1
|
Bouchez-Zacria M, Ruette S, Richomme C, Lesellier S, Payne A, Boschiroli ML, Courcoul A, Durand B. Analysis of a multi-type resurgence of Mycobacterium bovis in cattle and badgers in Southwest France, 2007-2019. Vet Res 2023; 54:41. [PMID: 37138355 PMCID: PMC10158257 DOI: 10.1186/s13567-023-01168-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Although control measures to tackle bovine tuberculosis (bTB) in cattle have been successful in many parts of Europe, this disease has not been eradicated in areas where Mycobacterium bovis circulates in multi-host systems. Here we analyzed the resurgence of 11 M. bovis genotypes (defined based on spoligotyping and MIRU-VNTR) detected in 141 farms between 2007 and 2019, in an area of Southwestern France where wildlife infection was also detected from 2012 in 65 badgers. We used a spatially-explicit model to reconstruct the simultaneous diffusion of the 11 genotypes in cattle farms and badger populations. Effective reproduction number R was estimated to be 1.34 in 2007-2011 indicating a self-sustained M. bovis transmission by a maintenance community although within-species Rs were both < 1, indicating that neither cattle nor badger populations acted as separate reservoir hosts. From 2012, control measures were implemented, and we observed a decrease of R below 1. Spatial contrasts of the basic reproduction ratio suggested that local field conditions may favor (or penalize) local spread of bTB upon introduction into a new farm. Calculation of generation time distributions showed that the spread of M. bovis has been more rapid from cattle farms (0.5-0.7 year) than from badger groups (1.3-2.4 years). Although eradication of bTB appears possible in the study area (since R < 1), the model suggests it is a long-term prospect, because of the prolonged persistence of infection in badger groups (2.9-5.7 years). Supplementary tools and efforts to better control bTB infection in badgers (including vaccination for instance) appear necessary.
Collapse
Affiliation(s)
- Malika Bouchez-Zacria
- Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France
- Independent Researcher, Audincthun, France
| | - Sandrine Ruette
- French Office for Biodiversity (OFB), Research and Scientific Support Direction, Vincennes, France
| | - Céline Richomme
- Nancy Laboratory for Rabies and Wildlife, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Malzéville, France
| | - Sandrine Lesellier
- Nancy Laboratory for Rabies and Wildlife, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Malzéville, France
| | - Ariane Payne
- French Office for Biodiversity (OFB), Research and Scientific Support Direction, Vincennes, France
| | - Maria-Laura Boschiroli
- Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France
- Tuberculosis Reference Laboratory, Bacterial Zoonosis Unit, Laboratory for Animal Health, Paris-Est University, ANSES, 94700, Maisons‑Alfort, France
| | - Aurélie Courcoul
- Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France
- Oniris, Nantes, France
| | - Benoit Durand
- Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University Paris-Est, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France.
| |
Collapse
|
2
|
Duault H, Michelet L, Boschiroli ML, Durand B, Canini L. A Bayesian evolutionary model towards understanding wildlife contribution to F4-family Mycobacterium bovis transmission in the South-West of France. Vet Res 2022; 53:28. [PMID: 35366933 PMCID: PMC8976416 DOI: 10.1186/s13567-022-01044-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/06/2022] [Indexed: 12/16/2022] Open
Abstract
In two “départements” in the South-West of France, bovine tuberculosis (bTB) outbreaks due to Mycobacterium bovis spoligotype SB0821 have been identified in cattle since 2002 and in wildlife since 2013. Using whole genome sequencing, the aim of our study was to clarify badger contribution to bTB transmission in this area. We used a Bayesian evolutionary model, to infer phylogenetic trees and migration rates between two pathogen populations defined by their host-species. In order to account for sampling bias, sub-population structure was inferred using the marginal approximation of the structured coalescent (Mascot) implemented in BEAST2. We included 167 SB0821 strains (21 isolated from badgers and 146 from cattle) and identified 171 single nucleotide polymorphisms. We selected a HKY model and a strict molecular clock. We estimated a badger-to-cattle transition rate (median: 2.2 transitions/lineage/year) 52 times superior to the cattle-to-badger rate (median: 0.042 transitions/lineage/year). Using the maximum clade credibility tree, we identified that over 75% of the lineages from 1989 to 2000 were present in badgers. In addition, we calculated a median of 64 transition events from badger-to-cattle (IQR: 10–91) and a median of zero transition event from cattle-to-badger (IQR: 0–3). Our model enabled us to infer inter-species transitions but not intra-population transmission as in previous epidemiological studies, where relevant units were farms and badger social groups. Thus, while we could not confirm badgers as possible intermediaries in farm-to-farm transmission, badger-to-cattle transition rate was high and we confirmed long-term presence of M.bovis in the badger population in the South-West of France.
