1
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
En A, Bogireddi H, Thomas B, Stutzman AV, Ikegami S, LaForest B, Almakki O, Pytel P, Moskowitz IP, Ikegami K. Pervasive nuclear envelope ruptures precede ECM signaling and disease onset without activating cGAS-STING in Lamin-cardiomyopathy mice. Cell Rep 2024; 43:114284. [PMID: 38814785 PMCID: PMC11290591 DOI: 10.1016/j.celrep.2024.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we test a prevailing hypothesis that NE ruptures trigger the pathological cGAS-STING cytosolic DNA-sensing pathway using a mouse model of Lamin cardiomyopathy. The reduction of Lamin A/C in cardio-myocyte of adult mice causes pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures are followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remains inactive. Deleting cGas or Sting does not rescue cardiomyopathy in the mouse model. The lack of cGAS-STING activation is likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling is activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin cardiomyopathy.
Collapse
Affiliation(s)
- Atsuki En
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Hanumakumar Bogireddi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Briana Thomas
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexis V Stutzman
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Sachie Ikegami
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Brigitte LaForest
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Omar Almakki
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Peter Pytel
- Department of Pathology, the University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA; Department of Pathology, the University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, the University of Chicago, Chicago, IL 60637, USA
| | - Kohta Ikegami
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
3
|
Ivanova E, Hue-Beauvais C, Castille J, Laubier J, Le Guillou S, Aujean E, Lecardonnel J, Lebrun L, Jaffrezic F, Rousseau-Ralliard D, Péchoux C, Letheule M, Foucras G, Charlier M, Le Provost F. Mutation of SOCS2 induces structural and functional changes in mammary development. Development 2024; 151:dev202332. [PMID: 38391249 DOI: 10.1242/dev.202332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Lactation is an essential process for mammals. In sheep, the R96C mutation in suppressor of cytokine signaling 2 (SOCS2) protein is associated with greater milk production and increased mastitis sensitivity. To shed light on the involvement of R96C mutation in mammary gland development and lactation, we developed a mouse model carrying this mutation (SOCS2KI/KI). Mammary glands from virgin adult SOCS2KI/KI mice presented a branching defect and less epithelial tissue, which were not compensated for in later stages of mammary development. Mammary epithelial cell (MEC) subpopulations were modified, with mutated mice having three times as many basal cells, accompanied by a decrease in luminal cells. The SOCS2KI/KI mammary gland remained functional; however, MECs contained more lipid droplets versus fat globules, and milk lipid composition was modified. Moreover, the gene expression dynamic from virgin to pregnancy state resulted in the identification of about 3000 differentially expressed genes specific to SOCS2KI/KI or control mice. Our results show that SOCS2 is important for mammary gland development and milk production. In the long term, this finding raises the possibility of ensuring adequate milk production without compromising animal health and welfare.
Collapse
Affiliation(s)
- Elitsa Ivanova
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Cathy Hue-Beauvais
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Johann Laubier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Sandrine Le Guillou
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Etienne Aujean
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Jerome Lecardonnel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Laura Lebrun
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Florence Jaffrezic
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Martine Letheule
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort 94700, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Madia Charlier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| | - Fabienne Le Provost
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France
| |
Collapse
|
4
|
Guo D, Zeng M, Yu M, Shang J, Lin J, Liu L, Yang K, Cao Z. SSR1 and CKAP4 as potential biomarkers for intervertebral disc degeneration based on integrated bioinformatics analysis. JOR Spine 2024; 7:e1309. [PMID: 38222802 PMCID: PMC10782074 DOI: 10.1002/jsp2.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a significant cause of low back pain and poses a significant public health concern. Genetic factors play a crucial role in IDD, highlighting the need for a better understanding of the underlying mechanisms. Aim The aim of this study was to identify potential IDD-related biomarkers using a comprehensive bioinformatics approach and validate them in vitro. Materials and Methods In this study, we employed several analytical approaches to identify the key genes involved in IDD. We utilized weighted gene coexpression network analysis (WGCNA), MCODE, LASSO algorithms, and ROC curves to identify the key genes. Additionally, immune infiltrating analysis and a single-cell sequencing dataset were utilized to further explore the characteristics of the key genes. Finally, we conducted in vitro experiments on human disc tissues to validate the significance of these key genes in IDD. Results we obtained gene expression profiles from the GEO database (GSE23130 and GSE15227) and identified 1015 DEGs associated with IDD. Using WGCNA, we identified the blue module as significantly related to IDD. Among the DEGs, we identified 47 hub genes that overlapped with the genes in the blue module, based on criteria of |logFC| ≥ 2.0 and p.adj <0.05. Further analysis using both MCODE and LASSO algorithms enabled us to identify five key genes, of which CKAP4 and SSR1 were validated by GSE70362, demonstrating significant diagnostic value for IDD. Additionally, immune infiltrating analysis revealed that monocytes were significantly correlated with the two key genes. We also analyzed a single-cell sequencing dataset, GSE199866, which showed that both CKAP4 and SSR1 were highly expressed in fibrocartilage chondrocytes. Finally, we validated our findings in vitro by performing real time polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) on 30 human disc samples. Our results showed that CKAP4 and SSR1 were upregulated in degenerated disc samples. Taken together, our findings suggest that CKAP4 and SSR1 have the potential to serve as disease biomarkers for IDD.
Collapse
Affiliation(s)
- Danqing Guo
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
- Guangzhou University of Chinese Medicine the First Affiliated HospitalGuangzhou中国
| | - Min Zeng
- Pathology DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Miao Yu
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Jingjing Shang
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Jinxing Lin
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Lichu Liu
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Kuangyang Yang
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| | - Zhenglin Cao
- Spinal Surgery DepartmentThe 8th Clinical Medical College of Guangzhou University of Chinese MedicineFoshanGuangdongChina
| |
Collapse
|
5
|
Hu L, Gao D, Lv H, Lian L, Wang M, Wang Y, Xie Y, Zhang J. Finding New Targets for the Treatment of Heart Failure: Endoplasmic Reticulum Stress and Autophagy. J Cardiovasc Transl Res 2023; 16:1349-1356. [PMID: 37432587 DOI: 10.1007/s12265-023-10410-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
Heart failure is a progressive disease with an annual mortality rate of about 10% and is the end-stage stage of various heart diseases, which places a huge socioeconomic burden on the healthcare system. The development of heart failure has received increasing attention as a potential way to improve the treatment of this disease. Many studies have shown that endoplasmic reticulum stress and autophagy play an important role in the occurrence and development of heart failure. With the in-depth study of endoplasmic reticulum stress and autophagy, both are considered promising targets for pharmacological interventions to treat heart failure, but the mechanism of heart failure between the two is not clear. This review will highlight the effects of endoplasmic reticulum stress, autophagy, and their interactions in the development and development of heart failure, thereby helping to provide direction for the future development of targeted therapies for patients with heart failure. CLINICAL RELEVANCE: This study explored the new targets for the treatment of heart failure: endoplasmic reticulum stress and autophagy. Targeted drug therapy for endoplasmic reticulum stress and autophagy is expected to provide a new intervention target for the treatment of heart failure.
Collapse
Affiliation(s)
- Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China.
| |
Collapse
|
6
|
Men L, Guo J, Cao Y, Huang B, Wang Q, Huo S, Wang M, Peng D, Peng L, Shi W, Li S, Lin L, Lv J. IL-6/gp130/STAT3 signaling contributed to the activation of the PERK arm of the unfolded protein response in response to chronic β-adrenergic stimulation. Free Radic Biol Med 2023; 205:163-174. [PMID: 37307935 DOI: 10.1016/j.freeradbiomed.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Prolonged activation of the PERK branch of the unfolded protein response (UPR) promotes cardiomyocytes apoptosis in response to chronic β-adrenergic stimulation. STAT3 plays a critical role in β-adrenergic functions in the heart. However, whether STAT3 contributed to β-adrenoceptor-mediated PERK activation and how β-adrenergic signaling activates STAT3 remains unclear. This study aimed to investigate whether STAT3-Y705 phosphorylation contributed to the PERK arm activation in cardiomyocytes and if IL-6/gp130 signaling was involved in the chronic β-AR-stimulation-induced STAT3 and PERK arm activation. We found that the PERK phosphorylation was positively associated with STAT3 activation. Wild-type STAT3 plasmids transfection activated the PERK/eIF2α/ATF4/CHOP pathway in cardiomyocytes while dominant negative Y705F STAT3 plasmids caused no obvious effect on PERK signaling. Stimulation with isoproterenol produced a significant increase in the level of IL-6 in the cardiomyocyte's supernatants, while IL-6 silence inhibited PERK phosphorylation but failed to attenuate STAT3 activation in response to isoproterenol stimulation. Gp130 silence attenuated isoproterenol-induced STAT3 activation and PERK phosphorylation. Inhibiting IL-6/gp130 pathway by bazedoxifene and inhibiting STAT3 by stattic both reversed isoproterenol-induced STAT3-Y705 phosphorylation, ROS production, PERK activation, IRE1α activation, and cardiomyocytes apoptosis in vitro. Bazedoxifene (5 mg/kg/day by oral gavage once a day) exhibited similar effect as carvedilol (10 mg/kg/day by oral gavage once a day) on attenuating chronic isoproterenol (30 mg/kg by abdominal injection once a day, 7 days) induced cardiac systolic dysfunction, cardiac hypertrophy and fibrosis in C57BL/6 mice. Meanwhile, bazedoxifene attenuates isoproterenol-induced STAT3-Y705 phosphorylation, PERK/eIF2α/ATF4/CHOP activation, IRE1α activation, and cardiomyocytes apoptosis to a similar extend as carvedilol in the cardiac tissue of mice. Our results showed that chronic β-adrenoceptor-mediated stimulation activated the STAT3 and PERK arm of the UPR at least partially via IL-6/gp130 pathway. Bazedoxifene has great potential to be used as an alternative to conventional β-blockers to attenuate β-adrenoceptor-mediated maladaptive UPR.
