1
|
Lawson A, Annunziato M, Bashirova N, Eeza MNH, Matysik J, Alia A, Berry JP. High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance Identifies Impairment of Metabolism by T-2 Toxin, in Relation to Toxicity, in Zebrafish Embryo Model. Toxins (Basel) 2024; 16:424. [PMID: 39453200 PMCID: PMC11511446 DOI: 10.3390/toxins16100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Among the widespread trichothecene mycotoxins, T-2 toxin is considered the most toxic congener. In the present study, we utilized high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR), coupled to the zebrafish (Danio rerio) embryo model, as a toxicometabolomics approach to elucidate the cellular, molecular and biochemical pathways associated with T-2 toxicity. Aligned with previous studies in the zebrafish embryo model, exposure to T-2 toxin was lethal in the high parts-per-billion (ppb) range, with a median lethal concentration (LC50) of 105 ppb. Exposure to the toxins was, furthermore, associated with system-specific alterations in the production of reactive oxygen species (ROS), including decreased ROS production in the liver and increased ROS in the brain region, in the exposed embryos. Moreover, metabolic profiling based on HRMAS NMR revealed the modulation of numerous, interrelated metabolites, specifically including those associated with (1) phase I and II detoxification, and antioxidant pathways; (2) disruption of the phosphocholine lipids of cell membranes; (3) mitochondrial energy metabolism, including apparent disruption of the tricarboxylic acid (TCA) cycle, and the electron transport chain of oxidative phosphorylation, as well as "upstream" effects on carbohydrate, i.e., glucose metabolism; and (4) several compensatory catabolic pathways. Taken together, these observations enabled development of an integrated, system-level model of T-2 toxicity in relation to human and animal health.
Collapse
Affiliation(s)
- Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
| | - Mark Annunziato
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Muhamed N. Hashem Eeza
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
| | - A. Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
- Leiden Institute of Chemistry, Leiden University, 2333 Leiden, The Netherlands
| | - John. P. Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
Jin H, He J, Wu M, Wang X, Jia L, Zhang L, Guo J. Resveratrol Alleviated T-2 Toxin-Induced Liver Injury via Preservation of Nrf2 Pathway and GSH Synthesis. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39225115 DOI: 10.1002/tox.24412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
T-2 toxin is a trichothecene mycotoxin and is considered as an extremely inevitable pollutant with potent hepatotoxicity. However, the approach to alleviation of T-2 toxin-triggered hepatotoxicity has been recognized as a serious challenge. Resveratrol (Res) is a polyphenol natural product isolated from various plant species, but its protective effect against T-2 toxin hepatotoxicity and detailed mechanism remains obscure. In the present study, the effect of Res against the hepatotoxicity was evaluated, and the underlying mechanisms were further revealed in mice. Functionally, Res inhibited liver injury, oxidative damage, and mitochondrial dysfunction induced by T-2 toxin. Mechanistically, Res modulated Nrf2-mediated antioxidant pathway and glutathione synthesis inhibition. Collectively, our findings first showed beyond doubt that Res ameliorated T-2 toxin-triggered liver injury by regulating Nrf2 pathways in mice.
Collapse
Affiliation(s)
- Hong Jin
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| | - Jun He
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| | - Min Wu
- School of Public Health, China Medical University, Shenyang, Shenbei New District, China
| | - Xiaohan Wang
- School of Public Health, China Medical University, Shenyang, Shenbei New District, China
| | - Li Jia
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| | - Li Zhang
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| | - Jiabin Guo
- Department of Military Operation Medical Protection, Chinese PLA Center for Disease Control and Prevention, Beijing, Fengtai District, China
| |
Collapse
|
3
|
Tao H, Zhu P, Xia W, Chu M, Chen K, Wang Q, Gu Y, Lu X, Bai J, Geng D. The Emerging Role of the Mitochondrial Respiratory Chain in Skeletal Aging. Aging Dis 2024; 15:1784-1812. [PMID: 37815897 PMCID: PMC11272194 DOI: 10.14336/ad.2023.0924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Jiangsu, China.
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| |
Collapse
|
4
|
Qi F, Cui SL, Zhang B, Li HN, Yu J. T-2 toxin-induced damage to articular cartilage in rats coincided with impaired autophagy linked to the HIF-1α/AMPK signaling axis. Toxicon 2024; 243:107735. [PMID: 38670500 DOI: 10.1016/j.toxicon.2024.107735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
T-2 toxin is one of the most toxic mycotoxins. People are primarily exposed to T-2 toxin through the consumption of spoiled food, typically over extended periods and at low doses. T-2 toxin can cause damage to articular cartilage. However, the exact mechanism is not fully understood. In this experiment, 36 male rats were divided into a control group, a solvent control group, and a T-2 toxin group. The rats in the T-2 toxin group were orally administered the toxin at a dosage of 100 ng/g BW/Day. The damage to articular cartilage and key proteins associated with the autophagy process and the HIF-1α/AMPK signaling axis was assessed at 4, 8, 12, and 16 weeks. Our findings indicate that T-2 toxin-induced damage to articular cartilage in rats coincided with impaired autophagy linked to the HIF-1α/AMPK signaling pathway. This study offers novel insights into the precise mechanism underlying T-2 toxin-induced damage to articular cartilage.
Collapse
Affiliation(s)
- Fang Qi
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin, 150081, China
| | - Si-Lu Cui
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin, 150081, China
| | - Bing Zhang
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin, 150081, China; School of Public Health, Beihua University, Jilin, 132013, Jilin, China
| | - Hao-Nan Li
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin, 150081, China
| | - Jun Yu
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China; National Healthy Commission and Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Heilongjiang Provincial Laboratory of Trace Element and Human Health, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Yu FF, Yu SY, Sun L, Zuo J, Luo KT, Wang M, Fu XL, Zhang F, Huang H, Zhou GY, Wang YJ, Ba Y. T-2 toxin induces mitochondrial dysfunction in chondrocytes via the p53-cyclophilin D pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133090. [PMID: 38039814 DOI: 10.1016/j.jhazmat.2023.133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Kashin-Beck disease is an endemic joint disease characterized by deep chondrocyte necrosis, and T-2 toxin exposure has been confirmed its etiology. This study investigated mechanism of T-2 toxin inducing mitochondrial dysfunction of chondrocytes through p53-cyclophilin D (CypD) pathway. The p53 signaling pathway was significantly enriched in T-2 toxin response genes from GeneCards. We demonstrated the upregulation of the p53 protein and p53-CypD complex in rat articular cartilage and ATDC5 cells induced by T-2 toxin. Transmission electron microscopy showed the damaged mitochondrial structure of ATDC5 cells induced by T-2 toxin. Furthermore, it can lead to overopening of the mitochondrial permeability transition pore (mPTP), decreased mitochondrial membrane potential, and increased reactive oxygen species generation in ATDC5 cells. Pifithrin-α, the p53 inhibitor, alleviated the increased p53-CypD complex and mitochondrial dysfunction of chondrocytes induced by T-2 toxin, suggesting that p53 played an important role in T-2 toxin-induced mitochondrial dysfunction. Mechanistically, T-2 toxin can activate the p53 protein, which can be transferred to the mitochondrial membrane and form a complex with CypD. The increased binding of p53 and CypD mediated the excessive opening of mPTP, changed mitochondrial membrane permeability, and ultimately induced mitochondrial dysfunction and apoptosis of chondrocytes.
Collapse
Affiliation(s)
- Fang-Fang Yu
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shui-Yuan Yu
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lei Sun
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Juan Zuo
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Kang-Ting Luo
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Miao Wang
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiao-Li Fu
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Feng Zhang
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hui Huang
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Guo-Yu Zhou
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yan-Jie Wang
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yue Ba
- School of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
6
|
Wu Y, Gong Y, Zhang Y, Li S, Wang C, Yuan Y, Lv X, Liu Y, Chen F, Chen S, Zhang F, Guo X, Wang X, Ning Y, Zhao H. Comparative Analysis of Gut Microbiota from Rats Induced by Se Deficiency and T-2 Toxin. Nutrients 2023; 15:5027. [PMID: 38140286 PMCID: PMC10745411 DOI: 10.3390/nu15245027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to analyze the differences in gut microbiota between selenium deficiency and T-2 toxin intervention rats. Knee joint and fecal samples of rats were collected. The pathological characteristics of knee cartilage were observed by safranin O/fast green staining. DNA was extracted from fecal samples for PCR amplification, and 16S rDNA sequencing was performed to compare the gut microbiota of rats. At the phylum level, Firmicutes (81.39% vs. 77.06%) and Bacteroidetes (11.11% vs. 14.85%) were dominant in the Se-deficient (SD) group and T-2 exposure (T-2) groups. At the genus level, the relative abundance of Ruminococcus_1 (12.62%) and Ruminococcaceae_UCG-005 (10.31%) in the SD group were higher. In the T-2 group, the relative abundance of Lactobacillus (11.71%) and Ruminococcaceae_UCG-005 (9.26%) were higher. At the species level, the high-quality bacteria in the SD group was Ruminococcus_1_unclassified, and Ruminococcaceae_UCG-005_unclassified in the T-2 group. Lactobacillus_sp__L_YJ and Lactobacillus_crispatus were the most significant biomarkers in the T-2 group. This study analyzed the different compositions of gut microbiota in rats induced by selenium deficiency and T-2 toxin, and revealed the changes in gut microbiota, so as to provide a certain basis for promoting the study of the pathogenesis of Kashin-Beck disease (KBD).