Collapse
|
3
|
Fielding HR, Silk MJ, McKinley TJ, Delahay RJ, Wilson-Aggarwal JK, Gauvin L, Ozella L, Cattuto C, McDonald RA. Spatial and temporal variation in proximity networks of commercial dairy cattle in Great Britain. Prev Vet Med 2021; 194:105443. [PMID: 34352518 PMCID: PMC8385416 DOI: 10.1016/j.prevetmed.2021.105443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 10/28/2022]
Abstract
The nature of contacts between hosts can be important in facilitating or impeding the spread of pathogens within a population. Networks constructed from contacts between hosts allow examination of how individual variation might influence the spread of infections. Studying the contact networks of livestock species managed under different conditions can additionally provide insight into their influence on these contact structures. We collected high-resolution proximity and GPS location data from nine groups of domestic cattle (mean group size = 85) in seven dairy herds employing a range of grazing and housing regimes. Networks were constructed from cattle contacts (defined by proximity) aggregated by different temporal windows (2 h, 24 h, and approximately 1 week) and by location within the farm. Networks of contacts aggregated over the whole study were highly saturated but dividing contacts by space and time revealed substantial variation in cattle interactions. Cows showed statistically significant variation in the frequency of their contacts and in the number of cows with which they were in contact. When cows were in buildings, compared to being on pasture, contact durations were longer and cows contacted more other cows. A small number of cows showed evidence of consistent relationships but the majority of cattle did not. In one group where management allowed free access to all farm areas, cows showed asynchronous space use and, while at pasture, contacted fewer other cows and showed substantially greater between-individual variation in contacts than other groups. We highlight the degree to which variations in management (e.g. grazing access, milking routine) substantially alter cattle contact patterns, with potentially major implications for infection transmission and social interactions. In particular, where individual cows have free choice of their environment, the resulting contact networks may have a less-risky structure that could reduce the likelihood of direct transmission of infections.
Collapse
Affiliation(s)
- Helen R Fielding
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Matthew J Silk
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | | | - Richard J Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, YO41 1LZ, UK
| | - Jared K Wilson-Aggarwal
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | | | - Laura Ozella
- ISI Foundation, Via Chisola 5, 10126, Torino, Italy
| | - Ciro Cattuto
- ISI Foundation, Via Chisola 5, 10126, Torino, Italy; Computer Science Department, University of Turin, Corso Svizzera 185, 10149, Torino, Italy
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.
