1
|
Liu S, Wang X, Tang X, Fang W. Histone deacetylase HDAC3 regulates ergosterol production for oxidative stress tolerance in the entomopathogenic and endophytic fungus Metarhizium robertsii. mSystems 2024; 9:e0095324. [PMID: 39287372 PMCID: PMC11494875 DOI: 10.1128/msystems.00953-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Oxidative stress is encountered by fungi in almost all niches, resulting in fungal degeneration or even death. Fungal tolerance to oxidative stress has been extensively studied, but the current understanding of the mechanisms regulating oxidative stress tolerance in fungi remains limited. The entomopathogenic and endophytic fungus Metarhizium robertsii encounters oxidative stress when it infects insects and develops a symbiotic relationship with plants, and we found that host reactive oxygen species (ROSs) greatly limited fungal growth in both insects and plants. We identified a histone H3 deacetylase (HDAC3) that catalyzed the deacetylation of lysine 56 of histone H3. Deleting Hdac3 significantly reduced the tolerance of M. robertsii to oxidative stress from insects and plants, thereby decreasing fungal ability to colonize the insect hemocoel and plant roots. HDAC3 achieved this by regulating the expression of three genes in the ergosterol biosynthesis pathway, which includes the lanosterol synthase gene Las1. The deletion of Hdac3 or Las1 reduced the ergosterol content and impaired cell membrane integrity. This resulted in an increase in ROS accumulation in fungal cells that were thus more sensitive to oxidative stress. We further showed that HDAC3 regulated the expression of the three ergosterol biosynthesis genes in an indirect manner. Our work significantly advances insights into the epigenetic regulation of oxidative stress tolerance and the interactions between M. robertsii and its plant and insect hosts.IMPORTANCEOxidative stress is a common challenge encountered by fungi that have evolved sophisticated mechanisms underlying tolerance to this stress. Although fungal tolerance to oxidative stress has been extensively investigated, the current understanding of the mechanisms for fungi to regulate oxidative stress tolerance remains limited. In the model entomopathogenic and plant symbiotic fungus Metarhizium robertsii, we found that the histone H3 deacetylase HDAC3 regulates the production of ergosterol, an essential cell membrane component. This maintains the cell membrane integrity to resist the oxidative stress derived from the insect and plant hosts for successful infection of insects and development of symbiotic associates with plants. Our work provides significant insights into the regulation of oxidative stress tolerance in M. robertsii and its interactions with insects and plants.
Collapse
Affiliation(s)
- Shuxing Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xinmiao Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xingyuan Tang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Zhang Q, Wei X, Fang W, Huang X, Zhang X. The secretory protein COA1 enables Metarhizium robertsii to evade insect immune recognition during cuticle penetration. Commun Biol 2024; 7:1220. [PMID: 39349686 PMCID: PMC11442803 DOI: 10.1038/s42003-024-06827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The interplay between the insect immune system and entomopathogenic fungi during cuticle penetration is not yet fully understood. Here, we show that a secretory protein COA1 (coat of appressorium 1) from Metarhizium robertsii, an entomopathogenic fungus causing diseases in a wide range of insects, is required to avoid host immune recognition during cuticle penetration. COA1 is highly expressed on the cuticle and translocated to the cell surface, where it directly binds with and masks carbohydrates of the fungal cell wall to avoid provoking the host's intense immune response. Deletion of Coa1 results in a robust immune response, leading to a reduction in bacterial load in both the gut and hemocoel and ultimately attenuating fungal virulence. Our work reveals a novel cell surface protein indispensable for fungal pathogenicity via masking cell wall carbohydrates to avert a hypersensitive response from the host.
Collapse
Affiliation(s)
- Qiangqiang Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xuanlian Wei
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266101, Shandong, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xing Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266101, Shandong, China.
| |
Collapse
|
3
|
Dai J, Tang X, Wu C, Liu S, Mi W, Fang W. Utilization of plant-derived sugars and lipids are coupled during colonization of rhizoplane and rhizosphere by the fungus Metarhizium robertsii. Fungal Genet Biol 2024; 172:103886. [PMID: 38485049 DOI: 10.1016/j.fgb.2024.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Plant-derived sugars and lipids are key nutritional sources for plant associated fungi. However, the relationship between utilization of host-derived sugars and lipids during development of the symbiotic association remains unknown. Here we show that the fungus Metarhizium robertsii also needs plant-derived lipids to develop symbiotic relationship with plants. The fatty acid binding proteins FABP1 and FABP2 are important for utilization of plant-derived lipids as the deletion of Fabp1 and Fabp2 significantly reduced the ability of M. robertsii to colonize rhizoplane and rhizosphere of maize and Arabidopsis thaliana. Deleting Fabp1 and Fabp2 increased sugar utilization by upregulating six sugar transporters, and this explains why deleting the monosaccharide transporter gene Mst1, which plays an important role in utilization of plant-derived sugars, had no impact on the ability of the double-gene deletion mutant ΔFabp1::ΔFabp2 to colonize plant roots. FABP1 and FABP2 were also found in other plant-associated Metarhizium species, and they were highly expressed in the medium using the tomato root exudate as the sole carbon and nitrogen source, suggesting that they could be also important for these species to develop symbiotic relationship with plants. In conclusion, we discovered that utilization of plant-derived sugars and lipids are coupled during colonization of rhizoplane and rhizosphere by M. robertsii.
Collapse
Affiliation(s)
- Jin Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xingyuan Tang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Congcong Wu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Shuxing Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Wubin Mi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Wei Y, Qi FN, Xu YR, Zhang KQ, Xu J, Cao YR, Liang LM. Characterization of regulatory genes Plhffp and Plpif1 involved in conidiation regulation in Purpureocillium lavendulum. Front Microbiol 2024; 15:1352989. [PMID: 38435693 PMCID: PMC10906660 DOI: 10.3389/fmicb.2024.1352989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Purpureocillium lavendulum is an important biocontrol agent against plant-parasitic nematodes, primarily infecting them with conidia. However, research on the regulatory genes and pathways involved in its conidiation is still limited. In this study, we employed Agrobacterium tumefaciens-mediated genetic transformation to generate 4,870 random T-DNA insertion mutants of P. lavendulum. Among these mutants, 131 strains exhibited abnormal conidiation, and further in-depth investigations were conducted on two strains (designated as #5-197 and #5-119) that showed significantly reduced conidiation. Through whole-genome re-sequencing and genome walking, we identified the T-DNA insertion sites in these strains and determined the corresponding genes affected by the insertions, namely Plhffp and Plpif1. Both genes were knocked out through homologous recombination, and phenotypic analysis revealed a significant difference in conidiation between the knockout strains and the wild-type strain (ku80). Upon complementation of the ΔPlpif1 strain with the corresponding wildtype allele, conidiation was restored to a level comparable to ku80, providing further evidence of the involvement of this gene in conidiation regulation in P. lavendulum. The knockout of Plhffp or Plpif1 reduced the antioxidant capacity of P. lavendulum, and the absence of Plhffp also resulted in decreased resistance to SDS, suggesting that this gene may be involved in the integrity of the cell wall. RT-qPCR showed that knockout of Plhffp or Plpif1 altered expression levels of several known genes associated with conidiation. Additionally, the analysis of nematode infection assays with Caenorhabditis elegans indicated that the knockout of Plhffp and Plpif1 indirectly reduced the pathogenicity of P. lavendulum towards the nematodes. The results demonstrate that Agrobacterium tumefaciens - mediated T-DNA insertion mutagenesis, gene knockout, and complementation can be highly effective for identifying functionally important genes in P. lavendulum.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Feng-Na Qi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yan-Rui Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Yan-Ru Cao
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Piña-Torres IH, Dávila-Berumen F, González-Hernández GA, Torres-Guzmán JC, Padilla-Guerrero IE. Hyphal Growth and Conidia Germination Are Induced by Phytohormones in the Root Colonizing and Plant Growth Promoting Fungus Metarhizium guizhouense. J Fungi (Basel) 2023; 9:945. [PMID: 37755053 PMCID: PMC10532501 DOI: 10.3390/jof9090945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Beneficial associations are very important for plants and soil-dwelling microorganisms in different ecological niches, where communication by chemical signals is relevant. Among the chemical signals, the release of phytohormones by plants is important to establish beneficial associations with fungi, and a recently described association is that of the entomopathogenic ascomycete fungus Metarhizium with plants. Here, we evaluated the effect of four different phytohormones, synthetic strigolactone (GR24), sorgolactone (SorL), 3-indolacetic acid (IAA) and gibberellic acid (GA3), on the fungus Metarhizium guizhouense strain HA11-2, where the germination rate and hyphal elongation were determined at three different times. All phytohormones had a positive effect on germination, with GA3 showing the greatest effect, and for hyphal length, on average, the group treated with synthetic strigolactone GR24 showed greater average hyphal length at 10 h of induction. This work expands the knowledge of the effect of phytohormones on the fungus M. guizhouense, as possible chemical signals for the rapid establishment of the fungus-plant association.