Collapse
Affiliation(s)
- Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Cao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Kankuri E, Finckenberg P, Leinonen J, Tarkia M, Björk S, Purhonen J, Kallijärvi J, Kankainen M, Soliymani R, Lalowski M, Mervaala E. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp Mol Med 2023; 55:806-817. [PMID: 37009793 PMCID: PMC10167339 DOI: 10.1038/s12276-023-00967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/29/2022] [Accepted: 12/23/2022] [Indexed: 04/04/2023] Open
Abstract
Myocardial regeneration capacity declines during the first week after birth, and this decline is linked to adaptation to oxidative metabolism. Utilizing this regenerative window, we characterized the metabolic changes in myocardial injury in 1-day-old regeneration-competent and 7-day-old regeneration-compromised mice. The mice were either sham-operated or received left anterior descending coronary artery ligation to induce myocardial infarction (MI) and acute ischemic heart failure. Myocardial samples were collected 21 days after operations for metabolomic, transcriptomic and proteomic analyses. Phenotypic characterizations were carried out using echocardiography, histology and mitochondrial structural and functional assessments. In both groups, MI induced an early decline in cardiac function that persisted in the regeneration-compromised mice over time. By integrating the findings from metabolomic, transcriptomic and proteomic examinations, we linked regeneration failure to the accumulation of long-chain acylcarnitines and insufficient metabolic capacity for fatty acid beta-oxidation. Decreased expression of the redox-sensitive mitochondrial Slc25a20 carnitine-acylcarnitine translocase together with a decreased reduced:oxidized glutathione ratio in the myocardium in the regeneration-compromised mice pointed to a defect in the redox-sensitive acylcarnitine transport to the mitochondrial matrix. Rather than a forced shift from the preferred adult myocardial oxidative fuel source, our results suggest the facilitation of mitochondrial fatty acid transport and improvement of the beta-oxidation pathway as a means to overcome the metabolic barrier for repair and regeneration in adult mammals after MI and heart failure.
Collapse
Affiliation(s)
- E Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - P Finckenberg
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Leinonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Tarkia
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Björk
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Kankainen
- Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Soliymani
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - E Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Sasset L, Manzo OL, Zhang Y, Marino A, Rubinelli L, Riemma MA, Chalasani MLS, Dasoveanu DC, Roviezzo F, Jankauskas SS, Santulli G, Bucci MR, Lu TT, Di Lorenzo A. Nogo-A reduces ceramide de novo biosynthesis to protect from heart failure. Cardiovasc Res 2023; 119:506-519. [PMID: 35815623 PMCID: PMC10226746 DOI: 10.1093/cvr/cvac108] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Growing evidence correlate the accrual of the sphingolipid ceramide in plasma and cardiac tissue with heart failure (HF). Regulation of sphingolipid metabolism in the heart and the pathological impact of its derangement remain poorly understood. Recently, we discovered that Nogo-B, a membrane protein of endoplasmic reticulum, abundant in the vascular wall, down-regulates the sphingolipid de novo biosynthesis via serine palmitoyltransferase (SPT), first and rate liming enzyme, to impact vascular functions and blood pressure. Nogo-A, a splice isoform of Nogo, is transiently expressed in cardiomyocyte (CM) following pressure overload. Cardiac Nogo is up-regulated in dilated and ischaemic cardiomyopathies in animals and humans. However, its biological function in the heart remains unknown. METHODS AND RESULTS We discovered that Nogo-A is a negative regulator of SPT activity and refrains ceramide de novo biosynthesis in CM exposed to haemodynamic stress, hence limiting ceramide accrual. At 7 days following transverse aortic constriction (TAC), SPT activity was significantly up-regulated in CM lacking Nogo-A and correlated with ceramide accrual, particularly very long-chain ceramides, which are the most abundant in CM, resulting in the suppression of 'beneficial' autophagy. At 3 months post-TAC, mice lacking Nogo-A in CM showed worse pathological cardiac hypertrophy and dysfunction, with ca. 50% mortality rate. CONCLUSION Mechanistically, Nogo-A refrains ceramides from accrual, therefore preserves the 'beneficial' autophagy, mitochondrial function, and metabolic gene expression, limiting the progression to HF under sustained stress.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Onorina Laura Manzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Alice Marino
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Luisa Rubinelli
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Maria Antonietta Riemma
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Madhavi Latha S Chalasani
- Department of Microbiology and Immunology, Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dragos C Dasoveanu
- Department of Microbiology and Immunology, Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Stanislovas S Jankauskas
- Department of Medicine (Cardiology) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Cardiology) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Maria Rosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Theresa T Lu
- Department of Microbiology and Immunology, Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
9
|
Zhao X, Zhang DQ, Song R, Wang R, Zhang G. The clinical significance of circulating glucose-regulated protein 78, Caspase-3, and C/EBP homologous protein levels in patients with heart failure. Heliyon 2023; 9:e13436. [PMID: 36820047 PMCID: PMC9937949 DOI: 10.1016/j.heliyon.2023.e13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims The destruction of endoplasmic reticulum (ER) homeostasis leads to heart failure (HF), which further aggravates ER stress. Limited data are available on the levels of ER stress markers in HF patients in clinical practice. This study aimed to determine the clinical significance of the ER stress markers, glucose-regulated protein 78 (GRP78), Caspase-3, and C/EBP homologous protein (CHOP), in predicting HF and its severity. Materials and methods A total of 62 patients with HF and 44 healthy controls were enrolled in the study, and all participants were followed-up for 2 years. Results Serum GRP78, Caspase-3, and CHOP levels were significantly higher in patients with HF than those in healthy controls. The level of GRP78 increased with the severity of HF. GRP78 levels were negatively correlated with left ventricular ejection fraction, and positively correlated with N-terminal B-type natriuretic peptide, D-dimer, and lactic acid. Serum GRP78 and Caspase-3 levels showed moderate predictive values for HF patients. Conclusion ER stress markers, GRP78 and Caspase-3, had a certain predictive value in HF and can be used as serum biomarkers for the diagnosis of HF. Additionally, GRP78 showed a certain predictive value in HF severity.
Collapse
Affiliation(s)
- Xuecheng Zhao
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Da-Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Corresponding author. Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Longhua Road, Haikou City 570102, Hainan Province, China.
| | - Rongjing Song
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Rong Wang
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
- Corresponding author. Department of Emergency Medicine, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
10
|
Gromadziński L, Paukszto Ł, Lepiarczyk E, Skowrońska A, Lipka A, Makowczenko KG, Łopieńska-Biernat E, Jastrzębski JP, Holak P, Smoliński M, Majewska M. Pulmonary artery embolism: comprehensive transcriptomic analysis in understanding the pathogenic mechanisms of the disease. BMC Genomics 2023; 24:10. [PMID: 36624378 PMCID: PMC9830730 DOI: 10.1186/s12864-023-09110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Pulmonary embolism (PE) is a severe disease that usually originates from deep vein thrombosis (DVT) of the lower extremities. This study set out to investigate the changes in the transcriptome of the pulmonary artery (PA) in the course of the PE in the porcine model. METHODS The study was performed on 11 male pigs: a thrombus was formed in each right femoral vein in six animals, and then was released to induce PE, the remaining five animals served as a control group. In the experimental animals total RNA was isolated from the PA where the blood clot lodged, and in the control group, from the corresponding PA segments. High-throughput RNA sequencing was used to analyse the global changes in the transcriptome of PA with induced PE (PA-E). RESULTS Applied multistep bioinformatics revealed 473 differentially expressed genes (DEGs): 198 upregulated and 275 downregulated. Functional Gene Ontology annotated 347 DEGs into 27 biological processes, 324 to the 11 cellular components and 346 to the 2 molecular functions categories. In the signaling pathway analysis, KEGG 'protein processing in endoplasmic reticulum' was identified for the mRNAs modulated during PE. The same KEGG pathway was also exposed by 8 differentially alternative splicing genes. Within single nucleotide variants, the 61 allele-specific expression variants were localised in the vicinity of the genes that belong to the cellular components of the 'endoplasmic reticulum'. The discovered allele-specific genes were also classified as signatures of the cardiovascular system. CONCLUSIONS The findings of this research provide the first thorough investigation of the changes in the gene expression profile of PA affected by an embolus. Evidence from this study suggests that the disturbed homeostasis in the biosynthesis of proteins in the endoplasmic reticulum plays a major role in the pathogenesis of PE.
Collapse
Affiliation(s)
- Leszek Gromadziński
- grid.412607.60000 0001 2149 6795Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| | - Łukasz Paukszto
- grid.412607.60000 0001 2149 6795Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Ewa Lepiarczyk
- grid.412607.60000 0001 2149 6795Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| | - Agnieszka Skowrońska
- grid.412607.60000 0001 2149 6795Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| | - Aleksandra Lipka
- grid.412607.60000 0001 2149 6795Department of Gynecology, and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Żołnierska Str 18, 10-561 Olsztyn, Poland
| | - Karol G. Makowczenko
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- grid.412607.60000 0001 2149 6795Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| | - Jan P. Jastrzębski
- grid.412607.60000 0001 2149 6795Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Piotr Holak
- grid.412607.60000 0001 2149 6795Department of Surgery and Radiology With Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 14, 10-719 Olsztyn, Poland
| | - Michał Smoliński
- grid.460107.4Clinic of Cardiology and Internal Diseases, University Clinical Hospital in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| | - Marta Majewska
- grid.412607.60000 0001 2149 6795Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| |
Collapse
|
11
|
Jung Y, Kim J, Jang H, Kim G, Kwon YW. Strategy of Patient-Specific Therapeutics in Cardiovascular Disease Through Single-Cell RNA Sequencing. Korean Circ J 2022; 53:1-16. [PMID: 36627736 PMCID: PMC9834554 DOI: 10.4070/kcj.2022.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, single cell RNA sequencing (scRNA-seq) technology has enabled the discovery of novel or rare subtypes of cells and their characteristics. This technique has advanced unprecedented biomedical research by enabling the profiling and analysis of the transcriptomes of single cells at high resolution and throughput. Thus, scRNA-seq has contributed to recent advances in cardiovascular research by the generation of cell atlases of heart and blood vessels and the elucidation of mechanisms involved in cardiovascular development and diseases. This review summarizes the overall workflow of the scRNA-seq technique itself and key findings in the cardiovascular development and diseases based on the previous studies. In particular, we focused on how the single-cell sequencing technology can be utilized in clinical field and precision medicine to treat specific diseases.