| |
Collapse
|
4
|
Hénaux V, Ponsart C, Corre J, Etore F, Boulouis HJ, Morvan H, Grisot L, Peroz C. Sensitivity of bovine tuberculosis surveillance through intradermal tests in cattle in France: An evaluation of different scenarios. Prev Vet Med 2021; 191:105364. [PMID: 33964617 DOI: 10.1016/j.prevetmed.2021.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
The current situation regarding bovine tuberculosis (bTB) in Europe is spatially heterogeneous, with stagnating or increasing trends in bTB prevalence in many European regions, underlying the challenge in controlling this disease. In France, in spite of the implementation of two control programs in 2010-2012 to eradicate the disease and maintain the bTB-free status, bTB prevalence has continued to increase, underlying the need to reinforce and adapt surveillance measures. The goal of this study was to evaluate the effectiveness of bTB surveillance in high-risk areas in metropolitan France, with an emphasis on the criteria to select herds and animals within herds in the context of programmed surveillance and movement testing. The fraction of bTB-infected herds detected by the surveillance was quantified using a stochastic scenario tree modelling approach, with input parameter values based on surveillance and cattle traceability data and literature. The detection fraction was assessed for the current surveillance system and for alternative scenarios. The model predicted that the median detection fraction of infected herds by the current programmed surveillance in high-risk areas, which consists in annual testing of herds with a minimum age of testing of 24 months, was 71.5 % (interquartile interval: 47.4-89.4). The results showed a significant gain of the detection fraction with a decrease from 24 to 12 months old (83.5 % [60.6-95.9]) or to six weeks old (91.3 % [71.6-99.0]). Regarding pre-movement surveillance, tests are currently mandatory for bovines that originate from a previously infected herd or from a herd epidemiologically linked to a bTB-infected herd. The median detection fraction predicted by the model for this surveillance scenario was 1.2 % [0.7-1.8]. For the alternative scenario, where surveillance would be extended to all herds in high-risk areas, the model predicted a significant increase of the detection fraction to 26.5 % [18.1-37.9]. The results were sensitive to the following input values: the number of infected bovines within herds and, to a lower extent, the comparative intradermal tuberculin test sensitivity for both models, and surveillance coverage for the model on pre-movement surveillance. Our study underlines several complementary ways to improve the detection of infected herds, which is critical for implementing control measures and epidemiological investigations as early as possible. These necessary changes in surveillance must be accompanied by a global reflexion on surveillance financing.
Collapse
Affiliation(s)
- Viviane Hénaux
- Université de Lyon - ANSES, Laboratoire de Lyon, Unité Epidémiologie et Appui à la Surveillance, 31 Avenue Tony Garnier, 69007, Lyon, France.
| | - Claire Ponsart
- Université de Paris-Est, ANSES, Laboratoire de santé animale, Unité Zoonoses bactériennes, 14 rue Pierre et Marie Curie, 94706, Maisons-Alfort, France.
| | - Justine Corre
- ANSES, Direction de l'évaluation des risques, Unité d'Evaluation des Risques liés à la Santé, à l'Alimentation et au Bien-Etre des animaux, 14 rue Pierre et Marie Curie, 94706, Maisons-Alfort, France.
| | - Florence Etore
- ANSES, Direction de l'évaluation des risques, Unité d'Evaluation des Risques liés à la Santé, à l'Alimentation et au Bien-Etre des animaux, 14 rue Pierre et Marie Curie, 94706, Maisons-Alfort, France.
| | - Henri-Jean Boulouis
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, Paris-Est Sup, 7 avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| | - Hervé Morvan
- LABOCEA, 7 rue du Sabot, CS30054, 22440, Ploufragan, France.
| | - Lionel Grisot
- Groupement Technique Vétérinaire de Bourgogne - Franche-Comté & Groupe de travail Sécurité Sanitaire des Aliments de la Société Nationale des GTV, Clinique Vétérinaire des Tourbières, 1 rue de Beaucaire, 25560, Frasne, France.
| | | |
Collapse
|
5
|
Brock J, Lange M, More SJ, Graham D, Thulke HH. Reviewing age-structured epidemiological models of cattle diseases tailored to support management decisions: Guidance for the future. Prev Vet Med 2019; 174:104814. [PMID: 31743817 DOI: 10.1016/j.prevetmed.2019.104814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
Mechanistic simulation models are being increasingly used as tools to assist with animal health decision-making in the cattle sector. We reviewed scientific literature for studies reporting age-structured cattle management models in application to infectious diseases. Our emphasis was on papers dedicated to support decision making in the field. In this systematic review we considered 1290 manuscripts and identified 76 eligible studies. These are based on 52 individual models from 10 countries addressing 9 different pathogens. We provide an overview of these models and present in detail their theoretical foundations, design paradigms and incorporated processes. We propose a structure of the characteristics of cattle disease models using three main features: [1] biological processes, [2] farming-related processes and [3] pathogen-related processes. It would be of benefit if future cattle disease models were to follow this structure to facilitate science communication and to allow increased model transparency.