Collapse
Affiliation(s)
| | | | | | | | - Israel Enrique Padilla-Guerrero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Mexico; (I.H.P.-T.); (F.D.-B.); (G.A.G.-H.); (J.C.T.-G.)
| |
Collapse
|
6
|
Zhuang XM, Guo ZY, Zhang M, Chen YH, Qi FN, Wang RQ, Zhang L, Zhao PJ, Lu CJ, Zou CG, Ma YC, Xu J, Zhang KQ, Cao YR, Liang LM. Ethanol mediates the interaction between Caenorhabditis elegans and the nematophagous fungus Purpureocillium lavendulum. Microbiol Spectr 2023; 11:e0127023. [PMID: 37560934 PMCID: PMC10580998 DOI: 10.1128/spectrum.01270-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Accurately recognizing pathogens by the host is vital for initiating appropriate immune response against infecting microorganisms. Caenorhabditis elegans has no known receptor to recognize pathogen-associated molecular pattern. However, recent studies showed that nematodes have a strong specificity for transcriptomes infected by different pathogens, indicating that they can identify different pathogenic microorganisms. However, the mechanism(s) for such specificity remains largely unknown. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum can infect the intestinal tract of the nematode C. elegans and the infection led to the accumulation of reactive oxygen species (ROS) in the infected intestinal tract, which suppressed fungal growth. Co-transcriptional analysis revealed that fungal genes related to anaerobic respiration and ethanol production were up-regulated during infection. Meanwhile, the ethanol dehydrogenase Sodh-1 in C. elegans was also up-regulated. Together, these results suggested that the infecting fungi encounter hypoxia stress in the nematode gut and that ethanol may play a role in the host-pathogen interaction. Ethanol production in vitro during fungal cultivation in hypoxia conditions was confirmed by gas chromatography-mass spectrometry. Direct treatment of C. elegans with ethanol elevated the sodh-1 expression and ROS accumulation while repressing a series of immunity genes that were also repressed during fungal infection. Mutation of sodh-1 in C. elegans blocked ROS accumulation and increased the nematode's susceptibility to fungal infection. Our study revealed a new recognition and antifungal mechanism in C. elegans. The novel mechanism of ethanol-mediated interaction between the fungus and nematode provides new insights into fungal pathogenesis and for developing alternative biocontrol of pathogenic nematodes by nematophagous fungi. IMPORTANCE Nematodes are among the most abundant animals on our planet. Many of them are parasites in animals and plants and cause human and animal health problems as well as agricultural losses. Studying the interaction of nematodes and their microbial pathogens is of great importance for the biocontrol of animal and plant parasitic nematodes. In this study, we found that the model nematode Caenorhabditis elegans can recognize its fungal pathogen, the nematophagous fungus Purpureocillium lavendulum, through fungal-produced ethanol. Then the nematode elevated the reactive oxygen species production in the gut to inhibit fungal growth in an ethanol dehydrogenase-dependent manner. With this mechanism, novel biocontrol strategies may be developed targeting the ethanol receptor or metabolic pathway of nematodes. Meanwhile, as a volatile organic compound, ethanol should be taken seriously as a vector molecule in the microbial-host interaction in nature.
Collapse
Affiliation(s)
- Xue-Mei Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Zhi-Yi Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Meng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yong-Hong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Feng-Na Qi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Ren-Qiao Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Ling Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Chao-Jun Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yi-Cheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Yan-Ru Cao
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Tang P, Han JJ, Zhang CC, Tang PP, Qi FN, Zhang KQ, Liang LM. The Growth and Conidiation of Purpureocillium lavendulum Are Co-Regulated by Nitrogen Sources and Histone H3K14 Acetylation. J Fungi (Basel) 2023; 9:325. [PMID: 36983493 PMCID: PMC10054409 DOI: 10.3390/jof9030325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Plant-parasitic nematodes cause severe economic losses to agriculture. As important biocontrol agents, nematophagous fungi evolved the ability to obtain nitrogen sources from nematodes. However, the impact of nitrogen sources on the growth and development of these fungi is largely unknown. In this study, we aimed to better understand how nitrogen sources could influence vegetative growth and conidiation through epigenetic regulation in the nematophagous fungus, Purpureocillium lavendulum. Through nutrition screening, we found a phenomenon of the fungus, limited colony extension with a large amount of conidia production when cultured on PDA media, can be altered by adding ammonia nitrate. Characterized by site-directed mutagenesis, the histone H3K14 acetylation was found to be involved in the alternation. Furthermore, the acetyltransferase PlGCN5 was responsible for H3K14 acetylation. Knockout of Plgcn5 severely diminished conidiation in P. lavendulum. Chip-seq showed that H3K14ac distributed in conidiation regulating genes, and genes in the MAPK pathway which may be the downstream targets in the regulation. These findings suggest that histone modification and nitrogen sources coordinated lifestyle regulation in P. lavendulum, providing new insight into the mechanism of growth regulation by nutritional signals for the carnivorous fungus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, China
| |
Collapse
|
8
|
Reingold V, Staropoli A, Faigenboim A, Maymone M, Matveev S, Keppanan R, Ghanim M, Vinale F, Ment D. The SWC4 subunit of the SWR1 chromatin remodeling complex is involved in varying virulence of Metarhizium brunneum isolates offering role of epigenetic regulation of pathogenicity. Virulence 2022; 13:1252-1269. [PMID: 35891589 PMCID: PMC9336478 DOI: 10.1080/21505594.2022.2101210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The host – pathogen interaction is a multifactorial process subject to a co-evolutionary arms race consisting of rapid changes in both host and pathogen, controlled at the genetic and epigenetic levels. Previously, we showed intra-species variation in disease progression and pathogenicity in aphids for Metarhizium brunneum isolates MbK and Mb7. Herein, we compared genomic, epigenetic, and metabolomic variations between these isolates and their effects on pathogenicity. Genomic variation could not completely explain the observed differences between the isolates. However, differential N6-adenine methylation (6 mA) and its correlation to reduced expression of the essential SWC4 subunit of SWR1 chromatin-remodelling complex (SWR1-C) led us to hypothesize a role for swc4 in the varying pathogenicity. Mutagenesis of the essential swc4 gene in MbKisolate resulted in reduction of secondary-metabolite (SM) secretion and impaired virulence in Galleria mellonella. Our results suggest the role of SWC4 in the regulation of SMs and the role of both SWC4 and SWR1-C in virulence of M. brunneum isolates. A better understanding of epigenetic regulation of SM production and secretion in entomopathogenic fungi may enable theirmanipulation for better biocontrol performance, and expand possibilities for environmentally friendly pest control.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel.,The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alessia Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Adi Faigenboim
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Marcel Maymone
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| | - Sabina Matveev
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| | - Ravindran Keppanan
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Nematology and Chemistry Units, ARO, The Volcani Institute, Rishon LeZion, Israel
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy.,Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
9
|
Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii. Proc Natl Acad Sci U S A 2022; 119:e2214513119. [PMID: 36375055 PMCID: PMC9704736 DOI: 10.1073/pnas.2214513119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fungi are central to every terrestrial and many aquatic ecosystems, but the mechanisms underlying fungal tolerance to mercury, a global pollutant, remain unknown. Here, we show that the plant symbiotic fungus Metarhizium robertsii degrades methylmercury and reduces divalent mercury, decreasing mercury accumulation in plants and greatly increasing their growth in contaminated soils. M. robertsii does this by demethylating methylmercury via a methylmercury demethylase (MMD) and using a mercury ion reductase (MIR) to reduce divalent mercury to volatile elemental mercury. M. robertsii can also remove methylmercury and divalent mercury from fresh and sea water even in the absence of added nutrients. Overexpression of MMD and MIR significantly improved the ability of M. robertsii to bioremediate soil and water contaminated with methylmercury and divalent mercury. MIR homologs, and thereby divalent mercury tolerance, are widespread in fungi. In contrast, MMD homologs were patchily distributed among the few plant associates and soil fungi that were also able to demethylate methylmercury. Phylogenetic analysis suggests that fungi could have acquired methylmercury demethylase genes from bacteria via two independent horizontal gene transfer events. Heterologous expression of MMD in fungi that lack MMD homologs enabled them to demethylate methylmercury. Our work reveals the mechanisms underlying mercury tolerance in fungi, and may provide a cheap and environmentally friendly means of cleaning up mercury pollution.
