1
|
Zhang L, Xie Q, Chang S, Ai Y, Dong K, Zhang H. Epigenetic Factor MicroRNAs Likely Mediate Vaccine Protection Efficacy against Lymphomas in Response to Tumor Virus Infection in Chickens through Target Gene Involved Signaling Pathways. Vet Sci 2024; 11:139. [PMID: 38668407 PMCID: PMC11053969 DOI: 10.3390/vetsci11040139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Epigenetic factors, including microRNAs (miRNAs), play an important role in affecting gene expression and, therefore, are involved in various biological processes including immunity protection against tumors. Marek's disease (MD) is a highly contagious disease of chickens caused by the MD virus (MDV). MD has been primarily controlled by vaccinations. MD vaccine efficacy might, in part, be dependent on modulations of a complex set of factors including host epigenetic factors. This study was designed to identify differentially expressed miRNAs in the primary lymphoid organ, bursae of Fabricius, in response to MD vaccination followed by MDV challenge in two genetically divergent inbred lines of White Leghorns. Small RNA sequencing and bioinformatic analyses of the small RNA sequence reads identified hundreds of miRNAs among all the treatment groups. A small portion of the identified miRNAs was differentially expressed within each of the four treatment groups, which were HVT or CVI988/Rispens vaccinated line 63-resistant birds and line 72-susceptible birds. A direct comparison between the resistant line 63 and susceptible line 72 groups vaccinated with HVT followed by MDV challenge identified five differentially expressed miRNAs. Gene Ontology analysis of the target genes of those five miRNAs revealed that those target genes, in addition to various GO terms, are involved in multiple signaling pathways including MAPK, TGF-β, ErbB, and EGFR1 signaling pathways. The general functions of those pathways reportedly play important roles in oncogenesis, anti-cancer immunity, cancer cell migration, and metastatic progression. Therefore, it is highly likely that those miRNAs may, in part, influence vaccine protection through the pathways.
Collapse
Affiliation(s)
- Lei Zhang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA;
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Yongxing Ai
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Kunzhe Dong
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA;
| | - Huanmin Zhang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA;
| |
Collapse
|
2
|
Jax E, Franchini P, Sekar V, Ottenburghs J, Monné Parera D, Kellenberger RT, Magor KE, Müller I, Wikelski M, Kraus RHS. Comparative genomics of the waterfowl innate immune system. Mol Biol Evol 2022; 39:6649919. [PMID: 35880574 PMCID: PMC9356732 DOI: 10.1093/molbev/msac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets.
Collapse
Affiliation(s)
- Elinor Jax
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Vaishnovi Sekar
- Department of Biology, Lund University, Lund, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Jente Ottenburghs
- Wildlife Ecology and Conservation Group, Wageningen University, Wageningen, The Netherlands.,Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | | | - Roman T Kellenberger
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| | - Inge Müller
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Robert H S Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Schillebeeckx E, van Meerbeeck JP, Lamote K. Clinical utility of diagnostic biomarkers in malignant pleural mesothelioma: a systematic review and meta-analysis. Eur Respir Rev 2021; 30:30/162/210057. [PMID: 34789461 PMCID: PMC9489015 DOI: 10.1183/16000617.0057-2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is characterised by late-stage diagnosis and poor prognosis. Currently, no screening tool is advocated and diagnosis is based on invasive techniques, which are not well tolerated. Non-invasive diagnostic biomarkers have shown potential and could have a huge clinical benefit. However, despite extensive research, there is no consensus yet on their clinical use, with many articles reporting contradicting results, limiting their clinical implementation. The aim of this systematic review is therefore to explore the different semi- and non-invasive diagnostic markers in several human matrices and identify those that might clinically be relevant. A total of 100 articles were selected through Web of Science and PubMed, with 56 articles included in the quantitative analysis. Although many studies have reported on the diagnostic accuracy of MPM biomarkers such as serum mesothelin and high-mobility group box protein 1 and plasma fibulin-3, none have resulted in a validated test for early detection. Future research should focus on external validation, combinations into biomarker panels, the inclusion of early stage MPM patients and a combination of different biomarker matrices, as well as new markers. Diagnostic biomarkers for malignant pleural mesothelioma seem promising; however, further research is necessary to prove their clinical value. This review provides a thorough overview of the different markers and compares them in several matrices.https://bit.ly/35ni6UO
Collapse
Affiliation(s)
- Eline Schillebeeckx