Collapse
Affiliation(s)
- Jonas Brock
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dept Ecological Modelling, PG Ecological Epidemiology, Leipzig, Germany; Animal Health Ireland, Carrick-on-Shannon, Co. Leitrim, Ireland.
| | - Martin Lange
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dept Ecological Modelling, PG Ecological Epidemiology, Leipzig, Germany
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - David Graham
- Animal Health Ireland, Carrick-on-Shannon, Co. Leitrim, Ireland
| | - Hans-Hermann Thulke
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dept Ecological Modelling, PG Ecological Epidemiology, Leipzig, Germany
| |
Collapse
|
6
|
Ladreyt H, Saccareau M, Courcoul A, Durand B. In silico Comparison of Test-and-Cull Protocols for Bovine Tuberculosis Control in France. Front Vet Sci 2018; 5:265. [PMID: 30406121 PMCID: PMC6206900 DOI: 10.3389/fvets.2018.00265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/02/2018] [Indexed: 11/13/2022] Open
Abstract
Whole depopulation of cattle herds (WHD) confirmed infected by bovine tuberculosis (bTB) has led since the 1950s to a drop of herd incidence in France below 0.1% in 2000, justifying the current officially bTB free (OTF) status of the country. However, this protocol is expensive, ethically questionable, and difficult for breeders to accept because the number of confirmed animals in an infected herd is often very low. A test-and-cull protocol combining at least three screening sessions of the entire herd followed by the slaughter of all the non-negative animals has been used for some years. The aim of this work was to evaluate in silico the epidemiological effectiveness, the public costs and the acceptability to farmers of this test-and-cull protocol as well as of several ones. A stochastic compartmental model of within-herd bTB spread was used. Six test-and-cull protocols were compared: two versions of the official protocol and four alternatives with varying delays between screenings, and varying tests used. Protocols were simulated for an average French beef herd, and compared to WHD. Three key indicators were computed: the failure probability of the protocol (a failure being defined as an herd recovering its OTF status recovery while still infected, indicator of epidemiological effectiveness), its overall public cost and the percentage of farmers who would have dropped it to switch to WHD (indicator of acceptability to farmers). Failure probability ranged from 1.4 to 12.4% and was null (by definition) for WHD. The median cost varied between 2.7 and 78 K€ for the test-and-cull protocols, vs. 120 K€ for WHD. The percentage of dropout ranged from 7.8 to 22%. The optimal tradeoff between epidemiological effectiveness, public costs, and acceptability to farmers was obtained for protocols with an increased delay (6 months instead of 2 in the currently used protocol) between the last two screening sessions, with either 3 or 2 screening sessions. This study may help improving the official test-and-cull protocol applied in France under European Union regulation, by suggesting alternative protocols, very effective, cheaper, and more acceptable than WHD.
Collapse
Affiliation(s)
- Héléna Ladreyt
- French School of Veterinary Services (ENSV), Lyon, France
| | - Mathilde Saccareau
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France.,Epidemiology Unit, Paris-Est University, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Aurélie Courcoul
- Epidemiology Unit, Paris-Est University, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Benoit Durand
- Epidemiology Unit, Paris-Est University, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
7
|
Raphaka K, Sánchez-Molano E, Tsairidou S, Anacleto O, Glass EJ, Woolliams JA, Doeschl-Wilson A, Banos G. Impact of Genetic Selection for Increased Cattle Resistance to Bovine Tuberculosis on Disease Transmission Dynamics. Front Vet Sci 2018; 5:237. [PMID: 30327771 PMCID: PMC6174293 DOI: 10.3389/fvets.2018.00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Bovine tuberculosis (bTB) poses a challenge to animal health and welfare worldwide. Presence of genetic variation in host resistance to Mycobacterium bovis infection makes the trait amenable to improvement with genetic selection. Genetic evaluations for resistance to infection in dairy cattle are currently available in the United Kingdom (UK), enabling genetic selection of more resistant animals. However, the extent to which genetic selection could contribute to bTB eradication is unknown. The objective of this study was to quantify the impact of genetic selection for bTB resistance on cattle-to-cattle disease transmission dynamics and prevalence by developing a stochastic genetic epidemiological model. The model was used to implement genetic selection in a simulated cattle population. The model considered various levels of selection intensity over 20 generations assuming genetic heterogeneity in host resistance to infection. Our model attempted to represent the dairy cattle population structure and current bTB control strategies in the UK, and was informed by genetic and epidemiological parameters inferred from data collected from UK bTB infected dairy herds. The risk of a bTB breakdown was modeled as the percentage of herds where initially infected cows (index cases) generated secondary cases by infecting herd-mates. The model predicted that this risk would be reduced by half after 4, 6, 9, and 15 generations for selection intensities corresponding to genetic selection of the 10, 25, 50, and 70% most resistant sires, respectively. In herds undergoing bTB breakdowns, genetic selection reduced the severity of breakdowns over generations by reducing both the percentage of secondary cases and the duration over which new secondary cases were detected. Selection of the 10, 25, 50, and 70% most resistant sires reduced the percentage of secondary cases to <1% in 4, 5, 7, and 11 generations, respectively. Similarly, the proportion of long breakdowns (breakdowns in which secondary cases were detected for more than 365 days) was reduced by half in 2, 2, 3, and 4 generations, respectively. Collectively, results suggest that genetic selection could be a viable tool that can complement existing management and surveillance methods to control and ultimately eradicate bTB.