Collapse
Affiliation(s)
- Yunseo Jung
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Juyeong Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Howon Jang
- Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Gwanhyeon Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | - Yoo-Wook Kwon
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Fu F, Doroudgar S. IRE1/XBP1 and endoplasmic reticulum signaling - from basic to translational research for cardiovascular disease. CURRENT OPINION IN PHYSIOLOGY 2022; 28:100552. [PMID: 37207249 PMCID: PMC10195104 DOI: 10.1016/j.cophys.2022.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Most cellular protein synthesis, including synthesis of membrane-targeted and secreted proteins, which are critical for cellular and organ crosstalk, takes place at the endoplasmic reticulum (ER), placing the ER at the nexus of cellular signaling, growth, metabolism, and stress sensing. Ample evidence has established the dysregulation of protein homeostasis and the ER unfolded protein response (UPR) in cardiovascular disease. However, the mechanisms of stress sensing and signaling in the ER are incompletely defined. Recent studies have defined notable functions for the inositol-requiring kinase 1 (IRE1)/X-box- binding protein-1 (XBP1) branch of the UPR in regulation of cardiac function. This review highlights the mechanisms underlying IRE1 activation and the IRE1 interactome, which reveals unexpected functions for the UPR and summarizes our current understanding of the functions of IRE1 in cardiovascular disease.
Collapse
Affiliation(s)
- Fangyi Fu
- Department of Cardiology, Angiology, and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona - College of Medicine - Phoenix, Phoenix, AZ, United States
| |
Collapse
|
13
|
Wehrens M, de Leeuw AE, Wright-Clark M, Eding JEC, Boogerd CJ, Molenaar B, van der Kraak PH, Kuster DWD, van der Velden J, Michels M, Vink A, van Rooij E. Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy. Cell Rep 2022; 39:110809. [PMID: 35545053 DOI: 10.1016/j.celrep.2022.110809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is characterized by unexplained segmental hypertrophy that is usually most pronounced in the septum. While sarcomeric gene mutations are often the genetic basis for HCM, the mechanistic origin for the heterogeneous remodeling remains largely unknown. A better understanding of the gene networks driving the cardiomyocyte (CM) hypertrophy is required to improve therapeutic strategies. Patients suffering from HCM often receive a septal myectomy surgery to relieve outflow tract obstruction due to hypertrophy. Using single-cell RNA sequencing (scRNA-seq) on septal myectomy samples from patients with HCM, we identify functional links between genes, transcription factors, and cell size relevant for HCM. The data show the utility of using scRNA-seq on the human hypertrophic heart, highlight CM heterogeneity, and provide a wealth of insights into molecular events involved in HCM that can eventually contribute to the development of enhanced therapies.
Collapse
Affiliation(s)
- Martijn Wehrens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Anne E de Leeuw
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Maya Wright-Clark
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joep E C Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Bas Molenaar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Petra H van der Kraak
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Michelle Michels
- Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Liu M, Kang GJ, Dudley SC. Preventing unfolded protein response-induced ion channel dysregulation to treat arrhythmias. Trends Mol Med 2022; 28:443-451. [DOI: 10.1016/j.molmed.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/15/2023]
|
15
|
Demirel-Yalciner T, Sozen E, Ozer NK. Endoplasmic Reticulum Stress and miRNA Impairment in Aging and Age-Related Diseases. FRONTIERS IN AGING 2022; 2:790702. [PMID: 35822008 PMCID: PMC9261320 DOI: 10.3389/fragi.2021.790702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Aging is a physiological process defined by decreased cellular and tissue functions. Reduced capacity of protein degradation is one of the important hallmarks of aging that may lead to misfolded protein accumulation and progressive loss of function in organ systems. Recognition of unfolded/misfolded protein aggregates via endoplasmic reticulum (ER) stress sensors activates an adaptive mechanism, the unfolded protein response (UPR). The initial step of UPR is defined by chaperone enhancement, ribosomal translation suppression, and misfolded protein degradation, while prolonged ER stress triggers apoptosis. MicroRNAs (miRNAs) are non-coding RNAs affecting various signaling pathways through degradation or translational inhibition of targeted mRNAs. Therefore, UPR and miRNA impairment in aging and age-related diseases is implicated in various studies. This review will highlight the recent insights in ER stress–miRNAs alterations during aging and age-related diseases, including metabolic, cardiovascular, and neurodegenerative diseases and several cancers.
Collapse
Affiliation(s)
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Maltepe, Turkey
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Turkey
- *Correspondence: Nesrin Kartal Ozer,
| |
Collapse
|
16
|
Liu M, Liu H, Parthiban P, Kang GJ, Shi G, Feng F, Zhou A, Gu L, Karnopp C, Tolkacheva EG, Dudley SC. Inhibition of the unfolded protein response reduces arrhythmic risk after myocardial infarction. J Clin Invest 2021; 131:e147836. [PMID: 34324437 DOI: 10.1172/jci147836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic cardiomyopathy is associated with an increased risk of sudden death, activation of the unfolded protein response (UPR), and reductions in multiple cardiac ion channels. When activated, the protein kinase-like ER kinase (PERK) branch of the UPR reduces protein translation and abundance. We hypothesized that PERK inhibition could prevent ion channel downregulation and reduce arrhythmic risk after myocardial infarct (MI). MI induced by coronary artery ligation resulted in mice exhibited reduced ion channel levels, ventricular tachycardia (VT), and prolonged corrected intervals between the Q and T waves of the ECGs (QTc). Protein levels of major cardiac ion channels were decreased. MI cardiomyocytes showed significantly prolonged action potential duration and decreased maximum upstroke velocity. Cardiac-specific PERK knockout (PERKKO) reduced electrical remodeling in response to MI with shortened QTc intervals, less VT episodes, and higher survival rates (P<0.05 vs. MI). Pharmacological PERK inhibition had similar effects. In conclusion, activated PERK during MI contributed to arrhythmic risk by downregulation of select cardiac ion channels. PERK inhibition prevented these changes and reduced arrhythmic risk. These results suggest that ion channel downregulation during MI is a fundamental arrhythmic mechanism and maintaining ion channel levels is antiarrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Hong Liu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Preethy Parthiban
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Gyeoung-Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Guangbin Shi
- Department of Medicine, Brown University, Providence, United States of America
| | - Feng Feng
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Anyu Zhou
- Department of Medicine, Brown University, Providence, United States of America
| | - Lianzhi Gu
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| | - Courtney Karnopp
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, United States of America
| | - Samuel C Dudley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
17
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|
18
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
19
|
Kumar VK, Lackey A, Snyder J, Karhadkar S, Rao AD, DiCarlo A, Sato PY. Mitochondrial Membrane Intracellular Communication in Healthy and Diseased Myocardium. Front Cell Dev Biol 2020; 8:609241. [PMID: 33425917 PMCID: PMC7786191 DOI: 10.3389/fcell.2020.609241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Research efforts in the twenty-first century have been paramount to the discovery and development of novel pharmacological treatments in a variety of diseases resulting in improved life expectancy. Yet, cardiac disease remains a leading cause of morbidity and mortality worldwide. Over time, there has been an expansion in conditions such as atrial fibrillation (AF) and heart failure (HF). Although past research has elucidated specific pathways that participate in the development of distinct cardiac pathologies, the exact mechanisms of action leading to disease remain to be fully characterized. Protein turnover and cellular bioenergetics are integral components of cardiac diseases, highlighting the importance of mitochondria and endoplasmic reticulum (ER) in driving cellular homeostasis. More specifically, the interactions between mitochondria and ER are crucial to calcium signaling, apoptosis induction, autophagy, and lipid biosynthesis. Here, we summarize mitochondrial and ER functions and physical interactions in healthy physiological states. We then transition to perturbations that occur in response to pathophysiological challenges and how this alters mitochondrial–ER and other intracellular organelle interactions. Finally, we discuss lifestyle interventions and innovative therapeutic targets that may be used to restore beneficial mitochondrial and ER interactions, thereby improving cardiac function.
Collapse
Affiliation(s)
- Vishnu K Kumar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Atreju Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jonathan Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sunil Karhadkar
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ajay D Rao
- Section of Endocrinology, Diabetes and Metabolism, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Antonio DiCarlo
- Department of Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Priscila Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
20
|
Ma S, Wang Y, Yao J, Cao Q, Zuo X. The etiological role of endoplasmic reticulum stress in acute lung injury-related right ventricular dysfunction in a rat model. Am J Transl Res 2020; 12:4371-4383. [PMID: 32913512 PMCID: PMC7476135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to ascertain whether endoplasmic reticulum (ER) stress participates in acute lung injury (ALI) and related right ventricular dysfunction (RVD) as well as to explore the underlying mechanisms of these conditions. A single intratracheal instillation of lipopolysaccharide (LPS) (10 mg/kg) was used to establish the RVD model. The ER stress inhibitor, 4-PBA (500 mg/kg), was administered using a gavage 2 hours before and after the LPS treatment for prevention and treatment, respectively. At 12 hours post-LPS exposure, mRNA and protein expressions of ER stress-specific biomarkers, glucose regulating protein 78 (GRP78) and CCAAT/enhancer binding protein homology (CHOP), were significantly upregulated. This effect was inhibited by both 4-PBA prevention and treatment. In addition, echocardiography showed that 4-PBA improved the LPS-induced abnormality in the tricuspid annular plane systolic excursion (TAPSE) and the right ventricular end-diastolic diameter (RVEDD), however not in the pulmonary artery acceleration time (PAAT). Furthermore, hematoxylin and eosin staining (HE) and terminal transferase dUTP nick end labeling (TUNEL) assays revealed that the proportion of proapoptotic cells was higher in RVD rats. This was prominently ameliorated by 4-PBA treatment. Moreover, 4-PBA had a similar reverse effect on the LPS-induced increase in the Bax/Bcl-2 ratio, caspase-12, and caspase-3 expressions as revealed by western blotting. Furthermore, 4-PBA improved LPS-induced right ventricle (RV) myeloperoxidase (MPO)-positive neutrophil infiltration percentage, inhibited nuclear factor kappa B (NF-κB) activity, and reduced the expressions of inflammatory cytokines, TNF-α, IL-1β, and IL-6, in serum and RV. Taken together, our results indicated that ER stress-mediated apoptosis and inflammation might contribute to the development of ALI-related RVD induced by intratracheal LPS instillation. Gavage-administered 4-PBA could improve right ventricle (RV) systolic dysfunction and dilation, plausibly by blocking ER stress.