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium .,Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Jan P van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium.,Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.,Dept of Internal Medicine, Ghent University, Ghent, Belgium.,Pulmonology and Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium.,European Reference Network for rare respiratory diseases (ERN-LUNG), Frankfurt Am Main, Germany
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium.,Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.,Dept of Internal Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Hassanin O, Abdallah F, Ali HA, AlGabr N, Mohamed MHA. Different kinetics of chicken interferon-alpha signalling transduction responses following immunization of broiler chickens with different Newcastle disease virus vaccines and infection with virulent genotype VIId strain. Avian Pathol 2020; 50:85-97. [PMID: 33146541 DOI: 10.1080/03079457.2020.1841885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Newcastle disease virus (NDV) is a highly contagious and notifiable avian disease leading to grave economic losses in the poultry industry. Although the immune responses against NDV have been widely investigated, little is known regarding the virus interaction with the host innate immune responses. In this study, we tested the effect of different commercially applied Newcastle disease vaccines as well as virulent NDV genotype VIId on the expression pattern of the upstream regulator and downstream effector genes related to chicken interferon-alpha (chIFNα) signalling transduction pathway. Using quantitative real-time PCR analysis, mild transient induction of chIFNα-inducible genes was detected in bird spleen 72 h post-vaccination (hpv) with either live LaSota (respiratory) or VG/GA (enteric) strains. Vaccination with the enteric VG/GA strain led to stimulation of the investigated pathway as early as 24 hpv which continued up to 7 days in bird caecal tonsils. Subcutaneous injection with inactivated LaSota oil adjuvant-based vaccine led to continual stimulation of the investigated pathway up to 7 days post-vaccination (dpv). The recombinant herpesvirus of turkey (rHVT) - NDV vaccine led to remarkable stimulation of all the tested cytokines up to 17 dpv in comparison with LaSota and VG/GA NDV vaccines. Stronger but transient activation of all the tested cytokines was detected in spleens during the first 24 h post-challenge with virulent NDV (vNDV) which reduced gradually and diminished later due to the virus-induced lymphocytic depletion. This study will aid in the discovery of new approaches to control NDV.
Collapse
Affiliation(s)
- Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fatma Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Naif AlGabr
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary medicine, Thamar University, Dhamar, Yemen
| | - Mahmoud H A Mohamed
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
5
|
A Comparative Study of Pathology and Host Immune Response Induced by Very Virulent Infectious Bursal Disease Virus in Experimentally Infected Chickens of Aseel and White Leghorn Breeds. Vaccines (Basel) 2020; 8:vaccines8040627. [PMID: 33114776 PMCID: PMC7711558 DOI: 10.3390/vaccines8040627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Indigenous breeds of young chickens in India are believed to be resistant to the classical strain of infectious bursal disease virus (IBDV). However, the mechanism underlying this resistance is obscure. Innate immunity is a key factor in defining the clinical course and pathology of microbial infections. The present study is aimed to compare the pathology of very virulent IBDV (vvIBDV) and immunological host response in experimentally infected - vaccinated and unvaccinated indigenous Aseel and commercial White Leghorn chickens. The viral loads and innate immune gene expression profiles of MDA-5, Mx, IFN-α, and IFN-β in different lymphoid organs were analyzed by quantitative PCR. The histopathological scores in Aseel birds were lower than in White Leghorns despite comparable viral loads. The degrees of histopathological lesions were fewer in vaccinated birds than in unvaccinated birds of both breeds. Analysis of innate immune response genes revealed that the cytoplasmic pattern recognition receptor MDA-5 gene was overexpressed mainly in the cecal tonsils of both vaccinated and nonvaccinated White Leghorn chickens. An increase in the expression of the IFN-α gene was seen in the cecal tonsils of Aseels, and an increase in IFN-β gene expression was seen in the thymuses of White Leghorns following vvIBDV challenge both in vaccinated and nonvaccinated birds. In addition, we observed that the Mx gene plays a minimal role, if any, in vvIBDV infection of the breeds under study. It remains interesting and important that although vvIBDV causes disease in indigenous Aseel birds, the faster clearance and reduced pathology of the virus in Aseel birds compared to White Leghorn chicken indicate some unidentified innate immune factors that are limiting IBDV in this breed. Further studies will be required to correlate kinetics of humoral and cellular immune response in relation to the virus load in different organs to illuminate the mechanism of genetic resistance in native breeds of chicken.