Collapse
Affiliation(s)
- Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Yi Gong
- MED-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Shujin Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Chaowei Wang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Yuequan Yuan
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Xi Lv
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi’an Jiaotong University, No.157 Xi Wu Road, Xi’an 710004, China
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi’an Jiaotong University, Xi’an 710001, China
| |
Collapse
|
7
|
Santos MM, Santos AM, Nascimento Júnior JAC, Andrade TDA, Rajkumar G, Frank LA, Serafini MR. The management of osteoarthritis symptomatology through nanotechnology: a patent review. J Microencapsul 2023; 40:475-490. [PMID: 37698545 DOI: 10.1080/02652048.2023.2258955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Osteoarthritis is considered a degenerative joint disease that is characterised by inflammation, chronic pain, and functional limitation. The increasing development of nanotechnology in drug delivery systems has provided new ideas and methods for osteoarthritis therapy. This review aimed to evaluate patents that have developed innovations, therapeutic strategies, and alternatives using nanotechnology in osteoarthritis treatment. The results show patents deposited from 2015 to November 2021 in the online databases European Patent Office and World Intellectual Property Organisation. A total of 651 patents were identified for preliminary assessment and 16 were selected for full reading and discussion. The evaluated patents are focused on the intraarticular route, oral route, and topical route for osteoarthritis treatment. The intraarticular route presented a higher patent number, followed by the oral and topical routes, respectively. The development of new technologies allows us to envision a promising and positive future in osteoarthritis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Gomathi Rajkumar
- Department of Botany, Sri Sarada College for Women (Autonomous), Affiliated to Periyar University, Salem, India
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
8
|
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Synowiec E, Sliwinski T, Stela M, Bijak M. DNA Damage Induced by T-2 Mycotoxin in Human Skin Fibroblast Cell Line-Hs68. Int J Mol Sci 2023; 24:14458. [PMID: 37833905 PMCID: PMC10572149 DOI: 10.3390/ijms241914458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
T-2 mycotoxin is the most potent representative of the trichothecene group A and is produced by various Fusarium species, including F. sporotrichioides, F. poae, and F. acuminatum. T-2 toxin has been reported to have toxic effects on various tissues and organs, and humans and animals alike suffer a variety of pathological conditions after consumption of mycotoxin-contaminated food. The T-2 toxin's unique feature is dermal toxicity, characterized by skin inflammation. In this in vitro study, we investigated the molecular mechanism of T-2 toxin-induced genotoxicity in the human skin fibroblast-Hs68 cell line. For the purpose of investigation, the cells were treated with T-2 toxin in 0.1, 1, and 10 μM concentrations and incubated for 24 h and 48 h. Nuclear DNA (nDNA) is found within the nucleus of eukaryotic cells and has a double-helix structure. nDNA encodes the primary structure of proteins, consisting of the basic amino acid sequence. The alkaline comet assay results showed that T-2 toxin induces DNA alkali-labile sites. The DNA strand breaks in cells, and the DNA damage level is correlated with the increasing concentration and time of exposure to T-2 toxin. The evaluation of nDNA damage revealed that exposure to toxin resulted in an increasing lesion frequency in Hs68 cells with HPRT1 and TP53 genes. Further analyses were focused on mRNA expression changes in two groups of genes involved in the inflammatory and repair processes. The level of mRNA increased for all examined inflammatory genes (TNF, INFG, IL1A, and IL1B). In the second group of genes related to the repair process, changes in expression induced by toxin in genes-LIG3 and APEX were observed. The level of mRNA for LIG3 decreased, while that for APEX increased. In the case of LIG1, FEN, and XRCC1, no changes in mRNA level between the control and T-2 toxin probes were observed. In conclusion, the results of this study indicate that T-2 toxin shows genotoxic effects on Hs68 cells, and the molecular mechanism of this toxic effect is related to nDNA damage.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.N.); (M.S.)
| |
Collapse
|
9
|
Yu F, Luo K, Wang M, Luo J, Sun L, Yu S, Zuo J, Wang Y. Selenomethionine Antagonized microRNAs Involved in Apoptosis of Rat Articular Cartilage Induced by T-2 Toxin. Toxins (Basel) 2023; 15:496. [PMID: 37624253 PMCID: PMC10467099 DOI: 10.3390/toxins15080496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
T-2 toxin and selenium deficiency are considered important etiologies of Kashin-Beck disease (KBD), although the exact mechanism is still unclear. To identify differentially expressed microRNAs (DE-miRNAs) in the articular cartilage of rats exposed to T-2 toxin and selenomethionine (SeMet) supplementation, thirty-six 4-week-old Sprague Dawley rats were divided into a control group (gavaged with 4% anhydrous ethanol), a T-2 group (gavaged with 100 ng/g·bw/day T-2 toxin), and a T-2 + SeMet group (gavaged with 100 ng/g·bw/day T-2 toxin and 0.5 mg/kg·bw/day SeMet), respectively. Toluidine blue staining was performed to detect the pathological changes of articular cartilage. Three rats per group were randomly selected for high-throughput sequencing of articular cartilage. Target genes of DE-miRNAs were predicted using miRanda and RNAhybrid databases, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were enriched. The network map of miRNA-target genes was constructed using Cytoscape software. The expression profiles of miRNAs associated with KBD were obtained from the Gene Expression Omnibus database. Additionally, the DE-miRNAs were selected for real-time quantitative PCR (RT-qPCR) verification. Toluidine blue staining demonstrated that T-2 toxin damaged articular cartilage and SeMet effectively alleviated articular cartilage lesions. A total of 50 DE-miRNAs (28 upregulated and 22 downregulated) in the T-2 group vs. the control group, 18 DE-miRNAs (6 upregulated and 12 downregulated) in the T-2 + SeMet group vs. the control group, and 25 DE-miRNAs (5 upregulated and 20 downregulated) in the T-2 + SeMet group vs. the T-2 group were identified. Enrichment analysis showed the target genes of DE-miRNAs were associated with apoptosis, and in the MAPK and TGF-β signaling pathways in the T-2 group vs. the control group. However, the pathway of apoptosis was not significant in the T-2 + SeMet group vs. the control group. These results indicated that T-2 toxin induced apoptosis, whereas SeMet supplementation antagonized apoptosis. Apoptosis and autophagy occurred simultaneously in the T-2 + SeMet group vs. T-2 group, and autophagy may inhibit apoptosis to protect cartilage. Compared with the GSE186593 dataset, the evidence of miR-133a-3p involved in apoptosis was more abundant. The results of RT-qPCR validation were consistent with RNA sequencing results. Our findings suggested that apoptosis was involved in articular cartilage lesions induced by T-2 toxin, whereas SeMet supplementation antagonized apoptosis, and that miR-133a-3p most probably played a central role in the apoptosis process.
Collapse
Affiliation(s)
- Fangfang Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Kangting Luo
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Miao Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Jincai Luo
- Sanmenxia Center for Disease Control and Prevention, Sanmenxia 472000, China;
| | - Lei Sun
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Shuiyuan Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Juan Zuo
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| | - Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (F.Y.); (K.L.); (M.W.); (L.S.); (S.Y.); (J.Z.)
| |
Collapse
|
10
|
Mitochondrial Damage Induced by T-2 Mycotoxin on Human Skin-Fibroblast Hs68 Cell Line. Molecules 2023; 28:molecules28052408. [PMID: 36903658 PMCID: PMC10005480 DOI: 10.3390/molecules28052408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
T-2 toxin is produced by different Fusarium species and belongs to the group of type A trichothecene mycotoxins. T-2 toxin contaminates various grains, such as wheat, barley, maize, or rice, thus posing a risk to human and animal health. The toxin has toxicological effects on human and animal digestive, immune, nervous and reproductive systems. In addition, the most significant toxic effect can be observed on the skin. This in vitro study focused on T-2 toxicity on human skin fibroblast Hs68 cell line mitochondria. In the first step of this study, T-2 toxin's effect on the cell mitochondrial membrane potential (MMP) was determined. The cells were exposed to T-2 toxin, which resulted in dose- and time-dependent changes and a decrease in MMP. The obtained results revealed that the changes of intracellular reactive oxygen species (ROS) in the Hs68 cells were not affected by T-2 toxin. A further mitochondrial genome analysis showed that T-2 toxin in a dose- and time-dependent manner decreased the number of mitochondrial DNA (mtDNA) copies in cells. In addition, T-2 toxin genotoxicity causing mtDNA damage was evaluated. It was found that incubation of Hs68 cells in the presence of T-2 toxin, in a dose- and time-dependent manner, increased the level of mtDNA damage in both tested mtDNA regions: NADH dehydrogenase subunit 1 (ND1) and NADH dehydrogenase subunit 5 (ND5). In conclusion, the results of the in vitro study revealed that T-2 toxin shows adverse effects on Hs68 cell mitochondria. T-2 toxin induces mitochondrial dysfunction and mtDNA damage, which may cause the disruption of adenosine triphosphate (ATP) synthesis and, in consequence, cell death.