Collapse
Affiliation(s)
- Shaolei Ma
- Department of Emergency and Critical Care Medicine, Zhongda Hospital Affiliated to Southeast UniversityNanjing, China
| | - Yujie Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Suzhou Medical UniversityChangzhou, China
| | - Jing Yao
- Department of Echocardiography, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Quan Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Xiangrong Zuo
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|
21
|
Lv SW, Shi ZG, Wang XH, Zheng PY, Li HB, Han QJ, Li ZJ. Ribosome Binding Protein 1 Correlates with Prognosis and Cell Proliferation in Bladder Cancer. Onco Targets Ther 2020; 13:6699-6707. [PMID: 32764960 PMCID: PMC7367924 DOI: 10.2147/ott.s252043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Ribosome binding protein 1 (RRBP1) is reported to be correlated with tumor formation and progression. However, the role of RRBP1 in bladder cancer is unclear. In this study, we aimed to investigate the expression of RRBP1 and its influence on cell proliferation in bladder cancer. Methods Quantification real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were used to detect the expression levels of RRBP1 in 138 bladder cancer and matched adjacent normal bladder tissues. Then, the clinical significance of RRBP1 in bladder cancer was evaluated. The effect of RRBP1 on cell proliferation and its potential mechanism were further explored. Results Results show that the mRNA levels of RRBP1 in bladder cancer were significantly higher compared with those in normal tissues (P< 0.001). IHC results show the high-expression rate of RRBP1 in bladder cancer was 68.8%, which was significantly greater than those in normal tissues (40.6%, P< 0.001). RRBP1 high-expression was significantly associated with differentiation, T stage and lymph node metastasis in bladder cancer (P< 0.05). The overall survival time of patients with RRBP1 high-expression was significantly reduced compared to those with RRBP1 low-expression. Moreover, RRBP1 overexpression significantly promoted cell proliferation, which was correlated with Smad1/Smad3/TGF-β1 signal pathway. Conclusion RRBP1 high-expression correlates with prognosis and promotes cell proliferation in bladder cancer, which could be a potential biomarker.
Collapse
Affiliation(s)
- Shuang-Wu Lv
- The First Affiliated Hospital and College of Clinical Medicineof Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Zhen-Guo Shi
- The First Affiliated Hospital and College of Clinical Medicineof Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Xiao-Hui Wang
- The First Affiliated Hospital and College of Clinical Medicineof Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Peng-Yi Zheng
- The First Affiliated Hospital and College of Clinical Medicineof Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Hui-Bing Li
- The First Affiliated Hospital and College of Clinical Medicineof Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Qing-Jiang Han
- The First Affiliated Hospital and College of Clinical Medicineof Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| | - Zhi-Jun Li
- The First Affiliated Hospital and College of Clinical Medicineof Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China
| |
Collapse
|
22
|
Abstract
Atrial fibrillation (AF), the most common progressive and age-related cardiac arrhythmia, affects millions of people worldwide. AF is associated with common risk factors, including hypertension, diabetes mellitus, and obesity, and serious complications such as stroke and heart failure. Notably, AF is progressive in nature, and because current treatment options are mainly symptomatic, they have only a moderate effect on prevention of arrhythmia progression. Hereto, there is an urgent unmet need to develop mechanistic treatments directed at root causes of AF. Recent research findings indicate a key role for inflammasomes and derailed proteostasis as root causes of AF. Here, we elaborate on the molecular mechanisms of these 2 emerging key pathways driving the pathogenesis of AF. First the role of NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome on AF pathogenesis and cardiomyocyte remodeling is discussed. Then we highlight pathways of proteostasis derailment, including exhaustion of cardioprotective heat shock proteins, disruption of cytoskeletal proteins via histone deacetylases, and the recently discovered DNA damage-induced nicotinamide adenine dinucleotide+ depletion to underlie AF. Moreover, potential interactions between the inflammasomes and proteostasis pathways are discussed and possible therapeutic targets within these pathways indicated.
Collapse
Affiliation(s)
- Na Li
- From the Department of Medicine (Cardiovascular Research) (N.L.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology and Biophysics (N.L.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (N.L.), Baylor College of Medicine, Houston, TX
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, the Netherlands (B.J.J.M.B.)
| |
Collapse
|
23
|
El Azzouzi H, Vilaça AP, Feyen DAM, Gommans WM, de Weger RA, Doevendans PAF, Sluijter JPG. Cardiomyocyte Specific Deletion of ADAR1 Causes Severe Cardiac Dysfunction and Increased Lethality. Front Cardiovasc Med 2020; 7:30. [PMID: 32258062 PMCID: PMC7093378 DOI: 10.3389/fcvm.2020.00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Adenosine deaminase acting on RNA 1 (ADAR1) is a double-stranded RNA-editing enzyme that is involved in several functions including the deamination of adenosine to inosine, RNA interference (RNAi) mechanisms and microRNA (miRNA) processing, rendering ADAR1 essential for life. Methods and Results: To investigate whether maintenance of ADAR1 expression is required for normal myocardial homeostasis, we bypassed the early embryonic lethality of ADAR1-null mice through the use of a tamoxifen-inducible Cre recombinase under the control of the cardiac-specific α-myosin heavy chain promoter (αMHC). Targeted ADAR1 deletion in adult mice caused a significant increase in lethality accompanied by severe ventricular remodeling and quick and spontaneous cardiac dysfunction, induction of stress markers and overall reduced expression of miRNAs. Administration of a selective inhibitor of the unfolded protein response (UPR) stress significantly blunted the deleterious effects and improved cardiac function thereby prolonging animal survival. In vitro restoring miR-199a-5p levels in cardiomyocytes lacking ADAR1 diminished UPR activation and concomitant apoptosis. Conclusions: Our findings demonstrate an essential role for ADAR1 in cardiomyocyte survival and maintenance of cardiac function through a mechanism that integrates ADAR1 dependent miRNA processing and the suppression of UPR stress.
Collapse
Affiliation(s)
- Hamid El Azzouzi
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Andreia P Vilaça
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dries A M Feyen
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Willemijn M Gommans
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Roel A de Weger
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A F Doevendans
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands.,Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands.,Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| |
Collapse
|
24
|
Sharma S, Gangenahalli GU, Singh U. Regulation of Hematopoietic Activity Involving New Interacting Partners (RRAGC & PSMC2, CKAP4 & MANF and CTR9 & CNTNAP2). Cell 2020. [DOI: 10.4236/cellbio.2020.93007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Shahinian JH, Rog-Zielinska EA, Schlimpert M, Mayer B, Tholen S, Kammerer B, Biniossek ML, Beyersdorf F, Schilling O, Siepe M. Impact of left ventricular assist device therapy on the cardiac proteome and metabolome composition in ischemic cardiomyopathy. Artif Organs 2019; 44:257-267. [PMID: 31494943 DOI: 10.1111/aor.13566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/26/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
Abstract
The changes in the myocardial proteome and metabolome associated with left ventricular assist device (LVAD) therapy in patients with ischemic cardiomyopathy (ICM) are poorly characterized. We investigated the impact of mechanical unloading following LVAD therapy on the myocardial proteome and metabolome. Matched samples of 5 patients' myocardial tissue, harvested at the time of LVAD implant ("pre-LVAD") or heart transplant ("post-LVAD"), were studied by quantitative proteomics and metabolomics as well as being probed for T-tubule structure and connexin-43 distribution. Moreover, pre-LVAD proteome profiles of ICM context were bioinformatically compared to pre-LVAD proteome profiles of dilated cardiac myopathy (DCM). More than 2120 proteins were reliably identified and quantified in paired patient samples. LVAD therapy led to proteomic remodeling, including reduced levels of α-1-antichymotrypsin together with an overall decrease of immune response proteins and an increase of proteins involved in membrane biology. Metabolomics highlighted increased glucose and glucose-6-phosphate levels in the left ventricle upon LVAD therapy. Wheat germ agglutinin staining demonstrated improved T-tubule structure. Connexin-43 displayed a trend for more pronounced intercalated disc localization. In comparing pre-LVAD proteome profiles of ICM context with pre-LVAD proteome profiles of dilated cardiac myopathy (DCM), we noticed an overrepresentation in ICM of proteins associated with humoral immune response. Our findings underline an impact of LVAD therapy on left ventricular biology in ICM. The proteomic, metabolomic, and structural alterations described here are typically associated with cardiac recovery. On the molecular level, our findings indicate the possibility of cardiac remodeling under LVAD therapy in ICM.
