individuals, from 267 populations, genotyped at 645 loci. Additionally, we show that the improved variance of [Formula: see text] leads to improved estimates of the population differentiation statistic, [Formula: see text] which employs measures of gene diversity within its calculation. Finally, we provide an R script, BestHet, to compute this estimator from genomic and pedigree data.
Collapse
|
19
|
Moura RF, Dawson DA, Nogueira DM. The use of microsatellite markers in Neotropical studies of wild birds: a literature review. AN ACAD BRAS CIENC 2017; 89:145-154. [PMID: 28177053 DOI: 10.1590/0001-3765201620160378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
Despite extensive habitat fragmentation, the Neotropical region possesses 30% of the world´s bird species. Microsatellites have remained one of the most popular genetic markers and have been used in ecological and conservation studies since the 1990's. We conducted a literature review comparing the number of papers published from January 1990 to July 2015 that used microsatellite markers for studies of wild birds in the Neotropical region, USA and some European countries. We assigned the articles to three categories of studies: population genetics, animal behavior/kinship analysis and the development of species-specific bird microsatellite markers. We also compared the studies in the Neotropics that used heterologous versus species-specific markers and provide a list of heterologous markers of utility in multiple birds. Despite the rich bird fauna in the Neotropics, the number of articles published represents only 5.6% of that published by the USA and selected European countries. Within the Neotropical region, Brazil possessed 60.5% of the total papers published, with the remaining 39.5% shared between five countries. We conclude that the lack of specialized laboratories and resources still represents a limit to microsatellite-based genetic studies of birds within the Neotropical region. To overcome these limitations, we suggest the use of heterologous microsatellite markers as a cost-effective and time-effective tool to assist ecological studies of wild birds.
Collapse
Affiliation(s)
- Renan F Moura
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, BR 465, Km 07, 23890-000 Seropédica, RJ, Brazil
| | - Deborah A Dawson
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, South Yorkshire, S10 2TN, UK
| | - Denise M Nogueira
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro/UFRRJ, BR 465 Km 07, 23890-000 Seropédica, RJ, Brazil
| |
Collapse
|
20
|
Schlick-Steiner BC, Arthofer W, Moder K, Steiner FM. Recent insertion/deletion (reINDEL) mutations: increasing awareness to boost molecular-based research in ecology and evolution. Ecol Evol 2014; 5:24-35. [PMID: 25628861 PMCID: PMC4298431 DOI: 10.1002/ece3.1330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 01/18/2023] Open
Abstract
Today, the comparative analysis of DNA molecules mainly uses information inferred from nucleotide substitutions. Insertion/deletion (INDEL) mutations, in contrast, are largely considered uninformative and discarded, due to our lacking knowledge on their evolution. However, including rather than discarding INDELs would be relevant to any research area in ecology and evolution that uses molecular data. As a practical approach to better understanding INDEL evolution in general, we propose the study of recent INDEL (reINDEL) mutations – mutations where both ancestral and derived state are seen in the sample. The precondition for reINDEL identification is knowledge about the pedigree of the individuals sampled. Sound reINDEL knowledge will allow the improved modeling needed for including INDELs in the downstream analysis of molecular data. Both microsatellites, currently still the predominant marker system in the analysis of populations, and sequences generated by next-generation sequencing, a promising and rapidly developing range of technologies, offer the opportunity for reINDEL identification. However, a 2013 sample of animal microsatellite studies contained unexpectedly few reINDELs identified. As most likely explanation, we hypothesize that reINDELs are underreported rather than absent and that this underreporting stems from common reINDEL unawareness. If our hypothesis applies, increased reINDEL awareness should allow gathering data rapidly. We recommend the routine reporting of either the absence or presence of reINDELs together with standardized key information on the nature of mutations when they are detected and the use of the keyword “reINDEL” to increase visibility in both instances of successful and unsuccessful search.
Collapse
Affiliation(s)
- Birgit C Schlick-Steiner
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck Technikerstr. 25, 6020, Innsbruck, Austria
| | - Wolfgang Arthofer
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck Technikerstr. 25, 6020, Innsbruck, Austria
| | - Karl Moder
- Institute of Applied Statistics and Computing, University of Natural Resources and Life Sciences Peter Jordan-Str. 82, 1180, Vienna, Austria
| | - Florian M Steiner
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck Technikerstr. 25, 6020, Innsbruck, Austria
| |
Collapse
|