Collapse
|
11
|
Shi Y, Shao X, Sun M, Ma J, Li B, Zou N, Li F. MiR-140 is involved in T-2 toxin-induced matrix degradation of articular cartilage. Toxicon 2023; 222:106987. [PMID: 36462649 DOI: 10.1016/j.toxicon.2022.106987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
T-2 toxin is one of the most toxic mycotoxins contaminating various grains. It is considered an environmental risk factor for Kashin-Beck disease (KBD), an endemic degenerative osteochondrosis. Currently, the underlying molecular mechanisms of articular cartilage damage caused by T-2 toxin have not been elucidated. Studies have shown that miR-140 is essential for cartilage formation, and extracellular matrix (EMC) synthesis and degradation. The objective of this study was to investigate the mechanism of miR-140 involvement in T-2 toxin-induced articular cartilage damage. Two treatment groups, each containing wild-type mice and miR-140 knockout mice were administered with T-2 toxin (200 ng/g BW/day) or a normal diet for 1 month, 3 months, and 6 months. Results showed that T-2 toxin caused articular cartilage and growth plate damage in mice. The expression of miR-140 decreased in articular cartilage of wild-type mice treated with T-2 toxin, and miR-140 deficiency aggravated T-2 toxin-induced knee cartilage damage. T-2 toxin-caused the reduction of miR-140 expression was consistent with collagen type II (COL2A1), aggrecan (ACAN), and SRY-box containing gene 9 (SOX9) and opposite to matrix metalloproteinase 13 (MMP13), a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5), and v-ral simian leukemia viral oncogene homolog A (RALA). In addition, we collected finger joints cartilage and knee joints cartilage from KBD patients and controls for paraffin embedding and sectioning. Results found that the expression of miR-140 in the articular cartilage of the KBD group was lower than that of the control group. The expression of COL2A1, ACAN, and SOX9 decreased, whereas ADAMTS-5, MMP13, and RALA increased in the articular cartilage of the KBD group. These results revealed that miR-140 might be involved in T-2 toxin-induced degradation of the ECM of articular cartilage. Moreover, the occurrence of KBD might be related to the decreased expression of miR-140 in articular cartilage.
Collapse
Affiliation(s)
- Yaning Shi
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Xinhua Shao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Mengyi Sun
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jing Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Bingsu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China
| | - Ning Zou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China.
| | - Fuyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention/ Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health Commission of the People's Republic of China (23618504), Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
12
|
DON entry into the nucleus induces DNA damage, apoptosis and cycle arrest in GES-1 cells. Food Chem Toxicol 2022; 171:113531. [DOI: 10.1016/j.fct.2022.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
|
13
|
Zhang J, Song M, Cui Y, Shao B, Zhang X, Cao Z, Li Y. T-2 toxin-induced femur lesion is accompanied by autophagy and apoptosis associated with Wnt/β-catenin signaling in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:1653-1661. [PMID: 35289972 DOI: 10.1002/tox.23514] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
T-2 toxin is one of the most common mycotoxins found in grain foods, animal feed, and other agricultural by-products causing food contamination and health threat. The skeletal system is the main target tissue for T-2 toxin. T-2 toxin exposure is also recognized as a potential contributor to multiple types of bone diseases, including Kashin-Beck disease. However, the mechanisms of T-2 toxin-induced bone toxicity remain unclear. In this study, 60 male C57BL/6 mice were exposed T-2 toxin with 0, 0.5, 1 or 2 mg/kg body weight by intragastric administration for 28 days, respectively. Femora were collected for the detections of femur lesion, bone formation factors, oxidative stress, autophagy, apoptosis, and Wnt/β-catenin signaling. Our research showed that T-2 toxin caused bone formation disorders, presenting as the reduction of the BMD and femur length, bone structure changes and abnormal bone formation proteins expressions, along with enhanced oxidative stress. Meanwhile, T-2 toxin increased expressions of autophagy-related proteins (Beclin 1, ATG5, p62, and LC3), and promoted apoptosis in mouse femur. Moreover, T-2 toxin suppressed the Wnt/β-catenin signaling and expressions of downstream target genes. Taken together, our data indicated T-2 toxin-induced femur lesion was accompanied by autophagy and apoptosis, which was associated with Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Potential Role of Individual and Combined Effects of T-2 Toxin, HT-2 Toxin and Neosolaniol on the Apoptosis of Porcine Leydig Cells. Toxins (Basel) 2022; 14:toxins14020145. [PMID: 35202172 PMCID: PMC8876060 DOI: 10.3390/toxins14020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
T-2 toxin usually co-occurs with HT-2 toxin and neosolaniol (NEO) in the grains and feed. Our previous studies found that T-2 toxin and its metabolites’ binary or ternary combination exposure to porcine Leydig cells (LCs) displayed synergism in certain range of dosage and cannot be predicted based on individual toxicity. However, the possible mechanism of these mycotoxins’ combined exposure to cell lesions remains unknown. Based on 50% cell viability, the mechanism of apoptosis in porcine Leydig cells was investigated after exposure to T-2, HT-2, NEO individual and binary or ternary combinations. Compared with control, the adenosine triphosphate (ATP) content decreased, reactive oxygen species (ROS) level increased, and mitochondrial membrane potential (MMP) decreased in all treated groups. Additionally, the cell apoptosis rates were significantly increased in test groups (p < 0.05), and the B-cell lymphoma 2 (Bcl-2) Associated X (Bax)/Bcl-2 ratio and the expression of caspase 3, caspase 8, cytochrome c (Cytc) in the treated group are all significantly higher than the control group. Moreover, the expression of Cytc and caspase 8 gene in NEO and T-2+NEO groups was significantly higher than that in other individual and combined groups. It can be concluded that the toxicities of T-2, HT-2, and NEO individually and in combination can induce apoptosis related to the oxidative stress and mitochondrial damage, and the synergistic effect between toxins may be greater than a single toxin effect, which is beneficial for assessing the possible risk of the co-occurrences in foodstuffs to human and animal health.
Collapse
|
15
|
Yu FF, Sun L, Zhou GY, Ping ZG, Guo X, Ba Y. Meta-analysis of Association Studies of Selenoprotein Gene Polymorphism and Kashin-Beck Disease: an Updated Systematic Review. Biol Trace Elem Res 2022; 200:543-550. [PMID: 33844169 DOI: 10.1007/s12011-021-02705-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
To evaluate the association between selenoprotein gene polymorphisms and Kashin-Beck disease (KBD) susceptibility through a systematic review and updated meta-analysis. PubMed, Google Scholar, Cochrane library, and Chinese National Knowledge Infrastructure (CNKI) were electronically searched using the terms "selenoprotein" and "Kashin-Beck disease" or "KBD" with a search time from the establishment of the database to January 2021. The Newcastle-Ottawa Scale (NOS) was used for methodological quality evaluation of the included studies. Stata 14.0 software was used to pooled odds ratio (OR) and 95% confidence interval. There were a total of eight included case-control studies covering 2025 KBD patients and 1962 controls. Meta-analysis results show that the pooled odds ratios (OR) and 95% confidence intervals (CI) for DIO2 (rs225014) were 0.69 (0.52, 0.91), 0.69 (0.50, 0.96), and 0.72 (0.52, 0.99) in the allele, heterozygote, and dominant models, respectively. The OR and 95%CI for SEPS1 (-105G>A) were 2.47 (1.85, 3.29), 9.36 (4.58, 19.12), 2.17 (1.53, 3.08), and 8.60 (4.25, 17.38) in the allele, homozygote, dominant, and recessive models, respectively. In addition, the OR and 95%CI for Sep15 (rs5859) were 2.05 (1.06, 3.96) in the allele model. These results illustrate that there was a significant association between DIO2 (rs225014), SEPS1 (-105G>A), Sep15 (rs5859), and KBD. For GPX1 (rs1050450, rs1800668, rs3811699), DIO2 (rs225014, rs1352815, rs1388382), TrxR2 (rs1139793, rs5746841), GPX4 (rs713041, rs4807542), and SEPP1 (rs7579, 25191g/a), there was no significant statistical difference between the KBD and control groups (P>0.05). We conclude that the DIO2 (rs225014), SEPS1 (-105G>A), and Sep15 (rs5859) gene polymorphism are associated with susceptibility to KBD.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lei Sun
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Guo-Yu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhi-Guang Ping
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, 45001, China
| | - Xiong Guo
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, China
| | - Yue Ba
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
16
|
Zhang Y, Li Z, He Y, Liu Y, Mi G, Chen J. T-2 toxin induces articular cartilage damage by increasing the expression of MMP-13 via the TGF-β receptor pathway. Hum Exp Toxicol 2022; 41:9603271221075555. [PMID: 35213812 DOI: 10.1177/09603271221075555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
T-2 toxin pre-disposes individuals to osteoarthritis, Kashin-Beck disease (KBD). The major pathological change associated with KBD is the degradation of the articular cartilage matrix. Herein, we investigated the key molecules that regulate T-2 toxin-mediated cartilage degradation. Potential KBD treatments were also investigated. Sprague Dawley rats were divided into the T-2 toxin group and the control group. The T-2 toxin group received 100 ng/g BW/day, whereas the control group received a similar dose of PBS. The expression of matrix metalloproteinase-13 (MMP-13) and TGF-β receptor I/II (TGF-βRI/II) was analyzed using immunohistochemical staining. C28/I2 chondrocytes were exposed to TGF-βRI/II binding inhibitor (GW788388) for 24 h before incubation in different T-2 toxin concentrations (0, 6, 12, and 24 ng/mL for 72 h). The expression of mRNA for TGF-βRI/II, MMP-13 and proteins for MMP-13, and Smad-2 in chondrocytes were analyzed using RT-PCR and western blot, respectively. Safranin O staining revealed that T-2 toxin treatment modulated the expression of articular cartilage matrix. On the other hand, T-2 toxin treatment sharply increased the expression of MMP-13, TGF-βRI, and TGF-βRII in the rat cartilages. Interestingly, blocking the TGF-βRs-smad 2 signaling pathway using GW788388 abrogated the effect of T-2 toxin on upregulating MMP-13 expression. The expression of MMP-13 in chondrocytes induced with T-2 toxin is regulated via the TGF-βRs signaling pathway. As such, inhibiting the expression of TGF-βRs is a potential KBD treatment.