Collapse
Affiliation(s)
- Jasmin Hasmik Shahinian
- Department of Cardiovascular Surgery, University Heart Center Freiburg • Bad Krozingen, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg • Bad Krozingen, Freiburg, Germany
| | - Manuel Schlimpert
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bettina Mayer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Stefan Tholen
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Bernd Kammerer
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University, Freiburg, Germany.,BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Martin L Biniossek
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, University Heart Center Freiburg • Bad Krozingen, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Institute of Surgical Pathology, Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Siepe
- Department of Cardiovascular Surgery, University Heart Center Freiburg • Bad Krozingen, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
|
27
|
Belmadani S, Matrougui K. Broken heart: A matter of the endoplasmic reticulum stress bad management? World J Cardiol 2019; 11:159-170. [PMID: 31367278 PMCID: PMC6658386 DOI: 10.4330/wjc.v11.i6.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/29/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the number one cause of morbidity and mortality in the United States and worldwide. The induction of the endoplasmic reticulum (ER) stress, a result of a disruption in the ER homeostasis, was found to be highly associated with cardiovascular diseases such as hypertension, diabetes, ischemic heart diseases and heart failure. This review will discuss the latest literature on the different aspects of the involvement of the ER stress in cardiovascular complications and the potential of targeting the ER stress pathways as a new therapeutic approach for cardiovascular complications.
Collapse
Affiliation(s)
- Souad Belmadani
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | - Khalid Matrougui
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| |
Collapse
|
28
|
Gil-Cayuela C, López A, Martínez-Dolz L, González-Juanatey JR, Lago F, Roselló-Lletí E, Rivera M, Portolés M. The altered expression of autophagy-related genes participates in heart failure: NRBP2 and CALCOCO2 are associated with left ventricular dysfunction parameters in human dilated cardiomyopathy. PLoS One 2019; 14:e0215818. [PMID: 31009519 PMCID: PMC6476534 DOI: 10.1371/journal.pone.0215818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/09/2019] [Indexed: 02/02/2023] Open
Abstract
This study aimed to analyze changes in the expression of autophagy- and phagocytosis-related genes in patients with dilated cardiomyopathy (DCM), especially in relation to left ventricular (LV) dysfunction. Furthermore, transmission electron microscopy of the diseased tissue was carried out to investigate if the gene expression changes are translated into ultrastructural alterations. LV tissue samples from patients with DCM (n = 13) and from controls (CNT; n = 10) were analyzed by RNA-sequencing, whereupon the altered expression (P < 0.05) of 13 autophagy- and 3 phagocytosis-related genes was observed. The expression changes of the autophagy-related genes NRBP2 and CALCOCO2 were associated with cardiac dysfunction and remodeling (P < 0.05). The affected patients had a higher activity of these degradation processes, as evidenced by the greater number of autophagic structures in the DCM tissue (P < 0.001). Differences in the ultrastructural distribution were also found between the DCM and CNT tissues. These results show that in patients with DCM, the altered expression of NRBP2 and CALCOCO2 is related to LV dysfunction and remodeling. Clarification of the molecular mechanisms of cardiac autophagy would help in the future development of therapies to improve LV performance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adrenergic beta-Antagonists/therapeutic use
- Adult
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Autophagy/genetics
- Autophagy-Related Proteins/genetics
- Autophagy-Related Proteins/metabolism
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Case-Control Studies
- Diuretics/therapeutic use
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Humans
- Male
- Middle Aged
- Mineralocorticoid Receptor Antagonists/therapeutic use
- Myocardium/metabolism
- Myocardium/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sequence Analysis, RNA
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Alejandro López
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplantation Unit, Cardiology Department, La Fe University Hospital, Valencia, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- * E-mail: (MPS); (ERL)
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- * E-mail: (MPS); (ERL)
| |
Collapse
|
29
|
Huang YM, Li WW, Wu J, Han M, Li BH. The diagnostic value of circulating microRNAs in heart failure. Exp Ther Med 2019; 17:1985-2003. [PMID: 30783473 PMCID: PMC6364251 DOI: 10.3892/etm.2019.7177] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome, characterized by inadequate blood perfusion of tissues and organs caused by decreased heart ejection capacity resulting from structural or functional cardiac disorders. HF is the most severe heart condition and it severely compromises human health; thus, its early diagnosis and effective management are crucial. However, given the lack of satisfactory sensitivity and specificity of the currently available biomarkers, the majority of patients with HF are not diagnosed early and do not receive timely treatment. A number of studies have demonstrated that peripheral blood circulating nucleic acids [such as microRNAs (miRs), mRNA and DNA] are important for the diagnosis and monitoring of treatment response in HF. miRs have been attracting increasing attention as promising biomarkers, given their presence in body fluids and relative structural stability under diverse conditions of sampling. The aim of the present review was to analyze the associations between the mechanisms underlying the development of HF and the expression of miRs, and discuss the value of using circulating miRs as diagnostic biomarkers in HF management. In particular, miR-155, miR-22 and miR-133 appear to be promising for the diagnosis, prognosis and management of HF patients.
Collapse
Affiliation(s)
- Yao-Meng Huang
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Wei-Wei Li
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jun Wu
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Mei Han
- Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Bing-Hui Li
- Department of Oncological Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
30
|
Carew NT, Nelson AM, Liang Z, Smith SM, Milcarek C. Linking Endoplasmic Reticular Stress and Alternative Splicing. Int J Mol Sci 2018; 19:ijms19123919. [PMID: 30544499 PMCID: PMC6321306 DOI: 10.3390/ijms19123919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
RNA splicing patterns in antibody-secreting cells are shaped by endoplasmic reticulum stress, ELL2 (eleven-nineteen lysine-rich leukemia gene 2) induction, and changes in the levels of snRNAs. Endoplasmic reticulum stress induces the unfolded protein response comprising a highly conserved set of genes crucial for cell survival; among these is Ire1, whose auto-phosphorylation drives it to acquire a regulated mRNA decay activity. The mRNA-modifying function of phosphorylated Ire1 non-canonically splices Xbp1 mRNA and yet degrades other cellular mRNAs with related motifs. Naïve splenic B cells will activate Ire1 phosphorylation early on after lipopolysaccharide (LPS) stimulation, within 18 h; large-scale changes in mRNA content and splicing patterns result. Inhibition of the mRNA-degradation function of Ire1 is correlated with further differences in the splicing patterns and a reduction in the mRNA factors for snRNA transcription. Some of the >4000 splicing changes seen at 18 h after LPS stimulation persist into the late stages of antibody secretion, up to 72 h. Meanwhile some early splicing changes are supplanted by new splicing changes introduced by the up-regulation of ELL2, a transcription elongation factor. ELL2 is necessary for immunoglobulin secretion and does this by changing mRNA processing patterns of immunoglobulin heavy chain and >5000 other genes.
Collapse
Affiliation(s)
- Nolan T Carew
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Ashley M Nelson
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Zhitao Liang
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Sage M Smith
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | - Christine Milcarek
- School of Medicine, Department of Immunology, University of Pittsburgh, E1059 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Chin KL, Ofori-Asenso R, Hopper I, von Lueder TG, Reid CM, Zoungas S, Wang BH, Liew D. Potential mechanisms underlying the cardiovascular benefits of sodium glucose cotransporter 2 inhibitors: a systematic review of data from preclinical studies. Cardiovasc Res 2018; 115:266-276. [DOI: 10.1093/cvr/cvy295] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/22/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ken Lee Chin
- Department of Epidemiology and Preventive Medicine, Centre of Cardiovascular Research and Education in Therapeutics, Monash University, Melbourne, Australia
| | - Richard Ofori-Asenso
- Department of Epidemiology and Preventive Medicine, Centre of Cardiovascular Research and Education in Therapeutics, Monash University, Melbourne, Australia
| | - Ingrid Hopper
- Department of Epidemiology and Preventive Medicine, Centre of Cardiovascular Research and Education in Therapeutics, Monash University, Melbourne, Australia
| | - Thomas G von Lueder
- Department of Epidemiology and Preventive Medicine, Centre of Cardiovascular Research and Education in Therapeutics, Monash University, Melbourne, Australia
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Christopher M Reid
- Department of Epidemiology and Preventive Medicine, Centre of Cardiovascular Research and Education in Therapeutics, Monash University, Melbourne, Australia
- School of Public Health, Curtin University, Perth, Australia
| | - Sophia Zoungas
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Bing H Wang
- Department of Epidemiology and Preventive Medicine, Centre of Cardiovascular Research and Education in Therapeutics, Monash University, Melbourne, Australia
| | - Danny Liew
- Department of Epidemiology and Preventive Medicine, Centre of Cardiovascular Research and Education in Therapeutics, Monash University, Melbourne, Australia
| |
Collapse
|
32
|
Abstract
Human heart failure is characterized by arrhythmogenic electrical remodeling consisting mostly of ion channel downregulations. Reversing these downregulations is a logical approach to antiarrhythmic therapy, but understanding the pathophysiological mechanisms of the reduced currents is crucial for finding the proper treatments. The unfolded protein response (UPR) is activated by endoplasmic reticulum (ER) stress and has been found to play pivotal roles in different diseases including neurodegenerative diseases, diabetes mellitus, and heart disease. Recently, the UPR is reported to regulate multiple cardiac ion channels, contributing to arrhythmias in heart disease. In this review, we will discuss which UPR modulators and effectors could be involved in regulation of cardiac ion channels in heart disease, and how the understanding of these regulating mechanisms may lead to new antiarrhythmic therapeutics that lack the proarrhythmic risk of current ion channel blocking therapies.
Collapse
Affiliation(s)
- Man Liu
- a Division of Cardiology, Department of Medicine, The Lillehei Heart Institute , University of Minnesota at Twin Cities , Minneapolis , USA
| | - Samuel C Dudley
- a Division of Cardiology, Department of Medicine, The Lillehei Heart Institute , University of Minnesota at Twin Cities , Minneapolis , USA
| |
Collapse
|
33
|
Borlepawar A, Frey N, Rangrez AY. A systematic view on E3 ligase Ring TRIMmers with a focus on cardiac function and disease. Trends Cardiovasc Med 2018; 29:1-8. [PMID: 29880235 DOI: 10.1016/j.tcm.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/05/2018] [Accepted: 05/22/2018] [Indexed: 01/01/2023]
Abstract
Ubiquitination, a post-translational modification via ubiquitin-proteasome-system, is one of the vital cellular processes involved in intracellular signaling, cell death, transcriptional control, etc. Importantly, it prevents the aggregation of non-functional, misfolded or unfolded, potentially toxic proteins to maintain cellular protein homeostasis. Ubiquitination is accomplished by the concerted action of three enzymatic steps involving E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Tripartite motif-containing (TRIM) proteins are one of the integral members of E3 ubiquitin ligases in metazoans modulating essential cellular pathways. For long, MuRFs (Muscle ring finger proteins) were the most extensively studied TRIMs for their cardiac function. Recent research advances in the field and our analysis presented here, however, demonstrated broader and ever increasing involvement of additional TRIM E3 ligases in the pathophysiology of heart. In this review, we summarize the known cardiac E3 ligases and their targets, and discuss their role and importance in cardiac proteostasis, pathophysiology and potential therapeutic implications with specific focus on TRIM E3 ligases.