Collapse
|
6
|
Dhanaraman T, Singh S, Killoran RC, Singh A, Xu X, Shifman JM, Smith MJ. RASSF effectors couple diverse RAS subfamily GTPases to the Hippo pathway. Sci Signal 2020; 13:13/653/eabb4778. [PMID: 33051258 DOI: 10.1126/scisignal.abb4778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Small guanosine triphosphatases (GTPases) of the RAS superfamily signal by directly binding to multiple downstream effector proteins. Effectors are defined by a folded RAS-association (RA) domain that binds exclusively to GTP-loaded (activated) RAS, but the binding specificities of most RA domains toward more than 160 RAS superfamily GTPases have not been characterized. Ten RA domain family (RASSF) proteins comprise the largest group of related effectors and are proposed to couple RAS to the proapoptotic Hippo pathway. Here, we showed that RASSF1-6 formed complexes with the Hippo kinase ortholog MST1, whereas RASSF7-10 formed oligomers with the p53-regulating effectors ASPP1 and ASPP2. Moreover, only RASSF5 bound directly to activated HRAS and KRAS, and RASSFs did not augment apoptotic induction downstream of RAS oncoproteins. Structural modeling revealed that expansion of the RASSF effector family in vertebrates included amino acid substitutions to key residues that direct GTPase-binding specificity. We demonstrated that the tumor suppressor RASSF1A formed complexes with the RAS-related GTPases GEM, REM1, REM2, and the enigmatic RASL12. Furthermore, interactions between RASSFs and RAS GTPases blocked YAP1 nuclear localization. Thus, these simple scaffolds link the activation of diverse RAS family small G proteins to Hippo or p53 regulation.
Collapse
Affiliation(s)
- Thillaivillalan Dhanaraman
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Anamika Singh
- Hebrew University of Jerusalem, Department of Biological Chemistry, Jerusalem 9190401, Israel
| | - Xingjian Xu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Julia M Shifman
- Hebrew University of Jerusalem, Department of Biological Chemistry, Jerusalem 9190401, Israel
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada. .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
7
|
Campbell LK, Magor KE. Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Front Cell Infect Microbiol 2020; 10:209. [PMID: 32477965 PMCID: PMC7236763 DOI: 10.3389/fcimb.2020.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death. The differences in influenza detection and antiviral effectors responsible for limiting damage in the mallards are largely unknown. Domestic mallards have an early and robust innate response to infection that seems to limit replication and clear highly pathogenic strains. The regulation and timing of the response to influenza also seems to circumvent damage done by a prolonged or dysregulated immune response. Rapid initiation of innate immune responses depends on viral recognition by pattern recognition receptors (PRRs) expressed in tissues where the virus replicates. RIG-like receptors (RLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) are all important influenza sensors in mammals during infection. Ducks utilize many of the same PRRs to detect influenza, namely RIG-I, TLR7, and TLR3 and their downstream adaptors. Ducks also express many of the same signal transduction proteins including TBK1, TRIF, and TRAF3. Some antiviral effectors expressed downstream of these signaling pathways inhibit influenza replication in ducks. In this review, we summarize the recent advances in our understanding of influenza recognition and response through duck PRRs and their adaptors. We compare basal tissue expression and regulation of these signaling components in birds, to better understand what contributes to influenza resistance in the duck.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Hagiwara K, Nakaya T, Onuma M. Characterization of Myxovirus resistance protein in birds showing different susceptibilities to highly pathogenic influenza virus. J Vet Med Sci 2020; 82:619-625. [PMID: 32173692 PMCID: PMC7273593 DOI: 10.1292/jvms.19-0408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We compared the Mx expression and anti-viral function and the 3D structure of Mx protein in four species: chicken (Gallus gallus), whooper swan