Collapse
Affiliation(s)
- Ying Zhang
- School of Public Health, 12480Health Science Center of Xi'an Jiaotong University, and Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission of the People's Republic of China, and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, P.R China.,School of Nursing, Health Science Center, RINGGOLDID: 12480Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Zhengzheng Li
- School of Public Health, 12480Health Science Center of Xi'an Jiaotong University, and Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission of the People's Republic of China, and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, P.R China.,Affiliated Hospital of Yan'an University, Yan 'an, Shaanxi, PR China
| | - Ying He
- School of Public Health, 12480Health Science Center of Xi'an Jiaotong University, and Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission of the People's Republic of China, and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, P.R China
| | - Yinan Liu
- School of Public Health, 12480Health Science Center of Xi'an Jiaotong University, and Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission of the People's Republic of China, and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, P.R China
| | - Ge Mi
- School of Public Health, 12480Health Science Center of Xi'an Jiaotong University, and Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission of the People's Republic of China, and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, P.R China
| | - Jinghong Chen
- School of Public Health, 12480Health Science Center of Xi'an Jiaotong University, and Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission of the People's Republic of China, and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi'an, Shaanxi, P.R China
| |
Collapse
|
17
|
Wei L, Zhang J, Zha C, Yang Q, Li F, Sun X, Guo Y, Liu Z. A strategy to protect biological activity and amplify signal applied on time-resolved fluorescence immunochromatography for detecting T-2 toxin. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Liu YN, Mu YD, Wang H, Zhang M, Shi YW, Mi G, Peng LX, Chen JH. Endoplasmic reticulum stress pathway mediates T-2 toxin-induced chondrocyte apoptosis. Toxicology 2021; 464:152989. [PMID: 34673134 DOI: 10.1016/j.tox.2021.152989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022]
Abstract
T-2 toxin leads to chondrocyte apoptosis and excessive extracellular matrix degradation. The aim of this study is to investigate if endoplasmic reticulum stress (ERS) - initiated apoptosis is involved in the chondrocyte damage induced by T-2 toxin. In vivo, rats were divided into a control group, T-2 toxin 200 ng/g BW/d group, the protein levels of GRP78, CHOP, and caspase-12 were detected using immunohistochemistry in articular cartilage tissues. In vitro, C28/I2 and ATDC5 chondrocytes were treated with various concentrations of T-2 toxin. For the salubrinal protection assay, cells were pretreated with 20 μM salubrinal for 1 h, and treated with and without T-2 toxin for 24 h. The cell viability was determined using the MTT assay; and the cell apoptosis was determined using the Flow Cytometry Assay; the mRNA and protein levels of the ERS markers and ECM were determined using RT-PCR and western blotting. This study found that the expressions of GRP78, CHOP, and caspase-12 is higher in T-2 toxin group than in control group both in vivo and in vitro, and the T-2 toxin administration promoted chondrocyte apoptosis, suppressed matrix synthesis, and accelerated cellular catabolism via the ERS signaling pathway. In addition, this study found that salubrinal prevented chondrocyte injury by inhibiting ERS-mediated apoptosis via the PERK-eIF2α-ATF4-CHOP signaling pathway. Collectively, this study provides a new clue to elucidate the mechanism of T-2 toxin-induced chondrocyte damage, and presents a novel therapeutic possibility of salubrinal for Osteoarthropathy such as osteoarthritis (OA) and Kaschin-Beck disease (KBD).
Collapse
Affiliation(s)
- Yi-Nan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Yu-Dong Mu
- Department of Clinical Laboratory, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Ya-Wen Shi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Ge Mi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Lei-Xuan Peng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Jing-Hong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
19
|
Pomothy JM, Barna RF, Pászti EA, Babiczky Á, Szóládi Á, Jerzsele Á, Gere EP. Beneficial Effects of Rosmarinic Acid on IPEC-J2 Cells Exposed to the Combination of Deoxynivalenol and T-2 Toxin. Mediators Inflamm 2020; 2020:8880651. [PMID: 33424439 PMCID: PMC7772027 DOI: 10.1155/2020/8880651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin contamination in feedstuffs is a worldwide problem that causes serious health issues both in humans and animals, and it contributes to serious economic losses. Deoxynivalenol (DON) and T-2 toxin (T-2) are major trichothecene mycotoxins and are known to challenge mainly intestinal barrier functions. Polyphenolic rosmarinic acid (RA) appeared to have antioxidant and anti-inflammatory properties in vitro. The aim of this study was to investigate protective effects of RA against DON and T-2 or combined mycotoxin-induced intestinal damage in nontumorigenic porcine cell line, IPEC-J2. It was ascertained that simultaneous treatment of DON and T-2 (DT2: 1 μmol/L DON + 5 nmol/L T - 2) for 48 h and 72 h reduced transepithelial electrical resistance of cell monolayer, which was restored by 50 μmol/L RA application. It was also found that DT2 for 48 h and 72 h could induce oxidative stress and elevate interleukin-6 (IL-6) and interleukin-8 (IL-8) levels significantly, which were alleviated by the administration of RA. DT2 administration contributed to the redistribution of claudin-1; however, occludin membranous localization was not altered by combined mycotoxin treatment. In conclusion, beneficial effect of RA was exerted on DT2-deteriorated cell monolayer integrity and on the perturbated redox status of IPEC-J2 cells.
Collapse
Affiliation(s)
- Judit Mercédesz Pomothy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Réka Fanni Barna
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Erzsébet Anna Pászti
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Ákos Babiczky
- Neuronal Networks and Behaviour Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Faculty of Natural Science, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Áron Szóládi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Erzsébet Pásztiné Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| |
Collapse
|
20
|
Zhang YF, Yang JY, Meng XP, Nie N, Tang MC, Yang XL. L-Arginine protects mouse Leydig cells against T-2 toxin-induced apoptosis in vitro. Toxicol Ind Health 2020; 36:1031-1038. [PMID: 33215568 DOI: 10.1177/0748233720964312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To explore the protective mechanism of L-arginine against T-2 toxin-induced apoptosis in mouse Leydig cells, we investigated whether L-arginine can prevent T-2 toxin-induced apoptosis in mouse Leydig cells and explored the underlying mechanisms. Leydig cells were isolated and cultured with control, T-2 toxin (10 nM), L-arginine (0.25, 0.5, and 1.0 mM), and T-2 toxin (10 nM T-2 toxin) + L-arginine (0.25, 0.5, or 1.0 mM) for 24 h. Cells and supernatants were harvested to examine proliferation of the cells, the apoptosis rate, activity of caspase-3 and mitochondria, and the gene expression levels of Bcl-2, Bax, PARP, and caspase-3. Results showed that proliferation and mitochondrial activity of Leydig cells were inhibited by administration of T-2 toxin. Bcl-2 gene expression levels was decreased, while the gene expression levels of Bax and PARP were increased, which could trigger mitochondria-mediated apoptosis, activate downstream caspase-3, and then increased caspase-3 at both activity and gene expression levels. The expression of the Bcl-2 gene was upregulated and the expression of Bax, caspase-3, and PARP gene were downregulated when L-arginine was added to the cultured cells. The results of this study showed that L-arginine could block T-2 toxin-induced apoptosis in mouse Leydig cells by regulating specific intracellular death-related pathways.
Collapse
Affiliation(s)
- Yong Fa Zhang
- College of Food and Bioengineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Jian Ying Yang
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiang Ping Meng
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Na Nie
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Mei Cui Tang
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiao Li Yang
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
21
|
Ma M, Liang X, Wang X, Zhang L, Cheng S, Guo X, Zhang F, Wen Y. The molecular mechanism study of COMP involved in the articular cartilage damage of Kashin-Beck disease. Bone Joint Res 2020; 9:578-586. [PMID: 33005397 PMCID: PMC7502256 DOI: 10.1302/2046-3758.99.bjr-2019-0247.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aims Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. Methods The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell transfection. Results The mRNA and protein expression levels of COMP were significantly lower in KBD chondrocytes than control chondrocytes. After the T-2 toxin intervention, the COMP mRNA expression of C28/I2 chondrocyte reduced and the protein level of COMP in three intervention groups was significantly lower than in the control group. MTT assay showed that the survival rate of COMP overexpression KBD chondrocytes were notably higher than in the blank control group. The mRNA expression levels of Survivin, SOX9, Caspase-3, and type II collagen were also significantly different among COMP overexpression, negative control, and blank control groups. Conclusion Our study results confirmed the functional relevance of COMP with KBD. COMP may play an important role in the excessive chondrocytes apoptosis of KBD patients.Cite this article: Bone Joint Res 2020;9(9):578-586.
Collapse
Affiliation(s)
- Mei Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiao Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020; 94:3645-3669. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.