Collapse
Affiliation(s)
- Ankush Borlepawar
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
34
|
Liu M, Shi G, Zhou A, Rupert CE, Coulombe KLK, Dudley SC. Activation of the unfolded protein response downregulates cardiac ion channels in human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2018; 117:62-71. [PMID: 29474817 DOI: 10.1016/j.yjmcc.2018.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/03/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
RATIONALE Heart failure is characterized by electrical remodeling that contributes to arrhythmic risk. The unfolded protein response (UPR) is active in heart failure and can decrease protein levels by increasing mRNA decay, accelerating protein degradation, and inhibiting protein translation. OBJECTIVE Therefore, we investigated whether the UPR downregulated cardiac ion channels that may contribute to arrhythmogenic electrical remodeling. METHODS Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to study cardiac ion channels. Action potentials (APs) and ion channel currents were measured by patch clamp recording. The mRNA and protein levels of channels and the UPR effectors were determined by quantitative RT-PCR and Western blotting. Tunicamycin (TM, 50 ng/mL and 5 μg/mL), GSK2606414 (GSK, 300 nmol/L), and 4μ8C (5 μmol/L) were utilized to activate the UPR, inhibit protein kinase-like ER kinase (PERK) and inositol-requiring protein-1 (IRE1), respectively. RESULTS TM-induced activation of the UPR caused significant prolongation of the AP duration (APD) and a reduction of the maximum upstroke velocity (dV/dtmax) of the AP phase 0 in both acute (20-24 h) and chronic treatment (6 days). These changes were explained by reductions in the sodium, L-type calcium, the transient outward and rapidly/slowly activating delayed rectifier potassium currents. Nav1.5, Cav1.2, Kv4.3, and KvLQT1 channels showed concomitant reductions in mRNA and protein levels under activated UPR. Inhibition of PERK or IRE1 shortened the APD and reinstated dV/dtmax. The PERK branch regulated Nav1.5, Kv4.3, hERG, and KvLQT1. The IRE1 branch regulated Nav1.5, hERG, KvLQT1, and Cav1.2. CONCLUSIONS Activated UPR downregulates all major cardiac ion currents and results in electrical remodeling in hiPSC-CMs. Both PERK and IRE1 branches downregulate Nav1.5, hERG, and KvLQT1. The PERK branch specifically downregulates Kv4.3, while the IRE1 branch downregulates Cav1.2. Therefore, the UPR contributed to electrical remodeling, and targeting the UPR might be anti-arrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Guangbin Shi
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Anyu Zhou
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Cassady E Rupert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Samuel C Dudley
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
35
|
Wang X, Xu L, Gillette TG, Jiang X, Wang ZV. The unfolded protein response in ischemic heart disease. J Mol Cell Cardiol 2018; 117:19-25. [PMID: 29470977 DOI: 10.1016/j.yjmcc.2018.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 12/28/2022]
Abstract
Ischemic heart disease is a severe stress condition that causes extensive pathological alterations and triggers cardiac cell death. Accumulating evidence suggests that the unfolded protein response (UPR) is strongly induced by myocardial ischemia. The UPR is an evolutionarily conserved cellular response to cope with protein-folding stress, from yeast to mammals. Endoplasmic reticulum (ER) transmembrane sensors detect the accumulation of unfolded proteins and stimulate a signaling network to accommodate unfolded and misfolded proteins. Distinct mechanisms participate in the activation of three major signal pathways, viz. protein kinase RNA-like ER kinase, inositol-requiring protein 1, and activating transcription factor 6, to transiently suppress protein translation, enhance protein folding capacity of the ER, and augment ER-associated degradation to refold denatured proteins and restore cellular homeostasis. However, if the stress is severe and persistent, the UPR elicits inflammatory and apoptotic pathways to eliminate terminally affected cells. The ER is therefore recognized as a vitally important organelle that determines cell survival or death. Recent studies indicate the UPR plays critical roles in the pathophysiology of ischemic heart disease. The three signaling branches may elicit distinct but overlapping effects in cardiac response to ischemia. Here, we outline the findings and discuss the mechanisms of action and therapeutic potentials of the UPR in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoding Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
36
|
Ortega A, Tarazón E, Gil-Cayuela C, García-Manzanares M, Martínez-Dolz L, Lago F, González-Juanatey JR, Cinca J, Jorge E, Portolés M, Roselló-Lletí E, Rivera M. Intercalated disc in failing hearts from patients with dilated cardiomyopathy: Its role in the depressed left ventricular function. PLoS One 2017; 12:e0185062. [PMID: 28934278 PMCID: PMC5608295 DOI: 10.1371/journal.pone.0185062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/06/2017] [Indexed: 11/19/2022] Open
Abstract
Alterations in myocardial structure and reduced cardiomyocyte adhesions have been previously described in dilated cardiomyopathy (DCM). We studied the transcriptome of cell adhesion molecules in these patients and their relationships with left ventricular (LV) function decay. We also visualized the intercalated disc (ID) structure and organization. The transcriptomic profile of 23 explanted LV samples was analyzed using RNA-sequencing (13 DCM, 10 control [CNT]), focusing on cell adhesion genes. Electron microscopy analysis to visualize ID structural differences and immunohistochemistry experiments of ID proteins was also performed. RT-qPCR and western blot experiments were carried out on ID components. We found 29 differentially expressed genes, most of all, constituents of the ID structure. We found that the expression of GJA3, DSP and CTNNA3 was directly associated with LV ejection fraction (r = 0.741, P = 0.004; r = 0.674, P = 0.011 and r = 0.565, P = 0.044, respectively), LV systolic (P = 0.003, P = 0.003, P = 0.028, respectively) and diastolic dimensions (P = 0.006, P = 0.001, P = 0.025, respectively). Electron microscopy micrographs showed a reduced ID convolution index and immunogold labeling of connexin 46 (GJA gene), desmoplakin (DSP gene) and catenin α-3 (CTNNA3 gene) proteins in DCM patients. Moreover, we observed that protein and mRNA levels analyzed by RT-qPCR of these ID components were diminished in DCM group. In conclusion, we report significant gene and protein expression changes and found that the ID components GJA3, DSP and CTNNA3 were highly related to LV function. Microscopic observations indicated that ID is structurally compromised in these patients. These findings give new data for understanding the ventricular depression that characterizes DCM, opening new therapeutic perspectives for these critically diseased patients.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Estefanía Tarazón
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - María García-Manzanares
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Luis Martínez-Dolz
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Francisca Lago
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Cinca
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Esther Jorge
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute La Fe, Valencia, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
- * E-mail:
| |
Collapse
|
37
|
miR-125a, miR-139 and miR-324 contribute to Urocortin protection against myocardial ischemia-reperfusion injury. Sci Rep 2017; 7:8898. [PMID: 28827743 PMCID: PMC5566224 DOI: 10.1038/s41598-017-09198-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Urocortin 1 and 2 (Ucn-1 and Ucn-2) have established protective actions against myocardial ischemia-reperfusion (I/R) injuries. However, little is known about their role in posttranscriptional regulation in the process of cardioprotection. Herein, we investigated whether microRNAs play a role in urocortin-induced cardioprotection. Administration of Ucn-1 and Ucn-2 at the beginning of reperfusion significantly restored cardiac function, as evidenced ex vivo in Langendorff-perfused rat hearts and in vivo in rat subjected to I/R. Experiments using microarray and qRT-PCR determined that the addition of Ucn-1 at reperfusion modulated the expression of several miRNAs with unknown role in cardiac protection. Ucn-1 enhanced the expression of miR-125a-3p, miR-324-3p; meanwhile it decreased miR-139-3p. Similarly, intravenous infusion of Ucn-2 in rat model of I/R mimicked the effect of Ucn-1 on miR-324-3p and miR-139-3p. The effect of Ucn-1 involves the activation of corticotropin-releasing factor receptor-2, Epac2 and ERK1/2. Moreover, the overexpression of miR-125a-3p, miR-324-3p and miR-139-3p promoted dysregulation of genes expression involved in cell death and apoptosis (BRCA1, BIM, STAT2), in cAMP and Ca2+ signaling (PDE4a, CASQ1), in cell stress (NFAT5, XBP1, MAP3K12) and in metabolism (CPT2, FoxO1, MTRF1, TAZ). Altogether, these data unveil a novel role of urocortin in myocardial protection, involving posttranscriptional regulation with miRNAs.
Collapse
|
38
|
Abstract
The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin-proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.