(Cygnus cygnus), jungle crow (Corvus macrorhynchos), and rock dove (Columba livia). We observed different mortalities associated with
highly pathogenic avian influenza virus (HPAIV) infection to understand the relationship between Mx function as an immune response factor and HPAIV proliferation in bird
cells. Different levels of Mx were observed among the different bird species after virus infection. Strong Mx expression was confirmed in the rock dove and
whooper swan 6 hr after viral infection. The lowest virus copy numbers were observed in rock dove. The virus infectivity was significantly reduced in the BALB/3T3 cells expressing rock dove
and jungle crow Mx. These results suggested that high Mx expression and significant Mx-induced anti-viral effects might result in the rock
dove primary cells having the lowest virus copy number. Comparison of the expected 3D structure of Mx protein in all four bird species demonstrated that the structure of loop L4 varied among
the investigated species. It was reported that differences in amino acid sequence in loop L4 affect antiviral activity in human and mouse cells, and a significant anti-viral effect was
observed in the rock dove Mx. Thus, the amino acid sequence of loop L4 in rock dove might represent relatively high anti-viral activity.
Collapse
Affiliation(s)
- Katsuro Hagiwara
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Manabu Onuma
- School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan.,Ecological Risk Assessment and Control Section, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
9
|
Polymorphisms of the Chicken Mx Gene Promoter and Association with Chicken Embryos' Susceptibility to Virulent Newcastle Disease Virus Challenge. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1486072. [PMID: 31687378 PMCID: PMC6794983 DOI: 10.1155/2019/1486072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022]
Abstract
Newcastle disease is a devastating viral disease of chicken in low- and middle-income countries where the backyard production system is predominant. Marker-assisted selection of chickens that are resistant to Newcastle disease virus (NDV) is the promising strategy that needs to be explored. The aim of the present study was to investigate polymorphisms of the promoter region of the chicken Mx gene and association with Kuroiler, Sasso, and local Tanzanian chicken embryos' survival variability to virulent NDV infection. Chicken embryos were initially challenged with a minimum lethal dose of virulent NDV suspension and then were followed over time to gather information on their survival variability. Using the survival data, high and less susceptible cohorts were established, and a total of 88 DNA samples from high and less susceptible groups were genotypes by sequencing. Five single-nucleotide polymorphisms (SNPs), which were previously reported, were detected. Interestingly, for the first time, the findings demonstrated the association of the promoter region of chicken myxovirus-resistance (Mx) gene polymorphisms with chicken embryos' susceptibility to the virulent NDV challenge. At the genotypic level, the SNP4 G > A mutation that was located within the IFN-stimulating response element was associated (LR: 6.97, P=0.03) with chicken embryos' susceptibility to the virulent NDV challenge. An allele G frequency was higher in the less susceptible cohort, whereas an allele A frequency was higher in the high susceptible cohort. At the haplotype level, the haplotype group ACGC was associated (OR: 9.8, 95% CI: 1.06–79.43, P=0.042) with the same trait and had a resistant effect. In conclusion, the results have demonstrated the association of chicken Mx gene promoter polymorphisms and chicken embryos' survival variability to the virulent NDV challenge, and the information is useful for breeding programs designed to develop chicken genotypes that are resistant to Newcastle disease virus.