Collapse
|
23
|
The neurotoxicity of trichothecenes T-2 toxin and deoxynivalenol (DON): Current status and future perspectives. Food Chem Toxicol 2020; 145:111676. [PMID: 32805342 DOI: 10.1016/j.fct.2020.111676] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
During the last decade, the neurotoxicity of the trichothecenes T-2 toxin and deoxynivalenol (DON) has been a major concern, and many important findings have been reported on this topic. Through a summary of relevant research reports in recent years, we discuss the potential neurotoxic mechanisms of T-2 toxin and DON. In neuronal cells, T-2 toxin induces mitochondrial dysfunction and oxidative stress through a series of signalling pathways, including Nrf2/HO-1 and p53. This toxin crosses the blood-brain barrier (BBB) by altering permeability and induces oxidative stress responses, including ROS generation, lipid peroxidation, and protein carbonyl formation. Cellular metabolites (for example, HT-2 toxin) further promote neurotoxic effects. The type B trichothecene DON induces neuronal cell apoptosis via the MAPK and mitochondrial apoptosis pathways. This molecule induces inflammation of the central nervous system, increasing the expression of proinflammatory molecules. DON directly affects brain neurons and glial cells after passing through the BBB and affects the vitality and function of astrocytes and microglia. Exposure to trichothecenes alters brain dopamine levels, decreases ganglion area, and further induces brain damage. In this review, we mainly discuss the neurotoxicity of T-2 toxin and DON. However, our main goal was to reveal the potential mechanism(s) and offer new topics, including the potential of hypoxia-inducible factors, immune evasion, and exosomes, for future research in this context. This review should help elucidate the neurotoxic mechanism of trichothecenes and provides some potential inspiration for the follow-up study of neurotoxicity of mycotoxins.
Collapse
|
24
|
Su N, Liu CL, Chen XP, Fan XX, Ma YC. T-2 toxin cytotoxicity mediated by directly perturbing mitochondria in human gastric epithelium GES-1 cells. J Appl Toxicol 2020; 40:1141-1152. [PMID: 32187393 DOI: 10.1002/jat.3973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023]
Abstract
T-2 toxin is one of the most toxic trichothecenes and harmful to human health and animal husbandry. The mechanism underlying its growth suppression remains unclear, especially for mitochondrial damage in human gastric epithelial cells. In the present study, we investigated cell death caused by T-2 toxin in a human gastric epithelial cell line (GES-1) and the possible mechanism of T-2-induced cytotoxicity. T-2 strongly reduced the viability of GES-1 cells in a time- and dose-dependent manner within a small range of concentrations. However, when the concentrations of T-2 were >40 nM, there was no concentration dependence, only time dependence. Moreover, T-2 induced apoptosis, with the activation of caspase-3 in GES-1 and mitochondrial membrane potential (MMP) decrease and cytochrome c release. T-2 also resulted in the accumulation of reactive oxygen species (ROS) and DNA damage with a positive signal of p-H2A.X in GES-1 cells. While T-2 caused a MMP decrease, DNA damage and cell death were not blocked by pretreatment with 3 mM glutathione (GSH), a typical scavenger of ROS. The induction of mitochondrial permeability transition pore (mPTP) regulators voltage-dependent anion channel (VDAC1) and cyclophilin D (CypD) were also observed in T-2-treated cells. Interestingly, cyclosporine A (CsA), a CypD inhibitor, significantly reversed the drop in MMP and the DNA damage, as well as ROS accumulation caused by T-2. Additionally, GES-1 cell death could also be protected to some extent by 4, 4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS), an inhibitor of VDAC1, especially the combination of CsA and DIDS, and 3 mM GSH could further enhance the effect of CsA + DIDS on cell viability. In conclusion, our present findings indicate that the T-2 induced MMP decrease, DNA damage and cell death, as well as ROS accumulation in GES-1 cells, starts with T-2 directly perturbing the mitochondria triggering ROS generation by acting on CypD and VDAC1. This study presents a new viewpoint for evaluating the toxicity of T-2 toxin.
Collapse
Affiliation(s)
- Nan Su
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Chun-Lei Liu
- College of Health Management, Henan Finance University, Zhengzhou, China
| | - Xiao-Pei Chen
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xia-Xia Fan
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Centeral China Fuwai Hospital, Centeral China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Cheng Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Centeral China Fuwai Hospital, Centeral China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Alonso-Garrido M, Tedeschi P, Maietti A, Font G, Marchetti N, Manyes L. Mitochondrial transcriptional study of the effect of aflatoxins, enniatins and carotenoids in vitro in a blood brain barrier model. Food Chem Toxicol 2020; 137:111077. [DOI: 10.1016/j.fct.2019.111077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/06/2023]
|
26
|
T-2 Toxin-Induced Oxidative Stress Leads to Imbalance of Mitochondrial Fission and Fusion to Activate Cellular Apoptosis in the Human Liver 7702 Cell Line. Toxins (Basel) 2020; 12:toxins12010043. [PMID: 31936883 PMCID: PMC7020450 DOI: 10.3390/toxins12010043] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
T-2 toxin, as a highly toxic mycotoxin to humans and animals, induces oxidative stress and apoptosis in various cells and tissues. Apoptosis and mitochondrial fusion/fission are two tightly interconnected processes that are crucial for maintaining physiological homeostasis. However, the role of mitochondrial fusion/fission in apoptosis of T-2 toxin remains unknown. Hence, we aimed to explore the putative role of mitochondrial fusion/fission on T-2 toxin induced apoptosis in normal human liver (HL-7702) cells. T-2 toxin treatment (0, 0.1, 1.0, or 10 μg/L) for 24 h caused decreased cell viability and ATP concentration and increased production of (ROS), as seen by a loss of mitochondrial membrane potential (∆Ψm) and increase in mitochondrial fragmentation. Subsequently, the mitochondrial dynamic imbalance was activated, evidenced by a dose-dependent decrease and increase in the protein expression of mitochondrial fusion (OPA1, Mfn1, and Mfn2) and fission (Drp1 and Fis1), respectively. Furthermore, the T-2 toxin promoted the release of cytochrome c from mitochondria to cytoplasm and induced cell apoptosis triggered by upregulation of Bax and Bax/Bcl-2 ratios, and further activated the caspase pathways. Taken together, these results indicate that altered mitochondrial dynamics induced by oxidative stress with T-2 toxin exposure likely contribute to mitochondrial injury and HL-7702 cell apoptosis.
Collapse
|
27
|
Zhang F, Lammi MJ, Shao W, Zhang P, Zhang Y, Wei H, Guo X. Cytotoxic Properties of HT-2 Toxin in Human Chondrocytes: Could T 3 Inhibit Toxicity of HT-2? Toxins (Basel) 2019; 11:toxins11110667. [PMID: 31731600 PMCID: PMC6891367 DOI: 10.3390/toxins11110667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 02/05/2023] Open
Abstract
Thyroid hormone triiodothyronine (T3) plays an important role in coordinated endochondral ossification and hypertrophic differentiation of the growth plate, while aberrant thyroid hormone function appears to be related to skeletal malformations, osteoarthritis, and Kashin-Beck disease. The T-2 toxin, present extensively in cereal grains, and one of its main metabolites, HT-2 toxin, are hypothesized to be potential factors associated with hypertrophic chondrocyte-related osteochondropathy, known as the Kashin-Beck disease. In this study, we investigated the effects of T3 and HT-2 toxin on human chondrocytes. The immortalized human chondrocyte cell line, C-28/I2, was cultured in four different groups: controls, and cultures with T3, T3 plus HT-2 and HT-2 alone. Cytotoxicity was assessed using an MTT assay after 24-h-exposure. Quantitative RT-PCR was used to detect gene expression levels of collagen types II and X, aggrecan and runx2, and the differences in runx2 were confirmed with immunoblot analysis. T3 was only slightly cytotoxic, in contrast to the significant, dose-dependent cytotoxicity of HT-2 alone at concentrations ≥ 50 nM. T3, together with HT-2, significantly rescued the cytotoxic effect of HT-2. HT-2 induced significant increases in aggrecan and runx2 gene expression, while the hypertrophic differentiation marker, type X collagen, remained unchanged. Thus, T3 protected against HT-2 induced cytotoxicity, and HT-2 was an inducer of the pre-hypertrophic state of the chondrocytes.
Collapse
Affiliation(s)
- Feng’e Zhang
- School of Public Health, Health Science Center of Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an 710061, China; (F.Z.); (W.S.); (P.Z.); (Y.Z.); (H.W.)
| | - Mikko Juhani Lammi
- School of Public Health, Health Science Center of Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an 710061, China; (F.Z.); (W.S.); (P.Z.); (Y.Z.); (H.W.)
- Department of Integrative Medical Biology, University of Umeå, 90187 Umeå, Sweden
- Correspondence: (M.J.L.); (X.G.); Tel.: +358-40-587-0601 (M.J.L.)
| | - Wanzhen Shao
- School of Public Health, Health Science Center of Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an 710061, China; (F.Z.); (W.S.); (P.Z.); (Y.Z.); (H.W.)
| | - Pan Zhang
- School of Public Health, Health Science Center of Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an 710061, China; (F.Z.); (W.S.); (P.Z.); (Y.Z.); (H.W.)
| | - Yanan Zhang
- School of Public Health, Health Science Center of Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an 710061, China; (F.Z.); (W.S.); (P.Z.); (Y.Z.); (H.W.)
| | - Haiyan Wei
- School of Public Health, Health Science Center of Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an 710061, China; (F.Z.); (W.S.); (P.Z.); (Y.Z.); (H.W.)
| | - Xiong Guo
- School of Public Health, Health Science Center of Xi’an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an 710061, China; (F.Z.); (W.S.); (P.Z.); (Y.Z.); (H.W.)