Collapse
|
10
|
Tang D, Tang X, Fang W. New Downstream Signaling Branches of the Mitogen-Activated Protein Kinase Cascades Identified in the Insect Pathogenic and Plant Symbiotic Fungus Metarhizium robertsii. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:911366. [PMID: 37746179 PMCID: PMC10512405 DOI: 10.3389/ffunb.2022.911366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 09/26/2023]
Abstract
Fungi rely on major signaling pathways such as the MAPK (Mitogen-Activated Protein Kinase) signaling pathways to regulate their responses to fluctuating environmental conditions, which is vital for fungi to persist in the environment. The cosmopolitan Metarhizium fungi have multiple lifestyles and remarkable stress tolerance. Some species, especially M. robertsii, are emerging models for investigating the mechanisms underlying ecological adaptation in fungi. Here we review recently identified new downstream branches of the MAPK cascades in M. robertsii, which controls asexual production (conidiation), insect infection and selection of carbon and nitrogen nutrients. The Myb transcription factor RNS1 appears to be a central regulator that channels information from the Fus3- and Slt2-MAPK cascade to activate insect infection and conidiation, respectively. Another hub regulator is the transcription factor AFTF1 that transduces signals from the Fus3-MAPK and the membrane protein Mr-OPY2 for optimal formation of the infection structures on the host cuticle. Homologs of these newly identified regulators are found in other Metarhizium species and many non-Metarhizium fungi, indicating that these new downstream signaling branches of the MAPK cascades could be widespread.
Collapse
Affiliation(s)
| | | | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Science, Institute of Microbiology, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Song H, Bao Y, Zhang M, Liu S, Yu C, Dai J, Wu C, Tang D, Fang W. An inactivating mutation in the vacuolar arginine exporter gene Vae results in culture degeneration in the fungus Metarhizium robertsii. Environ Microbiol 2022; 24:2924-2937. [PMID: 35352870 DOI: 10.1111/1462-2920.15982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023]
Abstract
Culture degeneration usually results in great commercial losses in the economically important filamentous fungi, but the genetic causes of the degeneration remain elusive. In the fungus Metarhizium robertsii, we found that deletion of the vacuolar arginine exporter gene Vae caused culture degeneration. Compared to the WT strain, the mutant showed increased apoptosis, reactive oxygen species (ROS) level and mitochondrial membrane potential collapse, reduced conidial yield and abnormal lipid droplet formation. The extent of the degeneration in the mutant gradually increased over the successive subculturing, which eventually became irreversible; compared to the third subculture of the mutant, the seventh subculture showed a lower conidial yield and pathogenicity to insects, stronger apoptosis, higher ROS level and a smaller number of conidial lipid droplets. Incorporation of the genomic clone of Vae could not restore the WT phenotypes in the seventh subculture, but could in the third one. Loss-of-function in Vae resulted in vacuolar arginine accumulation and reduction in the cytosolic arginine. This downregulated the expression of the regulator CAG9 of G protein signalling pathway, which accounted for most of the phenotypic changes associated with the degeneration of the mutant. We identified a deleterious mutation that causes culture degeneration in a filamentous fugus.
Collapse
Affiliation(s)
- Hui Song
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yuting Bao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Mingxiang Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Shuxing Liu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Chaonan Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Jin Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Congcong Wu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Dan Tang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Slt2-MAPK/RNS1 Controls Conidiation via Direct Regulation of the Central Regulatory Pathway in the Fungus Metarhizium robertsii. J Fungi (Basel) 2021; 8:jof8010026. [PMID: 35049966 PMCID: PMC8779605 DOI: 10.3390/jof8010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 01/18/2023] Open
Abstract
Ascomycete fungi usually produce small hydrophobic asexual conidia that are easily dispersed and essential for long-term survival under a variety of environmental conditions. Several upstream signaling regulators have been documented to control conidiation via regulation of the central regulatory pathway that contains the transcription factors BrlA, AbaA and WetA. Here, we showed that the Slt2-MAPK signaling pathway and the transcription factor RNS1 constitute a novel upstream signaling cascade that activates the central regulatory pathway for conidiation in the Ascomycetes fungus M. robertsii. The BrlA gene has two overlapping transcripts BrlAα and BrlAβ; they have the same major ORF, but the 5' UTR of BrlAβ is 835 bp longer than the one of BrlAα. During conidiation, Slt2 phosphorylates the serine residue at the position 306 in RNS1, which self-induces. RNS1 binds to the BM2 motif in the promoter of the BrlA gene and induces the expression of the transcript BlrAα, which in turn activates the expression of the genes AbaA and WetA. In conclusion, the Slt2/RNS1 cascade represents a novel upstream signaling pathway that initiates conidiation via direct activation of the central regulatory pathway. This work provides significant mechanistic insights into the production of asexual conidia in an Ascomycete fungus.
Collapse
|
13
|
The Sugar Transporter MST1 Is Involved in Colonization of Rhizosphere and Rhizoplane by Metarhizium robertsii. mSystems 2021; 6:e0127721. [PMID: 34904861 PMCID: PMC8670370 DOI: 10.1128/msystems.01277-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is widely recognized that plant-symbiotic fungi are supported by photosynthates; however, little is known about the molecular mechanisms underlying the utilization of plant-derived sugars by rhizospheric fungi. In the insect-pathogenic and plant-symbiotic fungus Metarhizium robertsii, we previously showed that the utilization of oligosaccharides by the transporter MRT (Metarhizium raffinose transporter) is important for rhizosphere competency. In this study, we identified a novel monosaccharide transporter (MST1) that is involved in the colonization of the rhizoplane and acts additively with MRT to colonize the rhizosphere. MST1 is not involved in infection of insects by M. robertsii. MST1 is an H+ symporter and is able to transport a broad spectrum of monosaccharides, including glucose, sorbose, mannose, rhamnose, and fructose. Deletion of the Mst1 gene impaired germination and mycelial growth in medium containing the sugars that it can transport. Homologs of MST1 were widely found in many fungi, including plant symbionts such as Trichoderma spp. and mycorrhizal fungi and plant pathogens such as Fusarium spp. This work significantly advances insights into the development of symbiotic relationships between plants and fungi. IMPORTANCE Over 90% of all vascular plant species develop an intimate symbiosis with fungi, which has an enormous impact on terrestrial ecosystems. It is widely recognized that plant-symbiotic fungi are supported by photosynthates, but little is known about the mechanisms for fungi to utilize plant-derived carbon sources. In the fungus Metarhizium robertsii, we identified a novel monosaccharide transporter (MST1) that is an H+ symporter and can transport a broad spectrum of monosaccharides, including glucose, sorbose, mannose, rhamnose, and fructose. MST1 is involved in the colonization of the rhizoplane and acts additively with the previously characterized oligosaccharide transporter MRT to colonize the rhizosphere. Homologs of MST1 were found in many fungi, including plant symbionts and plant pathogens, suggesting that the utilization of plant-derived sugars by MST1 homologs could also be important for other fungi to develop a symbiotic or parasitic relationship with their respective plant hosts.
Collapse
|
14
|
Zhang J, Zhang P, Zeng G, Wu G, Qi L, Chen G, Fang W, Yin WB. Transcriptional Differences Guided Discovery and Genetic Identification of Coprogen and Dimerumic Acid Siderophores in Metarhizium robertsii. Front Microbiol 2021; 12:783609. [PMID: 34899665 PMCID: PMC8656255 DOI: 10.3389/fmicb.2021.783609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Siderophores are small molecular iron chelators and participate in the multiple cellular processes in fungi. In this study, biosynthesis gene clusters of coprogens and dimerumic acids were identified by transcriptional level differences of genes related to iron deficiency conditions in Metarhizium robertsii. This leads to the characterization of new coprogen metachelin C (1) and five known siderophores metachelin A (2), metachelin A-CE (3), metachelin B (4), dimerumic acid 11-mannoside (5), and dimerumic acid (6). The structure of metachelin C (1) was elucidated by NMR spectroscopy and HR-ESI-MS analysis. Genetic deletions of mrsidA, and mrsidD abolished the production of compounds 1–6 that implied their involvement in the biosynthesis of coprogen and dimerumic acid. Interestingly, NRPS gene mrsidD is responsible for biosynthesis of both coprogen and dimerumic acid, thus we proposed plausible biosynthetic pathways for the synthesis of coprogen and dimerumic acid siderophores. Therefore, our study provides the genetic basis for understanding the biosynthetic pathway of coprogen and dimerumic acid in Metarhizium robertsii.