Collapse
|
10
|
Allen M, Pearn K, Monks T, Bray BD, Everson R, Salmon A, James M, Stein K. Can clinical audits be enhanced by pathway simulation and machine learning? An example from the acute stroke pathway. BMJ Open 2019; 9:e028296. [PMID: 31530590 PMCID: PMC6756466 DOI: 10.1136/bmjopen-2018-028296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To evaluate the application of clinical pathway simulation in machine learning, using clinical audit data, in order to identify key drivers for improving use and speed of thrombolysis at individual hospitals. DESIGN Computer simulation modelling and machine learning. SETTING Seven acute stroke units. PARTICIPANTS Anonymised clinical audit data for 7864 patients. RESULTS Three factors were pivotal in governing thrombolysis use: (1) the proportion of patients with a known stroke onset time (range 44%-73%), (2) pathway speed (for patients arriving within 4 hours of onset: per-hospital median arrival-to-scan ranged from 11 to 56 min; median scan-to-thrombolysis ranged from 21 to 44 min) and (3) predisposition to use thrombolysis (thrombolysis use ranged from 31% to 52% for patients with stroke scanned with 30 min left to administer thrombolysis). A pathway simulation model could predict the potential benefit of improving individual stages of the clinical pathway speed, whereas a machine learning model could predict the benefit of 'exporting' clinical decision making from one hospital to another, while allowing for differences in patient population between hospitals. By applying pathway simulation and machine learning together, we found a realistic ceiling of 15%-25% use of thrombolysis across different hospitals and, in the seven hospitals studied, a realistic opportunity to double the number of patients with no significant disability that may be attributed to thrombolysis. CONCLUSIONS National clinical audit may be enhanced by a combination of pathway simulation and machine learning, which best allows for an understanding of key levers for improvement in hyperacute stroke pathways, allowing for differences between local patient populations. These models, based on standard clinical audit data, may be applied at scale while providing results at individual hospital level. The models facilitate understanding of variation and levers for improvement in stroke pathways, and help set realistic targets tailored to local populations.
Collapse
Affiliation(s)
| | - Kerry Pearn
- Medical School, University of Exeter, Exeter, UK
| | | | | | | | | | - Martin James
- Stroke Consultant, Royal Devon & Exeter NHS Trust, Exeter, UK
| | - Ken Stein
- Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
11
|
Hassanin O, Abdallah F, Mohamed MHA, Abdel Fattah DM. Influence of Marek's disease virus vaccines on chicken melanoma differentiation-associated gene 5-dependent-type I interferon signal transduction pathway with a highlight on their secondary impact on the immune responses post Newcastle disease virus vaccination. Vet Microbiol 2019; 235:248-256. [PMID: 31383309 DOI: 10.1016/j.vetmic.2019.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
Abstract
Marek's disease virus (MDV) leads to a lytic infection of B-lymphocytes in chickens, and also latently infects T-lymphocytes. Although Marek's disease vaccines have been widely in use, little is known about the innate immune response of this important livestock vaccine. In this study, we tested the effect of different commercially applied Marek's disease vaccines on the expression pattern of selected genes related to chicken interferon-alpha (chIFN-α) (melanoma differentiation associated gene 5 "MDA5″ dependent) signal transduction pathway. Both MDV serotype I (Rispens) and serotype III (Herpesvirus of turkey "HVT") vaccines could stimulate MDA5 dependent-type I interferon response as early as three days post vaccination in a dose-dependent manner. The stimulation continued up to 10 days in the instance of HVT vaccine and declined in the case of Rispens. Surprisingly, increasing the doses of the two vaccines led to dose-dependent down-regulation in the expression pattern of the investigated pathway, five and ten days post vaccination. Additionally, to shed the light on the consequent effect on the immune responses of the other viral vaccine, another experimental model based on Newcastle disease virus (NDV) vaccines was designed using HVT, HVT-VP2 and Rispens MDV vaccines. The three MDV vaccines were found to reduce chicken humoral immune response post NDV vaccination. However, only Rispens and HVT-VP2 had suppressive effects on the expression of MDA5-dependent-chIFN-α related cytokines. Consistent with this finding, the protection rate and NDV- humoral immune response post challenge with virulent NDV strain was lower in case of Rispens and HVT-VP2 vaccines.