- Correspondence: (M.J.L.); (X.G.); Tel.: +358-40-587-0601 (M.J.L.)
| |
Collapse
|
28
|
Dai C, Xiao X, Sun F, Zhang Y, Hoyer D, Shen J, Tang S, Velkov T. T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Arch Toxicol 2019; 93:3041-3056. [PMID: 31570981 DOI: 10.1007/s00204-019-02577-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
Abstract
Mycotoxins are highly diverse secondary metabolites produced in nature by a wide variety of fungi. Mycotoxins cause animal feed and food contamination, resulting in mycotoxicosis. T-2 toxin is one of the most common and toxic trichothecene mycotoxins. For the last decade, it has garnered considerable attention due to its potent neurotoxicity. Worryingly, T-2 toxin can cross the blood-brain barrier and accumulate in the central nervous system (CNS) to cause neurotoxicity. This review covers the current knowledge base on the molecular mechanisms of T-2 toxin-induced oxidative stress and mitochondrial dysfunction in the CNS. In vitro and animal data have shown that induction of reactive oxygen species (ROS) and oxidative stress plays a critical role during T-2 toxin-induced neurotoxicity. Mitochondrial dysfunction and cascade signaling pathways including p53, MAPK, Akt/mTOR, PKA/CREB and NF-κB contribute to T-2 toxin-induced neuronal cell death. T-2 toxin exposure can also result in perturbations of mitochondrial respiratory chain complex and mitochondrial biogenesis. T-2 toxin exposure decreases the mitochondria unfolded protein response and dampens mitochondrial energy metabolism. Antioxidants such as N-acetylcysteine (NAC), activation of Nrf2/HO-1 and autophagy have been shown to provide a protective effect against these detrimental effects. Clearly, translational research and the discovery of effective treatment strategies are urgently required against this common food-borne threat to human health and livestock.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China. .,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Harry Hines Blvd, Dallas, TX, 5323, USA.
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feifei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
29
|
Yang L, Zhang J, Li X, Xu C, Wang X, Guo X. Expression Profiles of Selenium-Related Genes in Human Chondrocytes Exposed to T-2 Toxin and Deoxynivalenol. Biol Trace Elem Res 2019; 190:295-302. [PMID: 30406490 DOI: 10.1007/s12011-018-1560-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/25/2018] [Indexed: 01/26/2023]
Abstract
The combination of excess mycotoxin exposure and selenium deficiency has been widely considered as a cause of Kashin-Beck disease (KBD). The present study aimed to investigate the expression profiles of selenium-related genes in human chondrocytes after exposure to T-2 toxin and deoxynivalenol (DON) and to preliminarily identify the potential biological functions of the identified genes. Gene expression profiling was performed on human chondrocytes treated with 0.01 μg/ml T-2 toxin and 1.0 μg/ml DON by using Affymetrix Human Gene Arrays. The 1660 selenium-related genes were derived from the Comparative Toxicogenomics Database. Gene-term enrichment analysis was conducted by the DAVID gene annotation tool. Our results showed that 69 and 191 selenium-related genes were differentially expressed after T-2 toxin and DON treatment, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these identified genes were involved in various biological functions, such as the GO terms in response to oxidative stress, cell cycle arrest, and apoptotic process and the KEGG metabolic, FoxO signaling, and p53 signaling pathways. Our results may help explain the mechanisms of interaction between mycotoxins and selenium following human chondrocyte damage and reveal the potential roles of environmental risk factors in cartilage lesions during KBD development.
Collapse
Affiliation(s)
- Lei Yang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jianping Zhang
- Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xiaomei Li
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chao Xu
- Traditional Chinese Medical Hospital of Linyou County, Baoji, 721500, Shaanxi, People's Republic of China
| | - Xi Wang
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiong Guo
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
30
|
Yang JY, Zhang YF, Meng XP, Kong XF. Delayed effects of autophagy on T-2 toxin-induced apoptosis in mouse primary Leydig cells. Toxicol Ind Health 2019; 35:256-263. [DOI: 10.1177/0748233719831122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
T-2 toxin is a type-A trichothecene produced by Fusarium found in several food commodities worldwide. T-2 toxin causes reproductive disorders, genotoxicity, and testicular toxicity in animals. Our previous research has reported that T-2 toxin can induce apoptosis via the Bax-dependent caspase-3 activation in mouse primary Leydig cells. However, little is known about the functions of autophagy and the cross talk between autophagy and apoptosis after exposure to T-2 toxin in Leydig cells. This study investigated these problems in mouse primary Leydig cells. Results showed that T-2 toxin treatment upregulated LC3-II and Beclin-1 expression, suggesting that T-2 toxin induced a high level of autophagy. Pretreatment with chloroquine (an autophagy inhibitor) and rapamycin (an autophagy inducer) increased and decreased the rate of apoptosis, respectively, in contrast to T-2 toxin-treated group. Autophagy delayed apoptosis in the T-2 toxin-treated Leydig cells. Therefore, autophagy may prevent cells from undergoing apoptosis by reducing T-2 toxin-induced cytotoxicity.
Collapse
Affiliation(s)
- Jian Ying Yang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yong Fa Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiang Ping Meng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiang Feng Kong
- Laboratory of Animal Nutrition and Health and Key Laboratory of Subtropical Agro-ecology, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
31
|
Islam MT, Mishra SK, Tripathi S, de Alencar MVOB, e Sousa JMDC, Rolim HML, de Medeiros MDGF, Ferreira PMP, Rouf R, Uddin SJ, Mubarak MS, Melo-Cavalcante AADC. Mycotoxin-assisted mitochondrial dysfunction and cytotoxicity: Unexploited tools against proliferative disorders. IUBMB Life 2018; 70:1084-1092. [DOI: 10.1002/iub.1932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory; School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University; Sagar 470003 Madhya Pradesh India
| | - Swati Tripathi
- Amity Institute of Microbial Technology; Amity University; Noida 201313 Uttar Pradesh India
| | | | - João Marcelo de Castro e Sousa
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
| | - Maria das Graças Freire de Medeiros
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biophysics and Physiology; Laboratory of Experimental Cancerology, Federal University of Piauí; Teresina Piauí 64 049-550 Brazil
| | - Razina Rouf
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline; Life Science School, Khulna University; Khulna Bangladesh
| | | | | |
Collapse
|
32
|
Guo P, Liu A, Huang D, Wu Q, Fatima Z, Tao Y, Cheng G, Wang X, Yuan Z. Brain damage and neurological symptoms induced by T-2 toxin in rat brain. Toxicol Lett 2018; 286:96-107. [DOI: 10.1016/j.toxlet.2018.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 11/17/2022]
|
33
|
Fatima Z, Guo P, Huang D, Lu Q, Wu Q, Dai M, Cheng G, Peng D, Tao Y, Ayub M, Ul Qamar MT, Ali MW, Wang X, Yuan Z. The critical role of p16/Rb pathway in the inhibition of GH3 cell cycle induced by T-2 toxin. Toxicology 2018; 400-401:28-39. [PMID: 29567467 DOI: 10.1016/j.tox.2018.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 12/21/2022]
Abstract
T-2 toxin is a worldwide trichothecenetoxin and can cause various toxicities.T-2 toxin is involved in G1 phase arrest in several cell lines but molecular mechanism is still not clear. In present study, we used rat pituitary GH3 cells to investigate the mechanism involved in cell cycle arrest against T-2 toxin (40 nM) for 12, 24, 36 and 48 h as compared to control cells. GH3 cells showed a considerable increase in reactive oxygen species (ROS) as well as loss in mitochondrial membrane potential (△Ym) upon exposure to the T-2 toxin. Flow cytometry showed a significant time-dependent increase in percentage of apoptotic cells and gel electrophoresis showed the hallmark of apoptosis oligonucleosomal DNA fragmentation. Additionally, T-2 toxin-induced oxidative stress and DNA damage with a time-dependent significant increased expression of p53 favors the apoptotic process by the activation of caspase-3 in T-2 toxin treated cells. Cell cycle analysis by flow cytometry revealed a time-dependent increase ofG1 cell population along with the significant time-dependent up-regulation of mRNA and protein expression of p16 and p21 and significant down-regulation of cyclin D1, CDK4, and p-RB levels further verify the G1 phase arrest in GH3 cells. Morphology of GH3 cells by TEM clearly showed the damage and dysfunction to mitochondria and the cell nucleus. These findings for the first time demonstrate that T-2 toxin induces G1 phase cell cycle arrest by the involvement of p16/Rb pathway, along with ROS mediated oxidative stress and DNA damage with p53 and caspase cascade interaction, resulting in apoptosis in GH3 cells.