Collapse
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guohong Zeng
- College of Life Science, Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Guangwei Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Landa Qi
- Henan Academy of Science Institute of Biology, Zhengzhou, China
| | - Guocan Chen
- Henan Academy of Science Institute of Biology, Zhengzhou, China
| | - Weiguo Fang
- College of Life Science, Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Zhang X, Meng Y, Huang Y, Zhang D, Fang W. A novel cascade allows Metarhizium robertsii to distinguish cuticle and hemocoel microenvironments during infection of insects. PLoS Biol 2021; 19:e3001360. [PMID: 34347783 PMCID: PMC8366996 DOI: 10.1371/journal.pbio.3001360] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/16/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Pathogenic fungi precisely respond to dynamic microenvironments during infection, but the underlying mechanisms are not well understood. The insect pathogenic fungus Metarhizium robertsii is a representative fungus in which to study broad themes of fungal pathogenicity as it resembles some major plant and mammalian pathogenic fungi in its pathogenesis. Here we report on a novel cascade that regulates response of M. robertsii to 2 distinct microenvironments during its pathogenesis. On the insect cuticle, the transcription factor COH2 activates expression of cuticle penetration genes. In the hemocoel, the protein COH1 is expressed due to the reduction in epigenetic repression conferred by the histone deacetylase HDAC1 and the histone 3 acetyltransferase HAT1. COH1 interacts with COH2 to reduce COH2 stability, and this down-regulates cuticle penetration genes and up-regulates genes for hemocoel colonization. Our work significantly advances the insights into fungal pathogenicity in insects. Pathogenic fungi respond precisely to dynamic microenvironments during infection, but the underlying mechanisms are not well understood. This study identifies a regulatory cascade in a fungal pathogen of insects that acts as a switch to turn genes on or off in response to two distinct host microenvironments; the insect cuticle and the hemocoel.
Collapse
Affiliation(s)
- Xing Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yamin Meng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Yizhou Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
16
|
Sarmiento-Villamil JL, de Oliveira TC, Naruzawa ES, Bernier L. An Efficient Strategy for Obtaining Mutants by Targeted Gene Deletion in Ophiostoma novo-ulmi. Front Microbiol 2021; 12:699783. [PMID: 34335533 PMCID: PMC8317267 DOI: 10.3389/fmicb.2021.699783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
The dimorphic fungus Ophiostoma novo-ulmi is the highly aggressive pathogen responsible for the current, highly destructive, pandemic of Dutch elm disease (DED). Genome and transcriptome analyses of this pathogen previously revealed that a large set of genes expressed during dimorphic transition were also potentially related to plant infection processes, which seem to be regulated by molecular mechanisms different from those described in other dimorphic pathogens. Then, O. novo-ulmi can be used as a representative species to study the lifestyle of dimorphic pathogenic fungi that are not shared by the "model species" Candida albicans and Ustilago maydis. In order to gain better knowledge of molecular aspects underlying infection process and symptom induction by dimorphic fungi that cause vascular wilt disease, we developed a high-throughput gene deletion protocol for O. novo-ulmi. The protocol is based on transforming a Δmus52 O. novo-ulmi mutant impaired for non-homologous end joining (NHEJ) as the recipient strain, and transforming this strain with the latest version of OSCAR plasmids. The latter are used for generating deletion constructs containing the toxin-coding Herpes simplex virus thymidine kinase (HSVtk) gene which prevents ectopic integration of the T-DNA in Ophiostoma DNA. The frequency of gene deletion by homologous recombination (HR) at the ade1 locus associated with purine nucleotide biosynthesis was up to 77.8% in the Δmus52 mutant compared to 2% in the wild-type (WT). To validate the high efficiency of our deletion gene methodology we deleted ade7, which also belongs to the purine nucleotide pathway, as well as bct2, ogf1, and opf2 which encode fungal binuclear transcription factors (TFs). The frequency of gene replacement by HR for these genes reached up to 94%. We expect that our methodology combining the use of NHEJ deficient strains and OSCAR plasmids will function with similar high efficiencies for other O. novo-ulmi genes and other filamentous fungi.
Collapse
Affiliation(s)
- Jorge Luis Sarmiento-Villamil
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Thais Campos de Oliveira
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Erika Sayuri Naruzawa
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
- Collège Communautaire du Nouveau-Brunswick, Réseau CCNB-INNOV, Grand Falls, NB, Canada
| | - Louis Bernier
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
17
|
A Novel Nitrogen and Carbon Metabolism Regulatory Cascade Is Implicated in Entomopathogenicity of the Fungus Metarhizium robertsii. mSystems 2021; 6:e0049921. [PMID: 34156296 PMCID: PMC8269237 DOI: 10.1128/msystems.00499-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The entomopathogenic fungus Metarhizium robertsii can switch among parasitic, saprophytic, and symbiotic lifestyles in response to changing nutritional conditions, which is attributed to its extremely versatile metabolism. Here, we found that the Fus3–mitogen-activated protein kinase (MAPK) and the transcription factor regulator of nutrient selection 1 (RNS1) constitute a novel fungal cascade that regulates the degradation of insect cuticular lipids, proteins, and chitin to obtain nutrients for hyphal growth and enter the insect hemocoel for subsequent colonization. On the insect cuticle, Fus3-MAPK physically contacts and phosphorylates RNS1, which facilitates the entry of RNS1 into nuclei. The phosphorylated RNS1 binds to the DNA motif BM2 (ACCAGAC) in its own promoter to self-induce expression, which then activates the expression of genes for degrading cuticular proteins, chitin, and lipids. We further found that the Fus3-MAPK/RNS1 cascade also activates genes for utilizing complex and less-favored nitrogen and carbon sources (casein, colloid chitin, and hydrocarbons) that were not derived from insects, which is repressed by favored organic carbon and nitrogen nutrients, including glucose and glutamine. In conclusion, we discovered a novel regulatory cascade that controls fungal nitrogen and carbon metabolism and is implicated in the entomopathogenicity of M. robertsii. IMPORTANCE Penetration of the cuticle, the first physical barrier to pathogenic fungi, is the prerequisite for fungal infection of insects. In the entomopathogenic fungus Metarhizium robertsii, we found that the Fus3–mitogen-activated protein kinase (MAPK) and the transcription factor regulator of nutrient selection 1 (RNS1) constitute a novel cascade that controls cuticle penetration by regulating degradation of cuticular lipids, proteins, and chitin to obtain nutrients for hyphal growth and entry into the insect hemocoel. In addition, during saprophytic growth, the Fus3-MAPK/RNS1 cascade also activates utilization of complex and less-favored carbon and nitrogen sources that are not derived from insects. The homologs of Fus3-MAPK and RNS1 are widely found in ascomycete filamentous fungi, including saprophytes and pathogens with diverse hosts, suggesting that the regulation of utilization of nitrogen and carbon sources by the Fus3-MAPK/RNS1 cascade could be widespread. Our work provides significant insights into regulation of carbon and nitrogen metabolism in fungi and fungal pathogenesis in insects.
Collapse
|
18
|
Yu D, Xie R, Wang Y, Xie T, Xu L, Huang B. The G-protein coupled receptor GPRK contributes to fungal development and full virulence in Metarhizium robertsii. J Invertebr Pathol 2021; 183:107627. [PMID: 34081962 DOI: 10.1016/j.jip.2021.107627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
G-protein-coupled receptor K (GPRK), which is a class VI fungal G-protein-coupled receptor (GPCR), plays a critical role in plant immunity against pathogens by mediating the endocytic pathway, influencing metabolism in response to environmental signals, and regulating asexual reproduction and pathogenic development. However, the function of these proteins in entomopathogenic fungi has rarely been investigated. Accordingly, we characterized MrGPRK, a GPCR in the entomopathogenic fungus Metarhizium robertsii containing a C-terminal seven-transmembrane and a conserved regulator of G protein signaling domain, and found that it localized to endosomes. Mutant phenotype assays showed that a ΔMrGprk strain displayed increased defects in radial growth (~28%) and decreased conidial production (~80%) compared with a wild-type strain. Decreased conidiation rates coincided well with the repression of conidiation-related regulatory genes, including three key conidial transcription factors: brlA, abaA, and wetA. MrGprk deficiency impaired full virulence (both topical and injectable inoculations). Further analysis demonstrated that deleting fungal MrGprk decreased the rates of appressorium formation and suppressed the transcription of several genes contributing to appressorial turgor pressure, cuticle penetration, and pH regulation. Additionally, the ΔMrGprk strain showed higher cyclic (cAMP) levels, suggesting that this GPCR is critical for cAMP signal transduction. In summary, MrGPRK was found to contribute to vegetative growth, conidial production, and full virulence of M. robertsii. These findings are conducive to a better understanding of the roles of GPCRs in the development and pathogenicity of entomopathogenic fungi.