Collapse
Affiliation(s)
- Kethusegile Raphaka
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Department of Agricultural Research, Gaborone, Botswana
| | - Enrique Sánchez-Molano
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Smaragda Tsairidou
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Osvaldo Anacleto
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, Brazil
| | - Elizabeth Janet Glass
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - John Arthur Woolliams
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrea Doeschl-Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Georgios Banos
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Scotland's Rural College, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Ciaravino G, García-Saenz A, Cabras S, Allepuz A, Casal J, García-Bocanegra I, De Koeijer A, Gubbins S, Sáez JL, Cano-Terriza D, Napp S. Assessing the variability in transmission of bovine tuberculosis within Spanish cattle herds. Epidemics 2018; 23:110-120. [PMID: 29415865 DOI: 10.1016/j.epidem.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 11/30/2022] Open
Abstract
In Spain, despite years of efforts to eradicate bovine tuberculosis (bTB), the disease is still endemic, with some areas of high prevalence. In this context, the surveillance and control plans may need to be re-evaluated, and understanding the dynamics of bTB spread within Spanish herds may help to develop new strategies for reducing the time for detection of infected herds and for the elimination of bTB from the herds already infected. Here, we developed a compartmental stochastic model to simulate bTB within-herd transmission, fed it with epidemiological data from 22 herds (obtained from a previous work) and carried out parameter inference using Approximate Bayesian Computing methods We also estimated the "Within-herd transmission potential Number" (Rh), i.e. the average number of secondary cases generated by a single animal infected introduced into a totally susceptible herd, considering different scenarios depending on the frequency of controls. The median global values obtained for the transmission parameters were: for the transmission coefficient (β), 0.014 newly infected animals per infectious individual per day (i.e. 5.2 per year), for the rate at which infected individuals become infectious (α), 0.01 per day (equivalent to a latent period of 97 days), and for the rate at which infected individuals become reactive to the skin test (α1), 0.08 per day (equivalent to a period of 12 days for an infected animal to become reactive). However, the results also evidenced a great variability in the estimates of those parameters (in particular β and α) among the 22 herds. Considering a 6-month interval between tests, the mean Rh was 0.23, increasing to 0.82 with an interval of 1 year, and to 2.01 and 3.47 with testing intervals of 2 and 4 years, respectively.
Collapse
Affiliation(s)
- G Ciaravino
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain.
| | - A García-Saenz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; ISGlobal (Barcelona Institute for Global Health - Epidemiology of Cancer), Campus MAR, Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - S Cabras
- Department of Statistics, Universidad Carlos III de Madrid, 28903 Getafe, Madrid, Spain; Department of Mathematics and Informatics, Università degli Studi di Cagliari, 09124 Cagliari, Italy
| | - A Allepuz
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - J Casal
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - I García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitarios de Rabanales, 14014 Córdoba, Spain
| | - A De Koeijer
- Central Veterinary Institute (CVI), Wageningen UR, Lelystad, The Netherlands
| | - S Gubbins
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - J L Sáez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Madrid, Spain
| | - D Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCO, Campus Universitarios de Rabanales, 14014 Córdoba, Spain
| | - S Napp
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Beltrán-Beck B, Kohnle L, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): bovine tuberculosis. EFSA J 2017; 15:e04959. [PMID: 32625624 PMCID: PMC7009898 DOI: 10.2903/j.efsa.2017.4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of bovine tuberculosis to be listed, Article 9 for the categorisation of bovine tuberculosis according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to bovine tuberculosis. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, bovine tuberculosis can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 2, 3, 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b), (c), (d) and (e) of Article 9(1). The main animal species to be listed for bovine tuberculosis according to Article 8(3) criteria are several mammal species, as indicated in the present opinion.