Collapse
Affiliation(s)
- Zainab Fatima
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Pu Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Deyu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Qirong Lu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Guyue Cheng
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China
| | | | | | - Muhammad Waqar Ali
- College of Plant Sciences, Huazhong Agricultural University (HZAU), Wuhan, China
| | - Xu Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, China.
| |
Collapse
|
34
|
Liu X, Huang D, Guo P, Wu Q, Dai M, Cheng G, Hao H, Xie S, Yuan Z, Wang X. PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology 2017; 392:81-95. [DOI: 10.1016/j.tox.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
35
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
36
|
Chang Y, Wang X, Sun Z, Jin Z, Chen M, Wang X, Lammi MJ, Guo X. Inflammatory cytokine of IL-1β is involved in T-2 toxin-triggered chondrocyte injury and metabolism imbalance by the activation of Wnt/β-catenin signaling. Mol Immunol 2017; 91:195-201. [PMID: 28963928 DOI: 10.1016/j.molimm.2017.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 11/17/2022]
Abstract
Mycotoxin T-2 exerts a causative role in Kashin-Beck disease (KBD) suffering chondrocyte apoptosis and cartilage matrix homeostasis disruption. Recent research corroborated the aberrant levels of pro-inflammatory cytokine IL-1ß in KBD patients and mycotoxin environment. In the present study, we investigated the relevance of IL-1ß in T-2 toxin-evoked chondrocyte cytotoxic injury and aberrant catabolism. High levels of IL-1ß were detected in serum and cartilages from KBD patients and in T-2-stimulated chondrocytes. Moreover, knockdown of IL-1ß antagonized the adverse effects of T-2 on cytotoxic injury by enhancing cell viability and inhibiting apoptosis. However, exogenous supplementation of IL-1β further aggravated cell damage in response to T-2. Additionally, cessation of IL-1β rescued T-2-elicited tilt of matrix homeostasis toward catabolism by elevating the transcription of collagen II and aggrecan, promoting release of sulphated glycosaminoglycans (sGAG) and TIMP1, and suppressing matrix metalloproteinases production including MMP-1, MMP-3 and MMP-13. Conversely, IL-1β stimulation deteriorated T-2-induced disruption of matrix metabolism balance toward catabolism. Mechanistic analysis found the high activation of Wnt/β-catenin in KBD patients and chondrocytes upon T-2. Furthermore, this activation was mitigated after IL-1β inhibition, but further enhanced following IL-1β precondition. Importantly, blocking this pathway by transfection with β-catenin alleviated the adverse roles of IL-1β on cytotoxic injury and metabolism disorders under T-2 conditioning. Together, this study elucidates a new insight into how T-2 deteriorates the pathological progression of KBD by regulating inflammation-related pathways, indicating a promising anti-inflammation strategy for KBD therapy.
Collapse
Affiliation(s)
- Yanhai Chang
- Department of Orthopaedics, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Xiao Wang
- Department of Galactophore, Shaanxi Provincial Cancer Hospital, Xi'an 710061, Shaanxi, PR China
| | - Zhengming Sun
- Department of Orthopaedics, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Zhankui Jin
- Department of Orthopaedics, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Ming Chen
- Department of Orthopaedics, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Xiaoqing Wang
- Department of Orthopaedics, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Mikko J Lammi
- Department of Integrative Medical Biology, University of Umeå, 901 87 17 Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
37
|
Zhang YF, Su PK, Wang LJ, Zheng HQ, Bai XF, Li P, Meng XP, Yang JY. T-2 toxin induces apoptosis via the Bax-dependent caspase-3 activation in mouse primary Leydig cells. Toxicol Mech Methods 2017; 28:23-28. [DOI: 10.1080/15376516.2017.1354413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yong Fa Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Pan Ke Su
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Lun Ji Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Hui Qi Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Xue Fei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Ping Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Xiang Ping Meng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jian Ying Yang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
38
|
Gene expression profiles and molecular mechanism of cultured human chondrocytes' exposure to T-2 toxin and deoxynivalenol. Toxicon 2017; 140:38-44. [PMID: 28684119 DOI: 10.1016/j.toxicon.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
T-2 toxin and deoxynivalenol (DON) are secondary metabolites produced by Fusarium fungi and are commonly found on food and feed. Although T-2 toxin and DON have been suggested as the etiology of Kashin-Beck disease (KBD), an endemic osteochondropathy, little is known about the mechanism when human chondrocytes are exposed to T-2 toxin and DON. The purpose of this study is to identify the gene expression differences and underlying molecular changes modulated by T-2 toxin and DON in vitro in human chondrocytes. After the experiments of cell viability, the gene expression profiles were analyzed in cells that were treated with 0.01 μg/ml T-2 toxin and 1.0 μg/ml DON for 72 h by Affymetrix Human Gene Chip. The array results showed that 882 and 2118 genes were differentially expressed for T-2 toxin and DON exposure, respectively. Enrichment analysis revealed that diverse cellular processes including DNA damage, cell cycle regulation and metabolism of extracellular matrix were affected when human chondrocytes were exposed to T-2 toxin and DON. These results demonstrate the gene expression differences and molecular mechanism of cultured human chondrocytes exposure to T-2 toxin and DON, and provide a new insight into future research in the etiology of KBD.
Collapse
|
39
|
Yin S, Liu X, Fan L, Hu H. Mechanisms of cell death induction by food-borne mycotoxins. Crit Rev Food Sci Nutr 2017; 58:1406-1417. [DOI: 10.1080/10408398.2016.1260526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Xiaoyi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| |
Collapse
|
40
|
Cellular responses to T-2 toxin and/or deoxynivalenol that induce cartilage damage are not specific to chondrocytes. Sci Rep 2017; 7:2231. [PMID: 28533525 PMCID: PMC5440378 DOI: 10.1038/s41598-017-02568-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
The relationship between T-2 toxin and deoxynivalenol (DON) and the risk of Kashin-Beck disease is still controversial since it is poorly known about their selectivity in cartilage damage. We aimed to compare the cytotoxicity of T-2 toxin and DON on cell lines representative of cell types encountered in vivo, including human chondrocytes (C28/I2), human hepatic epithelial cells (L-02) and human tubular epithelial cells (HK-2). In addition, we determined the distribution of T-2 toxin and DON in Sprague-Dawley (SD) rats after a single dose exposure. T-2 toxin or DON decreased proliferation in a time- and concentration-dependent manner and their combination showed a similar antagonistic effect in C28/I2, L-02 and HK-2 cells. Moreover, we observed cell cycle arrest and apoptosis, associated with increased oxidative stress and decline in mitochondrial membrane potential induced by T-2 toxin and/or DON. In vivo study showed that T-2 toxin and DON did not accumulate preferentially in the knee joint compared to liver and kidney after an acute exposure in SD rats. These results suggest that T-2 toxin and/or DON inhibit proliferation and induce apoptosis through a possible mechanism involving reactive oxygen species-mediated mitochondrial pathway that is not specific for chondrocytes in vitro or joint tissues in vivo.
Collapse
|
41
|
Liu X, Guo P, Liu A, Wu Q, Xue X, Dai M, Hao H, Qu W, Xie S, Wang X, Yuan Z. Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food Chem Toxicol 2017; 102:11-23. [DOI: 10.1016/j.fct.2017.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/11/2022]
|
42
|
Wu C, Wen Y, Guo X, Yang T, Shen H, Chen X, Tian Q, Tan L, Deng HW, Zhang F. Genetic association, mRNA and protein expression analysis identify ATG4C as a susceptibility gene for Kashin-Beck disease. Osteoarthritis Cartilage 2017; 25:281-286. [PMID: 27742532 DOI: 10.1016/j.joca.2016.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 08/06/2016] [Accepted: 09/24/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recent study observed defective autophagy in chondrocytes with Kashin-Beck Disease (KBD). To clarify the potential role of autophagy-related ATG4C gene in the development of KBD, we conducted an integrative analysis of genetic association, messenger ribonucleic acid (mRNA) and protein expression of ATG4C in KBD patients. METHODS 1026 subjects (559 KBD patients and 467 healthy cases) were enrolled in discovery association study. Four single nucleotide polymorphisms (SNPs) of ATG4C gene (rs11208030, rs4409690, rs12097658 and rs6587988) were genotyped by Sequenom MassARRAY platform. Association analysis was conducted by PLINK software. The significant SNPs of ATG4C were replicated using an independent sample of 899 subjects (including 90 KBD patients and 809 healthy controls). Ungenotyped SNPs in ATG4C gene were imputed by IMPUTE 2.0. Knee cartilage specimens were collected from five KBD patients and five healthy subjects. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were performed to compare the mRNA and protein expression levels of ATG4C between KBD cartilage and control cartilage. RESULTS We observed significant association between KBD and rs11208030 (P value = 0.003), rs4409690 (P value = 0.004), rs12097658 (P value = 0.003) and rs6587988 (P value = 0.003) in both discovery and replication samples. The mRNA expression level of ATG4C (ratio = 0.168, P value = 0.007) in KBD chondrocytes was significantly lower than that in normal chondrocytes. Western blot (P value < 0.001) further confirmed the reduced expression of ATG4C protein in both KBD cartilage and chondrocytes. CONCLUSION Our results strongly suggest that ATG4C was a novel autophagy-related susceptibility gene of KBD.
Collapse
Affiliation(s)
- C Wu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Y Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - X Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - T Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - H Shen
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| | - X Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, PR China
| | - Q Tian
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| | - L Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, PR China
| | - H-W Deng
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| | - F Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
43
|
Zhang Y, Han J, Zhu CC, Tang F, Cui XS, Kim NH, Sun SC. Exposure to HT-2 toxin causes oxidative stress induced apoptosis/autophagy in porcine oocytes. Sci Rep 2016; 6:33904. [PMID: 27658477 PMCID: PMC5034267 DOI: 10.1038/srep33904] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/05/2016] [Indexed: 01/27/2023] Open
Abstract
T-2 toxin is a main type A trichothecene mycotoxin which is the most toxic trichothecence. T-2 toxin has posed various toxic effects on human and animals in vigorous cell proliferation tissues like lymphoid, hematopoietic and gastrointestinal tissues, while HT-2 toxin is the major metabolite which is deacetylated by T-2 toxin. In this study, we focused on the toxic effects of HT-2 on porcine oocyte maturation. We treated the porcine oocyte with HT-2 toxin in vitro, and we first found that HT-2 treatment inhibited porcine oocyte polar body extrusion and cumulus cell expansion. We observed the disrupted meiotic spindle morphology after treatment, which might be due to the reduced p-MAPK protein level. Actin distribution was also disturbed, indicating that HT-2 affects cytoskeleton of porcine oocytes. We next explored the causes for the failure of oocyte maturation after HT-2 treatment. We found that HT-2 treated oocytes showed the increased ROS level, which indicated that oxidative stress had occurred. We also detected autophagy as well as early apoptosis in the treatment oocytes. Due to the fact that oxidative stress could induced apoptosis, our results indicated that HT-2 toxin caused oxidative stress induced apoptosis and autophagy, which further affected porcine oocyte maturation.