Collapse
Affiliation(s)
- Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Rui Xie
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Tian Xie
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Liuyi Xu
- Key Laboratory of State Forestry Administration on Prevention and Control of Pine Wood Nematode Disease, Anhui Academy of Forestry, Hefei 230088, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Updates in Paracoccidioides Biology and Genetic Advances in Fungus Manipulation. J Fungi (Basel) 2021; 7:jof7020116. [PMID: 33557381 PMCID: PMC7915485 DOI: 10.3390/jof7020116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM). This disease is endemic in Latin America and primarily affects workers in rural areas. PCM is considered a neglected disease, despite being a disabling disease that has a notable impact on the public health system. Paracoccidioides spp. are thermally dimorphic fungi that present infective mycelia at 25 °C and differentiate into pathogenic yeast forms at 37 °C. This transition involves a series of morphological, structural, and metabolic changes which are essential for their survival inside hosts. As a pathogen, the fungus is subjected to several varieties of stress conditions, including the host immune response, which involves the production of reactive nitrogen and oxygen species, thermal stress due to temperature changes during the transition, pH alterations within phagolysosomes, and hypoxia inside granulomas. Over the years, studies focusing on understanding the establishment and development of PCM have been conducted with several limitations due to the low effectiveness of strategies for the genetic manipulation of Paracoccidioides spp. This review describes the most relevant biological features of Paracoccidioides spp., including aspects of the phylogeny, ecology, stress response, infection, and evasion mechanisms of the fungus. We also discuss the genetic aspects and difficulties of fungal manipulation, and, finally, describe the advances in molecular biology that may be employed in molecular research on this fungus in the future.
Collapse
|
20
|
Functional Characterization of Core Regulatory Genes Involved in Sporulation of the Nematophagous Fungus Purpureocillium lavendulum. mSphere 2020; 5:5/5/e00932-20. [PMID: 33115838 PMCID: PMC8534313 DOI: 10.1128/msphere.00932-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nematophagous fungus Purpureocillium lavendulum is a natural enemy of plant-parasitic nematodes, which cause severe economic losses in agriculture worldwide. The production of asexual spores (conidia) in P. lavendulum is crucial for its biocontrol activity against nematodes. In this study, we characterized the core regulatory genes involved in conidiation of P. lavendulum at the molecular level. The central regulatory pathway is composed of three genes, P. lavendulumbrlA (PlbrlA), PlabaA, and PlwetA, which regulate the early, middle, and late stages of asexual development, respectively. The deletion of PlbrlA completely inhibited conidiation, with only conidiophore stalks produced. PlAbaA determines the differentiation of conidia from phialides. The deletion of PlwetA affected many phenotypes related to conidial maturation, including abscission of conidia from conidium strings, thickening of the cell wall layers, vacuole generation inside the cytoplasm, production of trehalose, tolerance to heat shock, etc. Comparative analyses showed that the upstream regulators of the core regulatory pathway of conidiation, especially the “fluffy” genes, were different from those in Aspergillus. Besides their roles in conidiation, the central regulators also influence the production of secondary metabolites, such as the leucinostatins, in P. lavendulum. Our study revealed a set of essential genes controlling conidiation in P. lavendulum and provided a framework for further molecular genetic studies on fungus-nematode interactions and for the biocontrol of plant-parasitic nematodes. IMPORTANCE Plant-parasitic nematodes cause serious damage to crops throughout the world. Purpureocillium lavendulum is a nematophagous fungus which is a natural enemy of nematodes and a potential biocontrol agent against plant-parasitic nematodes. The conidia play an important role during infection of nematodes. In this study, we identified and characterized genes involved in regulating asexual development of P. lavendulum. We found that these genes not only regulate conidiation but also influence secondary-metabolite production. This work provides a basis for future studies of fungus-nematode interactions and nematode biocontrol.
Collapse
|
21
|
Liu F, Wickham JD, Cao Q, Lu M, Sun J. An invasive beetle-fungus complex is maintained by fungal nutritional-compensation mediated by bacterial volatiles. ISME JOURNAL 2020; 14:2829-2842. [PMID: 32814865 PMCID: PMC7784882 DOI: 10.1038/s41396-020-00740-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022]
Abstract
Mutualisms between symbiotic microbes and animals have been well documented, and nutritional relationships provide the foundation for maintaining beneficial associations. The well-studied mutualism between bark beetles and their fungi has become a classic model system in the study of symbioses. Despite the nutritional competition between bark beetles and beneficial fungi in the same niche due to poor nutritional feeding substrates, bark beetles still maintain mutualistic associations with beneficial fungi over time. The mechanism behind this phenomenon, however, remains largely unknown. Here, we demonstrated the bark beetle Dendroctonus valens LeConte relies on the symbiotic bacterial volatile ammonia, as a nitrogen source, to regulate carbohydrate metabolism of its mutualistic fungus Leptographium procerum to alleviate nutritional competition, thereby maintaining the stability of the bark beetle–fungus mutualism. Ammonia significantly reduces competition of L. procerum for carbon resources for D. valens larval growth and increases fungal growth. Using stable isotope analysis, we show the fungus breakdown of phloem starch into d-glucose by switching on amylase genes only in the presence of ammonia. Deletion of amylase genes interferes with the conversion of starch to glucose. The acceleration of carbohydrate consumption and the conversion of starch into glucose benefit this invasive beetle–fungus complex. The nutrient consumption–compensation strategy mediated by tripartite beetle–fungus–bacterium aids the maintenance of this invasive mutualism under limited nutritional conditions, exacerbating its invasiveness with this competitive nutritional edge.
Collapse
Affiliation(s)
- Fanghua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qingjie Cao
- College of Forestry, Hebei Agricultural University, 071000, Baoding, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,State Key Laboratory of Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
22
|
Qiao YM, Yu RL, Zhu P. Advances in targeting and heterologous expression of genes involved in the synthesis of fungal secondary metabolites. RSC Adv 2019; 9:35124-35134. [PMID: 35530690 PMCID: PMC9074735 DOI: 10.1039/c9ra06908a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
The revolutionary discovery of penicillin only marks the start of our exploration for valuable fungal natural products. Advanced genome sequencing technologies have translated the fungal genome into a huge reservoir of "recipes" - biosynthetic gene clusters (BGCs) - for biosynthesis. Studying complex fungal genetics demands specific gene manipulation strategies. This review summarizes the current progress in efficient gene targeting in fungal cells and heterologous expression systems for expressing fungal BGCs of fungal secondary metabolites.
Collapse
Affiliation(s)
- Yun-Ming Qiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| | - Rui-Lin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China +86-10-63017757 +86-10-63165197
| |
Collapse
|
23
|
Moonjely S, Zhang X, Fang W, Bidochka MJ. Metarhizium robertsii ammonium permeases (MepC and Mep2) contribute to rhizoplane colonization and modulates the transfer of insect derived nitrogen to plants. PLoS One 2019; 14:e0223718. [PMID: 31618269 PMCID: PMC6795453 DOI: 10.1371/journal.pone.0223718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
The endophytic insect pathogenic fungi (EIPF) Metarhizium promotes plant growth through symbiotic association and the transfer of insect-derived nitrogen. However, little is known about the genes involved in this association and the transfer of nitrogen. In this study, we assessed the involvement of six Metarhizium robertsii genes in endophytic, rhizoplane and rhizospheric colonization with barley roots. Two ammonium permeases (MepC and Mep2) and a urease, were selected since homologous genes in arbuscular mycorrhizal fungi were reported to play a pivotal role in nitrogen mobilization during plant root colonization. Three other genes were selected on the basis on RNA-Seq data that showed high expression levels on bean roots, and these encoded a hydrophobin (Hyd3), a subtilisin-like serine protease (Pr1A) and a hypothetical protein. The root colonization assays revealed that the deletion of urease, hydrophobin, subtilisin-like serine protease and hypothetical protein genes had no impact on endophytic, rhizoplane and rhizospheric colonization at 10 or 20 days. However, the deletion of MepC resulted in significantly increased rhizoplane colonization at 10 days whereas ΔMep2 showed increased rhizoplane colonization at 20 days. In addition, the nitrogen transporter mutants also showed significantly higher 15N incorporation of insect derived nitrogen in barley leaves in the presence of nutrients. Insect pathogenesis assay revealed that disruption of MepC, Mep2, urease did not reduce virulence toward insects. The enhanced rhizoplane colonization of ΔMep2 and ΔMepC and insect derived nitrogen transfer to plant hosts suggests the role of MepC and Mep2 in Metarhizium-plant symbiosis.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Biological Sciences, Brock University, St. Catharines, ON Canada
| | - Xing Zhang
- Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, ON Canada
| |
Collapse
|
24
|
Lovett B, Bilgo E, Diabate A, St Leger R. A review of progress toward field application of transgenic mosquitocidal entomopathogenic fungi. PEST MANAGEMENT SCIENCE 2019; 75:2316-2324. [PMID: 30801913 DOI: 10.1002/ps.5385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/02/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
In Africa, adult mosquito populations are primarily controlled with insecticide-impregnated bed nets and residual insecticide sprays. This coupled with widespread applications of pesticides in agriculture has led to increasing insecticide resistance in mosquito populations. We have developed multiple alternative strategies for exploiting transgenic Metarhizium spp. directed at: (i) shortening the lifespan of adult mosquitoes; (ii) reducing transmission potential of Plasmodium spp.; (iii) reducing vector competence via pre-lethal effects. The present challenge is to convert this promising strategy into a validated public health intervention by resolving outstanding issues related to the release of genetically modified organisms. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Brian Lovett
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Etienne Bilgo
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Raymond St Leger
- Department of Entomology, University of Maryland, College Park, MD, USA
| |
Collapse
|
25
|
Meng Y, Zhang X, Guo N, Fang W. MrSt12 implicated in the regulation of transcription factor AFTF1 by Fus3-MAPK during cuticle penetration by the entomopathogenic fungus Metarhizium robertsii. Fungal Genet Biol 2019; 131:103244. [PMID: 31228645 DOI: 10.1016/j.fgb.2019.103244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Metarhizium robertsii is a versatile fungus with multifactorial lifestyles, and it is an emerging fungal model for investigating the mechanisms of multiple lifestyle transitions that involve trans-kingdom host jumping. Penetration of the insect cuticle is the necessary step for the transition from saprophytic or symbiotic to pathogenic lifestyle. Previously, we found the transcription factor AFTF1 plays an important role in cuticle penetration, which is precisely regulated by Fus3-MAPK, Slt2-MAPK, and the membrane protein Mr-OPY2. Here, we identified a transcription factor (MrSt12) that directly regulated the transcription of Aftf1 by physically interacting with the cis-acting element (ATGAAACA) in the promoter of Aftf1. The deletion mutant of MrSt12 failed to form the infection structure appressorium and was thus nonpathogenic. We further found that the regulation of Aftf1 by MrSt12 was directly controlled by the Fus3-MAPK. In conclusion, we found a new signaling cascade containing Fus3-MAPK, MrSt12, and AFTF1, which regulates cuticle penetration by M. robertsii.