Collapse
Affiliation(s)
- Ola Hassanin
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| | - Fatma Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Mahmoud H A Mohamed
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Department of Clinical Studies, Collage of Veterinary, King Faisal University, Saudi Arabia
| | - Doaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| |
Collapse
|
12
|
Mpenda F, Schilling M, Campbell Z, Mngumi E, Buza J. The genetic diversity of local african chickens: A potential for selection of chickens resistant to viral infections. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
14
|
Genotype frequency contributions of Mx1 gene in eight chicken breeds under different selection pressures. 3 Biotech 2018; 8:483. [PMID: 30456017 DOI: 10.1007/s13205-018-1504-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
Chicken Mx1 gene, as a positive antiviral gene, has been reported to provide resistance to several viruses especially avian influenza virus. In present research, the genotype frequency contributions of chicken Mx1 polymorphisms were characterized in five lowly selected as well as one moderately selected Sichuan native chicken populations and two highly selected commercial chicken breeds. Together with two newly-identified mutation sites (r.8A > G and r.1257T > C), a total of 13 single nucleotide polymorphisms (SNPs), including seven nonsynonymous mutation and six synonymous mutation, were found in the coding region of chicken Mx1 gene. Local Chinese chicken populations exhibited higher nucleotide diversity than commercial populations. Moreover, amino acid substitution sites as well as positive selection sites were located only in the domain not determined and GTPase domain, implying that amino acids mutations were likely needed in the modulatory and structural regions to better adapt the environment. Collectively, our results suggest that different selection pressures greatly influenced the genotype frequency contributions of chicken Mx1 gene. Understanding the interaction between genetic diversity and artificial selection may help us to better select and breed superior domestic chickens.
Collapse
|
15
|
Chen S, Zeng M, Liu P, Yang C, Wang M, Jia R, Zhu D, Liu M, Yang Q, Wu Y, Zhao X, Cheng A. The 125th Lys and 145th Thr Amino Acids in the GTPase Domain of Goose Mx Confer Its Antiviral Activity against the Tembusu Virus. Viruses 2018; 10:v10070361. [PMID: 29986463 PMCID: PMC6070871 DOI: 10.3390/v10070361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
The Tembusu virus (TMUV) is an avian pathogenic flavivirus that causes a highly contagious disease and catastrophic losses to the poultry industry. The myxovirus resistance protein (Mx) of innate immune effectors is a key antiviral “workhorse” of the interferon (IFN) system. Although mammalian Mx resistance against myxovirus and retrovirus was witnessed for decades, whether or not bird Mx has anti-flavivirus activity remains unknown. In this study, we found that the transcription of goose Mx (goMx) was obviously driven by TMUV infection, both in vivo and in vitro, and that the titers and copies of TMUV were significantly reduced by goMx overexpression. In both primary (goose embryo fibroblasts, GEFs) and passaged cells (baby hamster kidney cells, BHK21, and human fetal kidney cells, HEK 293T), it was shown that goMx was mainly located in the cytoplasm, and sporadically distributed in the nucleus. The intracellular localization of this protein is attributed to the predicted bipartite nuclear localization signal (NLS; 30 residues: the 441st–471st amino acids of goMx). Intuitively, it seems that the cells with a higher level of goMx expression tend to have lower TMUV loads in the cytoplasm, as determined by an immunofluorescence assay. To further explore the antiviral determinants, a panel of variants was constructed. Two amino acids at the 125th (Lys) and 145th (Thr) positions in GTP-binding elements, not in the L4 loop (40 residues: the 532nd–572nd amino acids of goMx), were vital for the antiviral function of goMx against TMUV in vitro. These findings will contribute to our understanding of the functional significance of the antiviral system in aquatic birds, and the development of goMx could be a valuable therapeutic agent against TMUV.
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Miao Zeng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Peng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Chao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
16
|
Schilling MA, Katani R, Memari S, Cavanaugh M, Buza J, Radzio-Basu J, Mpenda FN, Deist MS, Lamont SJ, Kapur V. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection. Front Genet 2018. [PMID: 29535762 PMCID: PMC5835104 DOI: 10.3389/fgene.2018.00061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.