Collapse
Affiliation(s)
- Yue Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng-Cheng Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
Wang X, Zhang Y, Chang Y, Duan D, Sun Z, Guo X. Elevation of IGFBP2 contributes to mycotoxin T-2-induced chondrocyte injury and metabolism. Biochem Biophys Res Commun 2016; 478:385-391. [PMID: 27416762 DOI: 10.1016/j.bbrc.2016.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
Kashin-Beck disease (KBD) is an endemic degenerative osteoarthropathy. The mycotoxin of T-2 toxin is extensively accepted as a major etiological contributor to KBD. However, its function and mechanism in KBD remains unclearly elucidated. Here, T-2 toxin treatment induced chondrocyte injury in a time- and dose-dependent manner by repressing cell viability and promoting cell necrosis and apoptosis. Importantly, T-2 suppressed the transcription of type II collagen and aggrecan, as well as the release of sulphated glycosaminoglycan (sGAG). Furthermore, exposure to T-2 enhanced the transcription of matrix metalloproteinases (MMPs), including MMP-1, -2, -3 and -9. In contrast to control groups, higher expression of insulin-like growth factor binding protein 2 (IGFBP2) was observed in chondrocytes from KBD patients. Interestingly, T-2 toxin caused a dramatical elevation of IGFBP2 expression in chondrocytes. Mechanism analysis corroborated that cessation of IGFBP2 expression alleviated T-2-induced damage to chondrocytes. Simultaneously, transfection with IGFBP2 siRNA also attenuated matrix synthesis and catabolism-related gene expressions of MMPs. Together, this study validated that T-2 toxin exposure might promote the progression of KBD by inducing chondrocyte injury, suppressing matrix synthesis and accelerating cellular catabolism through IGFBP2. Therefore, this research will elucidate a new insight about how T-2 toxin participate in the pathogenesis of KBD.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Orthopaedics, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yan Zhang
- Department of Endocrinology, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yanhai Chang
- Department of Orthopaedics, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Dapeng Duan
- Department of Orthopaedics, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Zhengming Sun
- Department of Orthopaedics, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, 76 West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
45
|
Fang H, Cong L, Zhi Y, Xu H, Jia X, Peng S. T-2 toxin inhibits murine ES cells cardiac differentiation and mitochondrial biogenesis by ROS and p-38 MAPK-mediated pathway. Toxicol Lett 2016; 258:259-266. [PMID: 27363784 DOI: 10.1016/j.toxlet.2016.06.2103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/19/2016] [Accepted: 06/26/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the effect of T-2 toxin on murine embryonic stem cells (ESCs) cardiac differentiation and mitochondrial biogenesis in vitro. METHODS Cardiac differentiation of the mouse ESCs was initiated by embryoid bodies (EBs) formation in hanging drops. EBs were exposed to 0.5ng/ml T-2 toxin for 24, 72 and 120h. Cultures were observed daily for the appearance of contracting clusters, and cardiac-specific protein (α-actiniin) were measured by Western blot and immunocytochemistry. Mitochondrial ultrastructure was observed by confocal laser scanning microscopy and transmission EM photography. Reactive oxygen species (ROS) was monitored by H2-dichlorofluorescein-diacetate (H2DCF-DA). The phosphorylation of the p38 (p-p38) and p38 mitogen-activated protein kinase (MAPK) and the expression of mitochondrial biogenesis proteins, including peroxisome proliferator activated receptor coactivator-1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1), mitochondrial transcription factor A (mtTFA), and mitochondrial respiratory chain complex IV (COXIV) were analyzed using Western blot. In some experiments, mESCs were pre-treated with the antioxidant Trolox (200μM) for 30min, then exposed to Trolox (200μM) and T-2 toxin (0.5ng/ml) for 72h. RESULTS Contracting clusters were observed under the microscope light and cardiac-specific protein (α-actinin) expressed positively indicated mESCs directly differentiated in cardiomyocytes. However, the cardiac differentiation was inhibited by T-2 toxin treatment 72 and 120h. ROS accumulated in murine ES cells in a time-dependent manner. The expression of p-p38 significantly increased in 24h group and decrease in 72 and 120h groups. The decrease of mitochondrial number and the mitochondrial biogenesis-related proteins expression, including PGC-1α, NRF-1, mtTFA, and COXIV decreased in a time-dependent manner with T-2 toxin treatment. However, the inhibition of mitochondrial biogenesis by T-2 toxin in differentiated mESCs was recovered significantly in the presence of the antioxidant Trolox. CONCLUSION Taken together, T-2 toxin decreased the expression of PGC-1α, NRF-1, and mtTFA, inhibited mitochondrial biogenesis, and then inhibited the cardiac differentiation of murine ES cells, and the effect was partly responsible for the p38 MAPK mediated by ROS.
Collapse
Affiliation(s)
- Haiqin Fang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China; Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Liangzi Cong
- Huaiyin District Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yuan Zhi
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Haibin Xu
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xudong Jia
- Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| |
Collapse
|
46
|
Medeiros DM. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review. Exp Biol Med (Maywood) 2016; 241:1316-22. [PMID: 27190269 DOI: 10.1177/1535370216648805] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nutrients have been known to have a significant role in maintaining the health of the skeleton, both bone and cartilage. The nutrients that have received the majority of the attention are Vitamin D and calcium. However, limited attention has been directed toward three trace elements that may have mechanistic impact upon the skeletal tissues and could compromise skeletal health resulting from inadequate intakes of copper, iron, and selenium. The role of copper and selenium has been known, but the role of iron has only received recent attention. Copper deficiency is thought to impact bone health by a decrease in lysyl oxidase, a copper-containing enzyme, which facilitates collagen fibril crosslinking. Iron deficiency impact upon bone has only recently been discovered but the exact mechanism on how the deficient states enhance bone pathology is speculative. Selenium deficiency has an impact on cartilage thereby having an indirect impact on bone. However, several studies suggest that a mycotoxin when consumed by humans is the culprit in some cartilage disorders and the presence of selenium could attenuate the pathology. This review summarizes the current knowledge base with respect to skeletal integrity when each of these three trace elements are inadequate in diets of both animals and humans.
Collapse
Affiliation(s)
- Denis M Medeiros
- Division of Molecular Biology and Biochemistry, School of Graduate Studies, University of Missouri-Kansas City, Kansas City, MO 64112, USA
| |
Collapse
|
47
|
Li D, Han J, Guo X, Qu C, Yu F, Wu X. The effects of T-2 toxin on the prevalence and development of Kashin-Beck disease in China: a meta-analysis and systematic review. Toxicol Res (Camb) 2016; 5:731-751. [PMID: 30090385 PMCID: PMC6062151 DOI: 10.1039/c5tx00377f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
To reveal the influence of T-2 toxin detection rate and detection amount in food samples on Kashin-Beck disease (KBD), and define a linking mechanism between T-2 toxin induced chondrocytes or cartilage damage and KBD pathological changes, seven electronic databases were searched to obtain epidemiological and experimental studies. For epidemiological studies, subgroup analyses of the positive detection rate (PDR) of the T-2 toxin and PDR of the T-2 toxin with concentrations (PDRC of T-2) >100 ng g-1 were carried out, together with a histogram of the T-2 toxin concentrations in different food types in KBD and non-KBD areas. For experimental studies, a systematic review of a variety of chondrocyte and cartilage changes and damage induced by the T-2 toxin was performed. As a result, in epidemiological studies, meta-analysis demonstrated that the T-2 toxin PDR and the overall PDRC of T-2 toxin >100 ng g-1 showed a slightly significant increase in KBD areas than that in non-KBD areas separately. From the histogram, T-2 toxin accumulation was more serious in endemic areas, especially in wheat flour samples. In experimental studies, the T-2 toxin could induce damage of chondrocytes and cartilage, and inhibit cell proliferation by promoting apoptosis and catabolism as well as intracellular injuries, which is similar to the characteristics of KBD. In conclusion, the amount of T-2 toxin detected has a more significant influence on KBD prevalence and development as compared to the T-2 toxin detection rate. Besides, the T-2 toxin induces chondrocyte and cartilage damage through apoptosis, catabolism promotion and intracellular impairment, which is similar to the KBD change.
Collapse
Affiliation(s)
- Danyang Li
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| | - Jing Han
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| | - Xiong Guo
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| | - Chengjuan Qu
- Department of Integrative Medical Biology , Umeå University , Umeå 90187 , Sweden .
| | - Fangfang Yu
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| | - Xiaofang Wu
- College of Public Health , Xi'an Jiaotong University Health Science Center , Xi'an , Shaanxi 710061 , PR China . ; ; ; ;
| |
Collapse
|
48
|
Moosavi M, Rezaei M, Kalantari H, Behfar A, Varnaseri G. l-carnitine protects rat hepatocytes from oxidative stress induced by T-2 toxin. Drug Chem Toxicol 2016; 39:445-50. [DOI: 10.3109/01480545.2016.1141423] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|