Collapse
Affiliation(s)
- Yamin Meng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xing Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Na Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Horizontal gene transfer allowed the emergence of broad host range entomopathogens. Proc Natl Acad Sci U S A 2019; 116:7982-7989. [PMID: 30948646 DOI: 10.1073/pnas.1816430116] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence of new pathogenic fungi has profoundly impacted global biota, but the underlying mechanisms behind host shifts remain largely unknown. The endophytic insect pathogen Metarhizium robertsii evolved from fungi that were plant associates, and entomopathogenicity is a more recently acquired adaptation. Here we report that the broad host-range entomopathogen M. robertsii has 18 genes that are derived via horizontal gene transfer (HGT). The necessity of degrading insect cuticle served as a major selective pressure to retain these genes, as 12 are up-regulated during penetration; 6 were confirmed to have a role in penetration, and their collective actions are indispensable for infection. Two lipid-carrier genes are involved in utilizing epicuticular lipids, and a third (MrNPC2a) facilitates hemocoel colonization. Three proteases degraded the procuticular protein matrix, which facilitated up-regulation of other cuticle-degrading enzymes. The three lipid carriers and one of the proteases are present in all analyzed Metarhizium species and are essential for entomopathogenicity. Acquisition of another protease (MAA_01413) in an ancestor of broad host-range lineages contributed to their host-range expansion, as heterologous expression in the locust specialist Metarhizium acridum enabled it to kill caterpillars. Our work reveals that HGT was a key mechanism in the emergence of entomopathogenicity in Metarhizium from a plant-associated ancestor and in subsequent host-range expansion by some Metarhizium lineages.
Collapse
|
27
|
Wu C, Zhang X, Fang W. Increasing Pyruvate Concentration Enhances Conidial Thermotolerance in the Entomopathogenic Fungus Metarhizium robertsii. Front Microbiol 2019; 10:519. [PMID: 30949143 PMCID: PMC6435589 DOI: 10.3389/fmicb.2019.00519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
The fungal entomopathogens Metarhizium spp. have been developed as environmentally friendly mycoinsecticides. However, heat stress severely reduces the viability of Metarhizium conidia in the field, which is an important obstacle to the successful use of these mycoinsecticides. Heat treatment induces rapid accumulation of pyruvate, which timely scavenges heat-induced ROS (reactive oxygen species) in hyphal cells of M. robertsii. However, in heat-treated conidia, pyruvate accumulation occurs later than the rapid production of ROSs, which could harm the conidial cells. In the present study, a transgenic M. robertsii strain was constructed with the pyruvate kinases gene overexpressed during conidiation. Two independent transformants of the transgenic strain produced conidia under optimal conditions with elevated pyruvate concentration. This inhibits the rapid heat-induced ROS production and prevents the collapse of mitochondrial membrane potential, thereby increasing conidial tolerance to heat stress. In conclusion, the tolerance of M. robertsii conidia to heat stress was improved by increasing the conidial pyruvate concentration, which could be translated into a more effective pest control.
Collapse
Affiliation(s)
- Congcong Wu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Xing Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Lou H, Ye Z, Yun F, Lin J, Guo L, Chen B, Mu Z. Targeted Gene Deletion in Cordyceps militaris Using the Split-Marker Approach. Mol Biotechnol 2018; 60:380-385. [PMID: 29605840 DOI: 10.1007/s12033-018-0080-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The macrofungus Cordyceps militaris contains many kinds of bioactive ingredients that are regulated by functional genes, but the functions of many genes in C. militaris are still unknown. In this study, to improve the frequency of homologous integration, a genetic transformation system based on a split-marker approach was developed for the first time in C. militaris to knock out a gene encoding a terpenoid synthase (Tns). The linear and split-marker deletion cassettes were constructed and introduced into C. militaris protoplasts by PEG-mediated transformation. The transformation of split-marker fragments resulted in a higher efficiency of targeted gene disruption than the transformation of linear deletion cassettes did. The color phenotype of the Tns gene deletion mutants was different from that of wild-type C. militaris. Moreover, a PEG-mediated protoplast transformation system was established, and stable genetic transformants were obtained. This method of targeted gene deletion represents an important tool for investigating the role of C. militaris genes.
Collapse
Affiliation(s)
- HaiWei Lou
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - ZhiWei Ye
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - Fan Yun
- Alchemy Biotechnology Co., Ltd. of Guangzhou City, Guangzhou, 510760, China
| | - JunFang Lin
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - LiQiong Guo
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China.
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China.
| | - BaiXiong Chen
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, 510640, China
| | - ZhiXian Mu
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, 510640, China
| |
Collapse
|
29
|
Zeng G, Zhang P, Zhang Q, Zhao H, Li Z, Zhang X, Wang C, Yin WB, Fang W. Duplication of a Pks gene cluster and subsequent functional diversification facilitate environmental adaptation in Metarhizium species. PLoS Genet 2018; 14:e1007472. [PMID: 29958281 PMCID: PMC6042797 DOI: 10.1371/journal.pgen.1007472] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/12/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
The ecological importance of the duplication and diversification of gene clusters that synthesize secondary metabolites in fungi remains poorly understood. Here, we demonstrated that the duplication and subsequent diversification of a gene cluster produced two polyketide synthase gene clusters in the cosmopolitan fungal genus Metarhizium. Diversification occurred in the promoter regions and the exon-intron structures of the two Pks paralogs (Pks1 and Pks2). These two Pks genes have distinct expression patterns, with Pks1 highly expressed during conidiation and Pks2 highly expressed during infection. Different upstream signaling pathways were found to regulate the two Pks genes. Pks1 is positively regulated by Hog1-MAPK, Slt2-MAPK and Mr-OPY2, while Pks2 is positively regulated by Fus3-MAPK and negatively regulated by Mr-OPY2. Pks1 and Pks2 have been subjected to positive selection and synthesize different secondary metabolites. PKS1 is involved in synthesis of an anthraquinone derivative, and contributes to conidial pigmentation, which plays an important role in fungal tolerance to UV radiation and extreme temperatures. Disruption of the Pks2 gene delayed formation of infectious structures and increased the time taken to kill insects, indicating that Pks2 contributes to pathogenesis. Thus, the duplication of a Pks gene cluster and its subsequent functional diversification has increased the adaptive flexibility of Metarhizium species.