Collapse
|
10
|
Abakar MF, Yahyaoui Azami H, Justus Bless P, Crump L, Lohmann P, Laager M, Chitnis N, Zinsstag J. Transmission dynamics and elimination potential of zoonotic tuberculosis in morocco. PLoS Negl Trop Dis 2017; 11:e0005214. [PMID: 28152056 PMCID: PMC5289436 DOI: 10.1371/journal.pntd.0005214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
Bovine tuberculosis (BTB) is an endemic zoonosis in Morocco caused by Mycobacterium bovis, which infects many domestic animals and is transmitted to humans through consumption of raw milk or from contact with infected animals. The prevalence of BTB in Moroccan cattle is estimated at 18%, and 33% at the individual and the herd level respectively, but the human M. bovis burden needs further clarification. The current control strategy based on test and slaughter should be improved through local context adaptation taking into account a suitable compensation in order to reduce BTB prevalence in Morocco and decrease the disease burden in humans and animals. We established a simple compartmental deterministic mathematical model for BTB transmission in cattle and humans to provide a general understanding of BTB, in particular regarding transmission to humans. Differential equations were used to model the different pathways between the compartments for cattle and humans. Scenarios of test and slaughter were simulated to determine the effects of varying the proportion of tested animals (p) on the time to elimination of BTB (individual animal prevalence of less than one in a thousand) in cattle and humans. The time to freedom from disease ranged from 75 years for p = 20% to 12 years for p = 100%. For p > 60% the time to elimination was less than 20 years. The cumulated cost was largely stable: for p values higher than 40%, cost ranged from 1.47 to 1.60 billion euros with a time frame of 12 to 32 years to reach freedom from disease. The model simulations also suggest that using a 2mm cut off instead of a 4mm cut off in the Single Intradermal Comparative Cervical Tuberculin skin test (SICCT) would result in cheaper and quicker elimination programs. This analysis informs Moroccan bovine tuberculosis control policy regarding time frame, range of cost and levels of intervention. However, further research is needed to clarify the national human-bovine tuberculosis ratio in Morocco.
Collapse
Affiliation(s)
- Mahamat Fayiz Abakar
- Institut de Recherches en Elevage pour le Développement, N’Djaména, Chad
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hind Yahyaoui Azami
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Philipp Justus Bless
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Lisa Crump
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Petra Lohmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mirjam Laager
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Kosmala M, Miller P, Ferreira S, Funston P, Keet D, Packer C. Estimating wildlife disease dynamics in complex systems using an Approximate Bayesian Computation framework. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:295-308. [PMID: 27039526 DOI: 10.1890/14-1808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Emerging infectious diseases of wildlife are of increasing concern to managers and conservation policy makers, but are often difficult to study and predict due to the complexity of host-disease systems and a paucity of empirical data. We demonstrate the use of an Approximate Bayesian Computation statistical framework to reconstruct the disease dynamics of bovine tuberculosis in Kruger National Park's lion population, despite limited empirical data on the disease's effects in lions. The modeling results suggest that, while a large proportion of the lion population will become infected with bovine tuberculosis, lions are a spillover host and long disease latency is common. In the absence of future aggravating factors, bovine tuberculosis is projected to cause a lion population decline of ~3% over the next 50 years, with the population stabilizing at this new equilibrium. The Approximate Bayesian Computation framework is a new tool for wildlife managers. It allows emerging infectious diseases to be modeled in complex systems by incorporating disparate knowledge about host demographics, behavior, and heterogeneous disease transmission, while allowing inference of unknown system parameters.
Collapse
|