1
|
Chen Y, Dai J, Chen P, Dai Q, Chen Y, Li Y, Lu M, Qin S, Wang Q. Long non-coding RNAs-sphingolipid metabolism nexus: Potential targets for cancer treatment. Pharmacol Res 2024; 210:107539. [PMID: 39647803 DOI: 10.1016/j.phrs.2024.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of cancer pathogenesis, influencing various cellular processes and contributing to tumorigenesis. Sphingolipid metabolism has garnered interest as a potential target for cancer therapy owing to its considerable diagnostic and prognostic value. Recent studies have demonstrated that lncRNAs regulate tumor-associated metabolic reprogramming via sphingolipid metabolism. However, the precise nature of the interactions between lncRNAs and sphingolipid metabolism remains unclear. This review summarizes the key roles of lncRNAs and sphingolipid metabolism in tumorigenesis. We emphasize that the interaction between lncRNAs and sphingolipid metabolism influences their impact on both cancer prognosis and drug resistance. These findings suggest that lncRNA-sphingolipid metabolism interaction holds great potential as a newl target for cancer treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jing Dai
- School of pharmacy, Chengdu Medical college, Chengdu, China.
| | - Peng Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Quan Dai
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ya Chen
- Department of Pharmacy, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Yuying Li
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Man Lu
- Department of Ultrasound, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Shugang Qin
- Department of Exerimental Research, Center for Translational Research in Cancer, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuju Wang
- Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
2
|
Phan F, Bourron O, Foufelle F, Le Stunff H, Hajduch E. Sphingosine-1-phosphate signalling in the heart: exploring emerging perspectives in cardiopathology. FEBS Lett 2024; 598:2641-2655. [PMID: 38965662 DOI: 10.1002/1873-3468.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.
Collapse
Affiliation(s)
- Franck Phan
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Olivier Bourron
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Diabetology Department, Assistance Publique-Hôpitaux de Paris (APHP), La Pitié-Salpêtrière-Charles Foix University Hospital, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris-Saclay, France
| | - Eric Hajduch
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
- Institut Hospitalo-Universitaire ICAN, Paris, France
| |
Collapse
|
3
|
Liang W, Liu M, Su Y, Wen Y, Wang L, Shan J, Zhao J, Xie K, Wang J. Spinster homolog 2 reduces malignancies of glioblastoma via PTEN/PI3K/AKT pathway. IUBMB Life 2024; 76:140-160. [PMID: 37728571 DOI: 10.1002/iub.2785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
The molecular mechanisms of glioblastoma (GBM) are unclear, and the prognosis is poor. Spinster homolog 2 (SPNS2) is reportedly involved in pathological processes such as immune response, vascular development, and cancer. However, the biological function and molecular role of SPNS2 in GBM are unclear. SPNS2 is aberrantly low expressed in glioma. Survival curves, risk scores, prognostic nomograms, and univariate and multifactorial Cox regression analyses showed that SPNS2 is an independent prognostic indicator significantly associated with glioma progression and prognosis. Cell function assays and in vivo xenograft transplantation were performed that downregulation of SPNS2 promoted GBM cell growth, migration, invasion, epithelial-mesenchymal transition (EMT), anti-apoptosis, drug resistance, and stemness, while overexpression of SPNS2 had the opposite effect. Meanwhile, the functional enrichment and signaling pathways of SPNS2 in the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and RNA sequencing were analyzed by Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA). The above results were related to the inhibition of the PTEN/PI3K/AKT pathway by SPNS2. In addition, we predicted that SPNS2 is closely associated with immune infiltration in the tumor microenvironment by four immune algorithms, ESTIMATE, TIMER, CIBERSORT, and QUANTISEQ. In particular, SPNS2 was negatively correlated with the infiltration of most immune cells, immunomodulators, and chemokines. Finally, single-cell sequencing analysis also revealed that SPNS2 was remarkably correlated with macrophages, and downregulation of SPNS2 promotes the expression of M2-like macrophages. This study provides new evidence that SPNS2 inhibits malignant progression, stemness, and immune infiltration of GBM cells through PTEN/PI3K/AKT pathway. SPNS2 may become a new diagnostic indicator and potential immunotherapeutic target for glioma.