Collapse
Affiliation(s)
- Guohong Zeng
- Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | | | - Hong Zhao
- Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Zixin Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xing Zhang
- Institute of Microbiology, Zhejiang University, Hangzhou, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Weiguo Fang
- Institute of Microbiology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
30
|
Lovett B, St Leger RJ. Genetically engineering better fungal biopesticides. PEST MANAGEMENT SCIENCE 2018; 74:781-789. [PMID: 28905488 DOI: 10.1002/ps.4734] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Microbial insect pathogens offer an alternative means of pest control with the potential to wean us off our heavy reliance on chemical pesticides. Insect pathogenic fungi play an important natural role in controlling disease vectors and agricultural pests. Most commercial products employ Ascomycetes in the genera Metarhizium and Beauveria. However, their utilization has been limited by inconsistent field results as a consequence of sensitivity to abiotic stresses and naturally low virulence. Other naturally occurring biocontrol agents also face these hurdles to successful application, but the availability of complete genomes and recombinant DNA technologies have facilitated design of multiple fungal pathogens with enhanced virulence and stress resistance. Many natural and synthetic genes have been inserted into entomopathogen genomes. Some of the biggest gains in virulence have been obtained using genes encoding neurotoxic peptides, peptides that manipulate host physiology and proteases and chitinases that degrade the insect cuticle. Prokaryotes, particularly extremophiles, are useful sources of genes for improving entomopathogen resistance to ultraviolet (UV) radiation. These biological insecticides are environmentally friendly and cost-effective insect pest control options. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Brian Lovett
- Department of Entomology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
31
|
Zhang X, St. Leger RJ, Fang W. Stress-induced pyruvate accumulation contributes to cross protection in a fungus. Environ Microbiol 2018; 20:1158-1169. [DOI: 10.1111/1462-2920.14058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/07/2018] [Accepted: 01/25/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Zhang
- Institute of Microbiology; Zhejiang University; Hangzhou People's Republic of China
| | | | - Weiguo Fang
- Institute of Microbiology; Zhejiang University; Hangzhou People's Republic of China
- Institute of Insect Sciences; Zhejiang University; Hangzhou People's Republic of China
| |
Collapse
|
32
|
An efficient gene disruption method using a positive–negative split-selection marker and Agrobacterium tumefaciens-mediated transformation for Nomuraea rileyi. World J Microbiol Biotechnol 2018; 34:26. [DOI: 10.1007/s11274-018-2409-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022]
|
33
|
Alternative transcription start site selection in Mr-OPY2 controls lifestyle transitions in the fungus Metarhizium robertsii. Nat Commun 2017; 8:1565. [PMID: 29146899 PMCID: PMC5691130 DOI: 10.1038/s41467-017-01756-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Metarhizium robertsii is a versatile fungus with saprophytic, plant symbiotic and insect pathogenic lifestyle options. Here we show that M. robertsii mediates the saprophyte-to-insect pathogen transition through modulation of the expression of a membrane protein, Mr-OPY2. Abundant Mr-OPY2 protein initiates appressorium formation, a prerequisite for infection, whereas reduced production of Mr-OPY2 elicits saprophytic growth and conidiation. The precise regulation of Mr-OPY2 protein production is achieved via alternative transcription start sites. During saprophytic growth, a single long transcript is produced with small upstream open reading frames in its 5′ untranslated region. Increased production of Mr-OPY2 protein on host cuticle is achieved by expression of a transcript variant lacking a small upstream open reading frame that would otherwise inhibit translation of Mr-OPY2. RNA-seq and qRT-PCR analyses show that Mr-OPY2 is a negative regulator of a transcription factor that we demonstrate is necessary for appressorial formation. These findings provide insights into the mechanisms regulating fungal lifestyle transitions. The fungus Metarhizium robertsii can act as a saprophyte, plant symbiont and insect pathogen. Here, the authors show that the use of alternative transcription start sites controls the expression of membrane protein Mr-OPY2, which in turn modulates the saprophyte-to-pathogen transition.
Collapse
|
34
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
35
|
Bilgo E, Lovett B, Fang W, Bende N, King GF, Diabate A, St Leger RJ. Improved efficacy of an arthropod toxin expressing fungus against insecticide-resistant malaria-vector mosquitoes. Sci Rep 2017; 7:3433. [PMID: 28611355 PMCID: PMC5469824 DOI: 10.1038/s41598-017-03399-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/27/2017] [Indexed: 01/21/2023] Open
Abstract
The continued success of malaria control efforts requires the development, study and implementation of new technologies that circumvent insecticide resistance. We previously demonstrated that fungal pathogens can provide an effective delivery system for mosquitocidal or malariacidal biomolecules. Here we compared genes from arthropod predators encoding insect specific sodium, potassium and calcium channel blockers for their ability to improve the efficacy of Metarhizium against wild-caught, insecticide-resistant anophelines. Toxins expressed under control of a hemolymph-specific promoter increased fungal lethality to mosquitoes at spore dosages as low as one conidium per mosquito. One of the most potent, the EPA approved Hybrid (Ca++/K+ channel blocker), was studied for pre-lethal effects. These included reduced blood feeding behavior, with almost 100% of insects infected with ~6 spores unable to transmit malaria within 5 days post-infection, surpassing the World Health Organization threshold for successful vector control agents. Furthermore, recombinant strains co-expressing Hybrid toxin and AaIT (Na+ channel blocker) produced synergistic effects, requiring 45% fewer spores to kill half of the mosquitoes in 5 days as single toxin strains. Our results identify a repertoire of toxins with different modes of action that improve the utility of entomopathogens as a technology that is compatible with existing insecticide-based control methods.
Collapse
Affiliation(s)
- Etienne Bilgo
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Brian Lovett
- Department of Entomology, University of Maryland, College Park, Maryland, 20742, USA
| | - Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Niraj Bende
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, Maryland, 20742, USA.
| |
Collapse
|
36
|
Gold SE, Paz Z, García-Pedrajas MD, Glenn AE. Rapid Deletion Production in Fungi via Agrobacterium Mediated Transformation of OSCAR Deletion Constructs. J Vis Exp 2017. [PMID: 28654073 DOI: 10.3791/55239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene's function in the living organism. In this protocol the OSCAR method of precise and rapid deletion plasmid construction is described. OSCAR relies on the cloning system in which a single recombinase reaction is carried out containing the purified PCR-amplified 5' and 3' flanks of the gene of interest and two plasmids, pA-Hyg OSCAR (the marker vector) and pOSCAR (the assembly vector). Confirmation of the correctly assembled deletion vector is carried out by restriction digestion mapping followed by sequencing. Agrobacterium tumefaciens is then used to mediate introduction of the deletion construct into fungal spores (referred to as ATMT). Finally, a PCR assay is described to determine if the deletion construct integrated by homologous or non-homologous recombination, indicating gene deletion or ectopic integration, respectively. This approach has been successfully used for deletion of numerous genes in Verticillium dahliae and in Fusarium verticillioides among other species.
Collapse
Affiliation(s)
- Scott E Gold
- Toxicology and Mycotoxin Research Unit, NPRC, USDA-ARS;
| | | | - María D García-Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora"
| | | |
Collapse
|
37
|
Padilla-Guerrero IE, Bidochka MJ. Agrobacterium-Mediated Co-transformation of Multiple Genes in Metarhizium robertsii. MYCOBIOLOGY 2017; 45:84-89. [PMID: 28781540 PMCID: PMC5541152 DOI: 10.5941/myco.2017.45.2.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/19/2017] [Accepted: 06/11/2017] [Indexed: 06/07/2023]
Abstract
Fungi of the Metarhizium genus are a very versatile model for understanding pathogenicity in insects and their symbiotic relationship with plants. To establish a co-transformation system for the transformation of multiple M. robertsii genes using Agrobacterium tumefaciens, we evaluated whether the antibiotic nourseothricin has the same marker selection efficiency as phosphinothricin using separate vectors. Subsequently, in the two vectors containing the nourseothricin and phosphinothricin resistance cassettes were inserted eGFP and mCherry expression cassettes, respectively. These new vectors were then introduced independently into A. tumefaciens and used to transform M. robertsii either in independent events or in one single co-transformation event using an equimolar mixture of A. tumefaciens cultures. The number of transformants obtained by co-transformation was similar to that obtained by the individual transformation events. This method provides an additional strategy for the simultaneous insertion of multiple genes into M. robertsii.