Collapse
Affiliation(s)
- Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
39
|
Jensen BC, Bultman SJ, Holley D, Tang W, de Ridder G, Pizzo S, Bowles D, Willis MS. Upregulation of autophagy genes and the unfolded protein response in human heart failure. Int J Clin Exp Med 2017; 10:1051-1058. [PMID: 28794819 PMCID: PMC5546743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cellular environment of the mammalian heart constantly is challenged with environmental and intrinsic pathological insults, which affect the proper folding of proteins in heart failure. The effects of damaged or misfolded proteins on the cell can be profound and result in a process termed "proteotoxicity". While proteotoxicity is best known for its role in mediating the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, its role in human heart failure also has been recognized. The UPR involves three branches, including PERK, ATF6, and IRE1. In the presence of a misfolded protein, the GRP78 molecular chaperone that normally interacts with the receptors PERK, ATF6, and IRE-1 in the endoplasmic reticulum detaches to attempt to stabilize the protein. Mouse models of cardiac hypertrophy, ischemia, and heart failure demonstrate increases in activity of all three branches after removing GRP78 from these internal receptors. Recent studies have linked elevated PERK and CHOP in vitro with regulation of ion channels linked with human systolic heart failure. With this in mind, we specifically investigated ventricular myocardium from 10 patients with a history of conduction system defects or arrhythmias for expression of UPR and autophagy genes compared to myocardium from non-failing controls. We identified elevated Chop, Atf3, and Grp78 mRNA, along with XBP-1-regulated Cebpa mRNA, indicative of activation of the UPR in human heart failure with arrhythmias.
Collapse
Affiliation(s)
- Brian C Jensen
- Division of Cardiology, Department of Internal Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott J Bultman
- Division of Cardiology, Department of Internal Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darcy Holley
- Division of Cardiology, Department of Internal Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wei Tang
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Salvatore Pizzo
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Dawn Bowles
- Department of Duke University, Durham, NC 27710, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
40
|
Expression profile of rrbp1 genes during embryonic development and in adult tissues of Xenopus laevis. Gene Expr Patterns 2016; 23-24:1-6. [PMID: 28034797 DOI: 10.1016/j.gep.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
Recent studies suggest that ribosome-binding protein 1 (RRBP1) is involved in multiple diseases such as tumorigenesis and cardiomyopathies. However, its function during embryonic development remains largely unknown. We searched Xenopus laevis database with human RRBP1 protein sequence and identified two cDNA sequences encoding Xenopus orthologs of RRBP1 including rrbp1a (NM_001089623) and rrbp1b (NM_001092468). Both genes were firstly detected at blastula stage 8 with weak signals in animal hemisphere by whole mount in situ hybridization. Evident expression of rrbp1 was mainly detected in cement gland and notochord at neurula and tailbud stages. Heart expression of rrbp1 was detected at stage 36. RT-PCR results indicated that very weak expression of rrbp1a was firstly detected in oocytes, followed by increasing expression until stage 39. Differently, very weak expression of rrbp1b was firstly observed at stage 2, and then maintained at a lower level to stage 17 followed by an intense expression from stages 19-39. Moreover, both expression profiles were also different in adult tissues. This study reports Xenopus rrbp1 expression during early embryonic development and in adult tissues. Our study will facilitate the functional analysis of Rrbp1 family during embryonic development.
Collapse
|
41
|
Cao S, Zhou Q, Chen JL, Hu B, Guo RQ. The differences in left atrial function between ischemic and idiopathic dilated cardiomyopathy patients: A two-dimensional speckle tracking imaging study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2016; 44:437-445. [PMID: 26990443 DOI: 10.1002/jcu.22352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE To evaluate left atrial (LA) function in patients with ischemic (ICM) or idiopathic dilated (DCM) cardiomyopathy via two-dimensional speckle-tracking imaging. METHODS We measured the LA maximum volume, minimum volume, and volume before the atrial systole, and calculated total emptying volume, expansion index, active emptying volume, and fraction. We measured strain and strain rate during systole and late diastole using two-dimensional speckle-tracking imaging, and analyzed correlations between variables. RESULTS We found no significant differences in LA size, left ventricle (LV) end-diastole diameter, LV ejection fraction (EF), E/A, E/e', deceleration time of the E wave, and effective mitral regurgitant orifice area between the DCM and the ICM group. However, the LA expansion index, active EF, systolic and late diastolic strain, and strain rate were lower in the ICM group (p < 0.05). The expansion index and active EF were positively correlated with the systolic strain rate and the absolute value of the late diastolic strain rate, respectively. CONCLUSIONS LA basic echocardiographic variables did not reflect the differences between ICM and DCM patients, but the systolic and late diastolic strain, as well as the strain rate, were lower in DCM patients. Two-dimensional speckle-tracking imaging is a promising method to differentiate these patients. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 44:437-445, 2016.
Collapse
Affiliation(s)
- Sheng Cao
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Zhou
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jin-Ling Chen
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bo Hu
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rui-Qiang Guo
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
42
|
Nishigori M, Yagi H, Mochiduki A, Minamino N. Multiomics approach to identify novel biomarkers for dilated cardiomyopathy: Proteome and transcriptome analyses of 4C30 dilated cardiomyopathy mouse model. Biopolymers 2016; 106:491-502. [DOI: 10.1002/bip.22809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Mitsuhiro Nishigori
- Department of Molecular Pharmacology; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka Japan
| | - Hiroaki Yagi
- Department of Molecular Pharmacology; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka Japan
| | - Akikazu Mochiduki
- Department of Molecular Pharmacology; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology; National Cerebral and Cardiovascular Center Research Institute; Suita Osaka Japan
| |
Collapse
|
43
|
Hatakeyama J, Wald JH, Rafidi H, Cuevas A, Sweeney C, Carraway KL. The ER structural protein Rtn4A stabilizes and enhances signaling through the receptor tyrosine kinase ErbB3. Sci Signal 2016; 9:ra65. [PMID: 27353365 DOI: 10.1126/scisignal.aaf1604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ErbB3 and ErbB4 are receptor tyrosine kinases that are activated by the neuregulin (NRG) family of growth factors. These receptors govern various developmental processes, and their dysregulation contributes to several human disease states. The abundance of ErbB3 and ErbB4, and thus signaling through these receptors, is limited by the E3 ubiquitin ligase Nrdp1, which targets ErbB3 and ErbB4 for degradation. Reticulons are proteins that influence the morphology of the endoplasmic reticulum (ER) by promoting the formation of tubules, a response of cells to some stressors. We found that the ER structural protein reticulon 4A (Rtn4A, also known as Nogo-A) increased ErbB3 abundance and proliferative signaling by suppressing Nrdp1 function. Rtn4A interacted with Nrdp1 and stabilized ErbB3 in an Nrdp1-dependent manner. Rtn4A overexpression induced the redistribution of Nrdp1 from a cytosolic or perinuclear localization to ER tubules. Rtn4A knockdown in human breast tumor cells decreased ErbB3 abundance, NRG-stimulated signaling, and cellular proliferation and migration. Because proteins destined for the plasma membrane are primarily synthesized in the sheet portions of the ER, our observations suggest that Rtn4A counteracts the Nrdp1-mediated degradation of ErbB3 by sequestering the ubiquitin ligase into ER tubules. The involvement of a reticulon suggests a molecular link between ER structure and the sensitivity of cells to receptor tyrosine kinase-mediated survival signals at the cell surface.
Collapse
Affiliation(s)
- Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jessica H Wald
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Hanine Rafidi
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Antonio Cuevas
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
44
|
West G, Gullmets J, Virtanen L, Li SP, Keinänen A, Shimi T, Mauermann M, Heliö T, Kaartinen M, Ollila L, Kuusisto J, Eriksson JE, Goldman RD, Herrmann H, Taimen P. Deleterious assembly of the lamin A/C mutant p.S143P causes ER stress in familial dilated cardiomyopathy. J Cell Sci 2016; 129:2732-43. [PMID: 27235420 DOI: 10.1242/jcs.184150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/20/2016] [Indexed: 01/12/2023] Open
Abstract
Mutation of the LMNA gene, encoding nuclear lamin A and lamin C (hereafter lamin A/C), is a common cause of familial dilated cardiomyopathy (DCM). Among Finnish DCM patients, the founder mutation c.427T>C (p.S143P) is the most frequently reported genetic variant. Here, we show that p.S143P lamin A/C is more nucleoplasmic and soluble than wild-type lamin A/C and accumulates into large intranuclear aggregates in a fraction of cultured patient fibroblasts as well as in cells ectopically expressing either FLAG- or GFP-tagged p.S143P lamin A. In fluorescence loss in photobleaching (FLIP) experiments, non-aggregated EGFP-tagged p.S143P lamin A was significantly more dynamic. In in vitro association studies, p.S143P lamin A failed to form appropriate filament structures but instead assembled into disorganized aggregates similar to those observed in patient cell nuclei. A whole-genome expression analysis revealed an elevated unfolded protein response (UPR) in cells expressing p.S143P lamin A/C. Additional endoplasmic reticulum (ER) stress induced by tunicamycin reduced the viability of cells expressing mutant lamin further. In summary, p.S143P lamin A/C affects normal lamina structure and influences the cellular stress response, homeostasis and viability.
Collapse
Affiliation(s)
- Gun West
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Josef Gullmets
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Laura Virtanen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Song-Ping Li
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Anni Keinänen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Takeshi Shimi
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Monika Mauermann
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Tiina Heliö
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Maija Kaartinen
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Laura Ollila
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - John E Eriksson
- Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Robert D Goldman
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| |
Collapse
|
45
|
Wiersma M, Henning RH, Brundel BJJM. Derailed Proteostasis as a Determinant of Cardiac Aging. Can J Cardiol 2016; 32:1166.e11-20. [PMID: 27345610 DOI: 10.1016/j.cjca.2016.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/12/2023] Open
Abstract
Age comprises the single most important risk factor for cardiac disease development. The incidence and prevalence of cardiac diseases, which represents the main cause of death worldwide, will increase even more because of the aging population. A hallmark of aging is that it is accompanied by a gradual derailment of proteostasis (eg, the homeostasis of protein synthesis, folding, assembly, trafficking, function, and degradation). Loss of proteostasis is highly relevant to cardiomyocytes, because they are postmitotic cells and therefore not constantly replenished by proliferation. The derailment of proteostasis during aging is thus an important factor that preconditions for the development of age-related cardiac diseases, such as atrial fibrillation. In turn, frailty of proteostasis in aging cardiomyocytes is exemplified by its accelerated derailment in multiple cardiac diseases. Here, we review 2 major components of the proteostasis network, the stress-responsive and protein degradation pathways, in healthy and aged cardiomyocytes. Furthermore, we discuss the relation between derailment of proteostasis and age-related cardiac diseases, including atrial fibrillation. Finally, we introduce novel therapeutic targets that might possibly attenuate cardiac aging and thus limit cardiac disease progression.