Collapse
Affiliation(s)
- Weiye Liang
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mingkai Liu
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuling Su
- Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yulin Wen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lili Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiajie Shan
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie Zhao
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jian Wang
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Liu X, Zhang Y, Liu Z, Gao Y, Yuan L, Zeng D, Tan F, Wan H, Pei Z. METTL3 as a novel diagnosis and treatment biomarker and its association with glycolysis, cuproptosis and ceRNA in oesophageal carcinoma. J Cell Mol Med 2024; 28:e18195. [PMID: 38429907 PMCID: PMC10907846 DOI: 10.1111/jcmm.18195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
METTL3 has been shown to be involved in regulating a variety of biological processes. However, the relationship between METTL3 expression and glycolysis, cuproptosis-related genes and the ceRNA network in oesophageal carcinoma (ESCA) remains unclear. ESCA expression profiles from databases were obtained, and target genes were identified using differential analysis and visualization. Immunohistochemistry (IHC) staining assessed METTL3 expression differences. Functional enrichment analysis using GO, KEGG and GSEA was conducted on the co-expression profile of METTL3. Cell experiments were performed to assess the effect of METTL3 interference on tumour cells. Correlation and differential analyses were carried out to assess the relationship between METTL3 with glycolysis and cuproptosis. qRT-PCR was used to validate the effects of METTL3 interference on glycolysis-related genes. Online tools were utilized to screen and construct ceRNA networks based on the ceRNA theory. METTL3 expression was significantly higher in ESCA compared to the controls. The IHC results were consistent with the above results. Enrichment analysis revealed that METTL3 is involved in multiple pathways associated with tumour development. Significant correlations were observed between METTL3 and glycolysis-related genes and cuproptosis-related gene. Experiments confirmed that interfered with METTL3 significantly inhibited glucose uptake and lactate production in tumour cells, and affected the expression of glycolytic-related genes. Finally, two potential ceRNA networks were successfully predicted and constructed. Our study establishes the association between METTL3 overexpression and ESCA progression. Additionally, we propose potential links between METTL3 and glycolysis, cuproptosis and ceRNA, presenting a novel targeted therapy strategy for ESCA.
Collapse
Affiliation(s)
- Xu‐Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem CellsTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Yu Zhang
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Zi‐Yue Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Yan Gao
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Ling‐Ling Yuan
- Department of PathologyTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Dao‐Bing Zeng
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Fan Tan
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Hua‐Bing Wan
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
| | - Zhi‐Jun Pei
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for precision Diagnosis and Treatment of liver cancerTaihe Hospital, Hubei University of MedicineShiyanChina
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem CellsTaihe Hospital, Hubei University of MedicineShiyanChina
| |
Collapse
|
5
|
Liu Z, Shi Y, Lv L, Chen J, Jiang W, Li J, Lin Q, Fang X, Gao J, Liu Y, Liu Q, Xu X, Song E, Gong C. Small Molecular Inhibitors Reverse Cancer Metastasis by Blockading Oncogenic PITPNM3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204649. [PMID: 36285700 PMCID: PMC9762305 DOI: 10.1002/advs.202204649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Most cancer-related deaths are a result of metastasis. The development of small molecular inhibitors reversing cancer metastasis represents a promising therapeutic opportunity for cancer patients. This pan-cancer analysis identifies oncogenic roles of membrane-associated phosphatidylinositol transfer protein 3 (PITPNM3), which is crucial for cancer metastasis. Small molecules targeting PITPNM3 must be explored further. Here, PITPNM3-selective small molecular inhibitors are reported. These compounds exhibit target-specific inhibition of PITPNM3 signaling, thereby reducing metastasis of breast cancer cells. Besides, by using nanoparticle-based delivery systems, these PITPNM3-selective compounds loaded nanoparticles significantly repress metastasis of breast cancer in mouse xenograft models and organoid models. Notably, the results establish an important metastatic-promoting role for PITPNM3 and offer PITPNM3 inhibition as a therapeutic strategy in metastatic breast cancer.