Collapse
Affiliation(s)
- Israel Enrique Padilla-Guerrero
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Campus Guanajuato, CP 36050, Guanajuato, Mexico
| | - Michael J Bidochka
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
38
|
Zeng G, Chen X, Zhang X, Zhang Q, Xu C, Mi W, Guo N, Zhao H, You Y, Dryburgh FJ, Bidochka MJ, St. Leger RJ, Zhang L, Fang W. Genome-wide identification of pathogenicity, conidiation and colony sectorization genes in Metarhizium robertsii. Environ Microbiol 2017; 19:3896-3908. [DOI: 10.1111/1462-2920.13777] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Guohong Zeng
- Institute of Microbiology; Zhejiang University; Hangzhou China
| | - Xiaoxuan Chen
- Institute of Microbiology; Zhejiang University; Hangzhou China
| | - Xing Zhang
- Institute of Microbiology; Zhejiang University; Hangzhou China
| | | | - Chuan Xu
- Institute of Microbiology; Zhejiang University; Hangzhou China
| | - Wubin Mi
- Institute of Microbiology; Zhejiang University; Hangzhou China
| | - Na Guo
- Institute of Microbiology; Zhejiang University; Hangzhou China
| | - Hong Zhao
- Institute of Microbiology; Zhejiang University; Hangzhou China
| | - Yue You
- Institute of Microbiology; Zhejiang University; Hangzhou China
| | - Farah-Jade Dryburgh
- Department of Biological Sciences; Brock University; St. Catharines ON Canada
| | - Michael J. Bidochka
- Department of Biological Sciences; Brock University; St. Catharines ON Canada
| | | | - Lei Zhang
- School of Biological and Chemical Engineering; Zhejiang University of Science & Technology; Hangzhou China
| | - Weiguo Fang
- Institute of Microbiology; Zhejiang University; Hangzhou China
- Institute of Insect Sciences; Zhejiang University; Hangzhou China
| |
Collapse
|
39
|
Evolution of the chitin synthase gene family correlates with fungal morphogenesis and adaption to ecological niches. Sci Rep 2017; 7:44527. [PMID: 28300148 PMCID: PMC5353729 DOI: 10.1038/srep44527] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 02/08/2017] [Indexed: 12/11/2022] Open
Abstract
The fungal kingdom potentially has the most complex chitin synthase (CHS) gene family, but evolution of the fungal CHS gene family and its diversification to fulfill multiple functions remain to be elucidated. Here, we identified the full complement of CHSs from 231 fungal species. Using the largest dataset to date, we characterized the evolution of the fungal CHS gene family using phylogenetic and domain structure analysis. Gene duplication, domain recombination and accretion are major mechanisms underlying the diversification of the fungal CHS gene family, producing at least 7 CHS classes. Contraction of the CHS gene family is morphology-specific, with significant loss in unicellular fungi, whereas family expansion is lineage-specific with obvious expansion in early-diverging fungi. ClassV and ClassVII CHSs with the same domain structure were produced by the recruitment of domains PF00063 and PF08766 and subsequent duplications. Comparative analysis of their functions in multiple fungal species shows that the emergence of ClassV and ClassVII CHSs is important for the morphogenesis of filamentous fungi, development of pathogenicity in pathogenic fungi, and heat stress tolerance in Pezizomycotina fungi. This work reveals the evolution of the fungal CHS gene family, and its correlation with fungal morphogenesis and adaptation to ecological niches.
Collapse
|
40
|
Fan A, Mi W, Liu Z, Zeng G, Zhang P, Hu Y, Fang W, Yin WB. Deletion of a Histone Acetyltransferase Leads to the Pleiotropic Activation of Natural Products in Metarhizium robertsii. Org Lett 2017; 19:1686-1689. [DOI: 10.1021/acs.orglett.7b00476] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aili Fan
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wubin Mi
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiguo Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Zeng
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weiguo Fang
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
41
|
Li W, Wang Y, Zhu J, Wang Z, Tang G, Huang B. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii. Fungal Biol 2017; 121:293-303. [DOI: 10.1016/j.funbio.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022]
|
42
|
Paradoxical performance of tryptophan synthase gene trp1 (+) in transformations of the basidiomycete Coprinopsis cinerea. Appl Microbiol Biotechnol 2016; 100:8789-807. [PMID: 27368741 DOI: 10.1007/s00253-016-7693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Several transformation strains of Coprinopsis cinerea carry the defective tryptophan synthase allele trp1-1,1-6 which can be complemented by introduction of the trp1 (+) wild-type gene. Regularly in C. cinerea, single-trp1 (+)-vector transformations yield about half the numbers of clones than cotransformations with a non-trp1 (+)-plasmid done in parallel. The effect is also observed with the orthologous Schizophyllum commune trpB (+) gene shown here to function as a selection marker in C. cinerea. Parts of single-trp1 (+) - or single-trpB (+) -vector transformants are apparently lost. This paradoxical phenomenon relates to de-regulation of aromatic amino acid biosynthesis pathways. Adding tryptophan precursors to protoplast regeneration agar or feeding with other aromatic amino acids increases loss of single-trp1 (+)-vector transformants and also sets off loss of clones in cotransformation with a non-trp1 (+)-plasmid. Feedback control by tryptophan and cross-pathway control by tyrosine and phenylalanine are both active in the process. We deduce from the observations that more cotransformants than single-vector transformants are obtained by in average less disturbance of the tryptophan biosynthesis pathway. DNA in C. cinerea transformation usually integrates into the genome at multiple ectopic places. Integration events for a single vector per nucleus should statistically be 2-fold higher in single-vector transformations than in cotransformations in which the two different molecules compete for the same potential integration sites. Integration of more trp1 (+) copies into the genome might more likely lead to sudden tryptophan overproduction with subsequent rigid shut-down of the pathway. Blocking ectopic DNA integration in a Δku70 mutant abolished the effect of doubling clone numbers in cotransformations due to preferred single trp1 (+) integration by homologous recombination at its native genomic site.
Collapse
|
43
|
Zhao H, Lovett B, Fang W. Genetically Engineering Entomopathogenic Fungi. ADVANCES IN GENETICS 2016; 94:137-63. [PMID: 27131325 DOI: 10.1016/bs.adgen.2015.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests.
Collapse
Affiliation(s)
- H Zhao
- Zhejiang University, Hangzhou, Zhejiang, China
| | - B Lovett
- University of Maryland, College Park, MD, United States
| | - W Fang
- Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Chen X, Xu C, Qian Y, Liu R, Zhang Q, Zeng G, Zhang X, Zhao H, Fang W. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii. Environ Microbiol 2016; 18:1048-62. [PMID: 26714892 DOI: 10.1111/1462-2920.13198] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023]
Abstract
Metarhizium robertsii has been used as a model to study fungal pathogenesis in insects, and its pathogenicity has many parallels with plant and mammal pathogenic fungi. MAPK (Mitogen-activated protein kinase) cascades play pivotal roles in cellular regulation in fungi, but their functions have not been characterized in M. robertsii. In this study, we identified the full complement of MAPK cascade components in M. robertsii and dissected their regulatory roles in pathogenesis, conidiation and stress tolerance. The nine components of the Fus3, Hog1 and Slt2-MAPK cascades are all involved in conidiation. The Fus3- and Hog1-MAPK cascades are necessary for tolerance to hyperosmotic stress, and the Slt2- and Fus3-MAPK cascades both mediate cell wall integrity. The Hog1 and Slt2-MAPK cascades contribute to pathogenicity; the Fus3-MAPK cascade is indispensable for fungal pathogenesis. During its life cycle, M. robertsii experiences multiple microenvironments as it transverses the cuticle into the haemocoel. RNA-seq analysis revealed that MAPK cascades collectively play a major role in regulating the adaptation of M. robertsii to the microenvironmental change from the cuticle to the haemolymph. The three MAPKs each regulate their own distinctive subset of genes during penetration of the cuticle and haemocoel colonization, but they function redundantly to regulate adaptation to microenvironmental change.
Collapse
Affiliation(s)
- Xiaoxuan Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ying Qian
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ran Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiangqiang Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guohong Zeng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xin Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hong Zhao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
45
|
MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii. EUKARYOTIC CELL 2015; 14:396-405. [PMID: 25710964 DOI: 10.1128/ec.00266-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/16/2015] [Indexed: 01/06/2023]
Abstract
Two-component signaling pathways generally include sensor histidine kinases and response regulators. We identified an ortholog of the response regulator protein Skn7 in the insect-pathogenic fungus Metarhizium robertsii, which we named MrSkn7. Gene deletion assays and functional characterizations indicated that MrSkn7 functions as a transcription factor. The MrSkn7 null mutant of M. robertsii lost the ability to sporulate and had defects in cell wall biosynthesis but was not sensitive to oxidative and osmotic stresses compared to the wild type. However, the mutant was able to produce spores under salt stress. Insect bioassays using these spores showed that the virulence of the mutant was significantly impaired compared to that of the wild type due to the failures to form the infection structure appressorium and evade host immunity. In particular, deletion of MrSkn7 triggered cell autolysis with typical features such as cell vacuolization, downregulation of repressor genes, and upregulation of autolysis-related genes such as extracellular chitinases and proteases. Promoter binding assays confirmed that MrSkn7 could directly or indirectly control different putative target genes. Taken together, the results of this study help us understand the functional divergence of Skn7 orthologs as well as the mechanisms underlying the development and control of virulence in insect-pathogenic fungi.
Collapse
|