Collapse
Affiliation(s)
- Marit Wiersma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Liu M, Dudley SC. Role for the Unfolded Protein Response in Heart Disease and Cardiac Arrhythmias. Int J Mol Sci 2015; 17:ijms17010052. [PMID: 26729106 PMCID: PMC4730297 DOI: 10.3390/ijms17010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/23/2022] Open
Abstract
The unfolded protein response (UPR) has been extensively investigated in neurological diseases and diabetes, while its function in heart disease is less well understood. Activated UPR participates in multiple cardiac conditions and can either protect or impair heart function. Recently, the UPR has been found to play a role in arrhythmogenesis during human heart failure by affecting cardiac ion channels expression, and blocking UPR has an antiarrhythmic effect. This review will discuss the rationale for and challenges to targeting UPR in heart disease for treatment of arrhythmias.
Collapse
Affiliation(s)
- Man Liu
- The Warren Alpert Medical School of Brown University, Lifespan Cardiovascular Institute, the Providence VA Medical Center, 593 Eddy Street, APC814, Providence, RI 02903, USA.
| | - Samuel C Dudley
- The Warren Alpert Medical School of Brown University, Lifespan Cardiovascular Institute, the Providence VA Medical Center, 593 Eddy Street, APC814, Providence, RI 02903, USA.
| |
Collapse
|
47
|
Ortega A, Tarazón E, Roselló-Lletí E, Gil-Cayuela C, Lago F, González-Juanatey JR, Cinca J, Jorge E, Martínez-Dolz L, Portolés M, Rivera M. Patients with Dilated Cardiomyopathy and Sustained Monomorphic Ventricular Tachycardia Show Up-Regulation of KCNN3 and KCNJ2 Genes and CACNG8-Linked Left Ventricular Dysfunction. PLoS One 2015; 10:e0145518. [PMID: 26710323 PMCID: PMC4692400 DOI: 10.1371/journal.pone.0145518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/05/2015] [Indexed: 01/26/2023] Open
Abstract
AIMS Disruptions in cardiac ion channels have shown to influence the impaired cardiac contraction in heart failure. We sought to determine the altered gene expression profile of this category in dilated cardiomyopathy (DCM) patients and relate the altered gene expression with the clinical signs present in our patients, such as ventricular dysfunction and sustained monomorphic ventricular tachycardia (SMVT). METHODS AND RESULTS Left ventricular (LV) tissue samples were used in RNA-sequencing technique to elucidate the transcriptomic changes of 13 DCM patients compared to controls (n = 10). We analyzed the differential gene expression of cardiac ion channels, and we found a total of 34 altered genes. We found that the calcium channel CACNG8 mRNA and protein levels were down-regulated and highly and inversely related with LV ejection fraction (LVEF) (r = -0.78, P<0.01). Furthermore, the potassium channels KCNN3 and KCNJ2 mRNA and protein levels were up-regulated and showed also a significant and inverse correlation with LVEF (r = -0.61, P<0.05; r = -0.60, P<0.05) in patients with SMVT. CONCLUSION A broad set of deregulated genes have been identified by RNA-sequencing technique. The relationship of CACNG8, KCNN3 and KCNJ2 with LVEF, and the up-regulation of KCNN3 and KCNJ2 in all patients with SMVT, irrespective of CACNG8 expression, suggest a significant role for these three ion flux related genes in the LV dysfunction present in this cardiomyopathy and an important relationship between KCNN3 and KCNJ2 up-regulation and the presence of SMVT.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Estefanía Tarazón
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Esther Roselló-Lletí
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Carolina Gil-Cayuela
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Jose-Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Cinca
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Esther Jorge
- Cardiology Service of Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Luis Martínez-Dolz
- Heart Failure and Transplantation Unit, Cardiology Department, La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
| | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital (IIS La Fe), Valencia, Spain
- * E-mail:
| |
Collapse
|
48
|
Ying R, Wang XQ, Yang Y, Gu ZJ, Mai JT, Qiu Q, Chen YX, Wang JF. Hydrogen sulfide suppresses endoplasmic reticulum stress-induced endothelial-to-mesenchymal transition through Src pathway. Life Sci 2015; 144:208-17. [PMID: 26656263 DOI: 10.1016/j.lfs.2015.11.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 01/09/2023]
Abstract
AIMS Hydrogen sulfide (H2S) ameliorates cardiac fibrosis in several models by suppressing endoplasmic reticulum (ER) stress. Endothelial-to-mesenchymal transition (EndMT) is implicated in the development of cardiac fibrosis. Therefore, we investigated whether H2S could attenuate EndMT by suppressing ER stress. MAIN METHODS ER stress was induced by tunicamycin (TM) and thapsigargin (TG) and inhibited by 4-phenylbutyrate (4-PBA) in human umbilical vein endothelial cells (HUVECs). ER stress and EndMT were measured by Western blot, Real-Time PCR and immunofluorescence staining. Inhibition Smad2 and Src pathway were performed by specific inhibitors and siRNA. Ultrastructural examination was detected by transmission electron microscope. The functions of HUVECs were investigated by cell migration assay and tube formation in vitro. KEY FINDINGS Under ER stress, the expression of endothelial marker CD31 significantly decreased while mesenchymal markers α-SMA, vimentin and collagen 1 increased which could be inhibited by 4-PBA. Moreover, HUVECs changed into a fibroblast-like appearance with the activation of Smad2 and Src kinase pathway. After inhibiting Src pathway, EndMT would be significantly inhibited. TM reduced H2S levels in cell lysate and H2S pretreatment could preserve endothelial cell appearance with decreased ER stress and ameliorated dilation of ER. H2S could also downregulate the mesenchymal marker expression, and upregulate the endothelial markers expression, accompanied with the suppression of Src pathway. Moreover, H2S partially restored the capacity of migration and tube formation in HUVECs. SIGNIFICANCE These results revealed that H2S could protect against ER stress-induced EndMT through Src pathway, which may be a novel role for the cardioprotection of H2S.
Collapse
Affiliation(s)
- Ru Ying
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Xiao-Qiao Wang
- Department of Anesthesia, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Ying Yang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Zhen-Jie Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Jing-Ting Mai
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Qiong Qiu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China.
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, People's Republic of China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, People's Republic of China.
| |
Collapse
|
49
|
Hardy B, Raiter A. GRP78 expression beyond cellular stress: A biomarker for tumor manipulation. World J Immunol 2015; 5:78-85. [DOI: 10.5411/wji.v5.i2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/14/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023] Open
Abstract
Physiological stress takes place in the endoplasmic reticulum (ER) of cells where activation and up-regulation of genes and proteins are primarily induced to enhance pro-survival mechanisms such as the unfolded protein response (UPR). A dominant protein in the UPR response is the heat shock GRP78 protein. Although GRP78 is primarily located in the ER, under certain conditions it is transported to the cell surface, where it acts as a receptor inducing pathways of cell signaling such as proliferation or apoptosis. In the prolonged chronic stress transportation of the GRP78 from the ER to the cell membrane is a major event where in addition to the presentation of the GRP78 as a receptor to various ligands, it also marks the cells that will proceed to apoptotic pathways. In the normal cell that under stress acquires cell surface GRP78 and in the tumor cell that already presents cell surface GRP78, cell surface GRP78 is an apoptotic flag. The internalization of GRP78 from the cell surface in normal cells by ligands such as peptides will enhance cell survival and alleviate cardiovascular ischemic diseases. The absence of cell surface GRP78 in the tumor cells portends proliferative and metastatic tumors. Pharmacological induction of cell surface GRP78 will induce the process of apoptosis and might be used as a therapeutic modality for cancer treatment.
Collapse
|
50
|
El-Deeb MEE, Abd-El-Hafez AAA. Can vitamin C affect the KBrO 3 induced oxidative stress on left ventricular myocardium of adult male albino rats? A histological and immunohistochemical study. J Microsc Ultrastruct 2015; 3:120-136. [PMID: 30023191 PMCID: PMC6014280 DOI: 10.1016/j.jmau.2015.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/10/2015] [Accepted: 03/09/2015] [Indexed: 11/02/2022] Open
Abstract
Potassium bromate (KBrO3) cardiotoxicity is not widely recognized, in spite of its well known oxidative cell and tissue damage. The wide exposure to KBrO3 in food and water necessitates finding of a simple and available antidote for its hazards like vitamin C. There are growing evidences that the regulation of redox reactions in cells is intimately tied to the levels of antioxidants. As the heart is highly vulnerable for oxidative damage, left ventricle muscle was the spotlight of our study. For this purpose 20 adult male albino rats were categorized into four groups (five rats each). Group 1 served as control; group 2 received 30 mg/kg/day vitamin C for 4 weeks. Group 3 was injected intraperitoneally with KBrO3 20 mg/kg/dose twice weekly for 4 weeks, and group 4 received both vitamin C and KBrO3 in the same scheme. Heart specimens were processed for various histological examinations. Sections from KBrO3 treated animals showed focal disruption of cardiac myocytes, deeply stained nuclei and dilated congested blood vessels. Ultrastructurally, irregular indented nuclei, focal lysis of the myofibrils and swelling of mitochondria were also observed. In contrast, minimal changes were observed in rats treated concomitantly with both vitamin C and KBrO3. Caspase 3 immunohistochemical reaction was nonsignificantly increased in group 3 cardiomyocytes. Semiquantitative morphological mitochondrial scoring and statistical analyses revealed significant changes between the studied groups. Finally, KBrO3 induced structural changes in rat cardiac muscle could be ameliorated by concomitant treatment with vitamin C.
Collapse
Affiliation(s)
| | - Amal A A Abd-El-Hafez
- Department of Histology, Faculty of Medicine, Tanta University, El Geesh street, Tanta, Egypt
| |
Collapse
|