Collapse
Affiliation(s)
- Megan A Schilling
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Robab Katani
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,Applied Biological Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Sahar Memari
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Meredith Cavanaugh
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Joram Buza
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Jessica Radzio-Basu
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Fulgence N Mpenda
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Melissa S Deist
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States.,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
17
|
Zeng M, Chen S, Wang M, Jia R, Zhu D, Liu M, Sun K, Yang Q, Wu Y, Chen X, Cheng A. Molecular identification and comparative transcriptional analysis of myxovirus resistance GTPase (Mx) gene in goose (Anser cygnoide) after H9N2 AIV infection. Comp Immunol Microbiol Infect Dis 2016; 47:32-40. [PMID: 27477505 DOI: 10.1016/j.cimid.2016.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/20/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Interferon (IFN)-induced myxovirus resistance (Mx) GTPases belong to the family of dynamin-like GTPases and control a diverse range of viruses. In this study, the identified goose Mx (goMx) mRNA is 2009bp long, shares partially conserved exons with other homologues, and shares highly conserved domains in its primary structure. The amino acid position 629 (629aa) of the goMx protein was identified as serine (Ser), in contrast to the Ser located at 631aa in chicken Mx, which is considered to be responsible for the lack of chicken Mx antiviral activity. In addition, the goMx 142aa residue in the dynamin family signature differs from that of other functional Mx proteins. Transcriptional analysis revealed that goMx was mainly expressed in the digestive, respiratory and immune systems in an age-specific manner. GoMx transcript levels in goose peripheral blood mononuclear cells (PBMCs) were found to be significantly up-regulated by various agonists and avian viruses. Furthermore, a time course study of the effects of H9N2 avian influenza virus (AIV) on goMx expression in infected goslings suggested that H9N2 AIV affected goMx expression. However, significant changes in goMx expression were observed in the trachea, lung and small intestine of infected birds. Altogether, these results indicate that goMx protein may have acquired its broad antiviral activity by changing only a few amino acids at select sites, even as it shares a conserved architectures with species.
Collapse
Affiliation(s)
- Miao Zeng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
18
|
Blohm U, Weigend S, Preisinger R, Beer M, Hoffmann D. Immunological Competence of Different Domestic Chicken Breeds Against Avian Influenza Infection. Avian Dis 2016; 60:262-8. [DOI: 10.1637/11159-051615-regr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Nguyen-Phuc H, Fulton JE, Berres ME. Genetic variation of major histocompatibility complex (MHC) in wild Red Junglefowl (Gallus gallus). Poult Sci 2016; 95:400-11. [PMID: 26839415 DOI: 10.3382/ps/pev364] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 01/09/2023] Open
Abstract
The major histocompatibility complex (MHC) is a multi-family gene cluster that encodes proteins with immuno-responsive function. While studies of MHC in domesticated poultry are relatively common, very little is known about this highly polymorphic locus in wild Red Junglefowl (Gallus gallus), the natural progenitor of domestic chickens. We investigated the diversity of MHC within and among four wild Red Junglefowl populations across diversified natural habitats in South Central Vietnam. Based on a SNP panel of 84 sites spanning 210 Kb of the MHC-B locus, we identified 310 unique haplotypes in 398 chromosomes. None of these haplotypes have been described before and we did not observe any of the wild Red Junglefowl haplotypes in domesticated chickens. Analysis of molecular variance (AMOVA) revealed that 94.51% of observed haplotype variation was accounted for at the within individual level. Little genetic variance was apportioned within and among populations, the latter accounting only for 0.83%. We also found evidence of increased recombination, including numerous hotspots, and limited linkage disequilibrium among the 84 SNP sites. Compared to an average haplotype diversity of 3.55% among seventeen lines of domestic chickens, our results suggest extraordinarily high haplotype diversity remains in wild Red Junglefowl and is consistent with a pattern of balancing selection. Wild Red Junglefowl in Vietnam, therefore, represent a rich resource of natural genomic variation independent from artificial selection.
Collapse
Affiliation(s)
- Hoa Nguyen-Phuc
- University of Wisconsin-Madison, Department of Animal Sciences, Madison, WI
| | | | - Mark E Berres
- University of Wisconsin-Madison, Department of Animal Sciences, Madison, WI
| |
Collapse
|