Collapse
Affiliation(s)
- Zihao Liu
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Department of Breast and Thyroid SurgeryShenzhen People's HospitalThe Second Clinical Medical College of Jinan UniversityThe First Affiliated Hospital of Southern University of Science and TechnologyShenzhen518020P. R. China
| | - Yu Shi
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Li Lv
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Department of PharmacySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Jianing Chen
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - WenG. Jiang
- Cardiff China Medical Research CollaborativeSchool of MedicineCardiff UniversityHeath ParkCardiffCF14 4XNUK
| | - Jun Li
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080P. R. China
| | - Qun Lin
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiaolin Fang
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Jingbo Gao
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Yujie Liu
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Qiang Liu
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Erwei Song
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Chang Gong
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| |
Collapse
|
6
|
Chen H, Wang J, Zhang C, Ding P, Tian S, Chen J, Ji G, Wu T. Sphingosine 1-phosphate receptor, a new therapeutic direction in different diseases. Biomed Pharmacother 2022; 153:113341. [PMID: 35785704 DOI: 10.1016/j.biopha.2022.113341] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
Sphingosine 1-phosphate receptor (S1PR), as a kind of G protein-coupled receptor, has five subtypes, including S1PR1, S1PR2, S1PR3, S1PR4, and S1PR5. Sphingosine 1-phosphate receptor (S1P) and S1PR regulate the trafficking of neutrophils and some cells, which has great effects on immune systems, lung tissue, and liver tissue. Presently, many related reports have proved that S1PR has a strong effect on the migration of lymphocytes, tumor cells, neutrophils, and many other cells via the regulation of signals, pathways, and enzymes. In this way, S1PR can regulate the relative response of the organism. Thus, S1PR has become a possible target for the treatment of autoimmune diseases, pulmonary disease, liver disease, and cancer. In this review, we mainly focus on the research of the S1PR for the new therapeutic directions of different diseases and is expected to assist support in the clinic and drug use.
Collapse
Affiliation(s)
- Hongyu Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuxia Tian
- Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Junming Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Wu G, Sun P, Qin C. GUSBP11 Inhibited The Progression of Triple Negative Breast Cancer via Targeting The miR-579-3p/SPNS2 Axis. CELL JOURNAL 2022; 24:230-238. [PMID: 35717570 PMCID: PMC9445519 DOI: 10.22074/cellj.2022.8024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/22/2021] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Growing evidences have exposed the important roles of long noncoding RNAs (lncRNAs) in the triple negative breast cancer (TNBC) inhibition. The function of glucuronidase beta pseudogene 11 (GUSBP11) in the TNBC occurrence remains obscure. To detect the function of GUSBP11 in TNBC progression and explore its downstream molecular mechanism. MATERIALS AND METHODS In this experimental study, using quantitative reverse transcription real-time polymerase chain reaction (RT-qPCR), we measured the GUSBP11 expression in the TNBC cell lines. Gain-of-function assays, including colony formation, flow cytometry, and western blot were used to identify the probable effects of GUSBP11 overexpression on the malignant behaviors of TNBC cell lines. Moreover, mechanism assays, including RNA immunoprecipitation (RIP), RNA pull down and luciferase reporter assays were taken to measure the possible mechanism of GUSBP11 in the TNBC cell lines. RESULTS GUSBP11 expressed at a low RNA level in the TNBC cell lines. Overexpression of GUSBP11 RNA expression inhibited the proliferation, migration, epithelial-to-mesenchymal transition (EMT) and stemness while elevated the apoptosis of the TNBC cell lines. GUSBP11 positively regulated the expression of sphingolipid transporter 2 (SPNS2) via acting as a competing endogenous RNA (ceRNA) of miR-579-3p, thereby suppressing the development of TNBC cell lines. CONCLUSION GUSBP11 impedes TNBC progression via modulating the miR-579-3p/SPNS2 axis.
Collapse
Affiliation(s)
| | | | - Chunzhi Qin
- Department of General SurgeryJinshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Młynarczyk G, Mikłosz A, Suchański J, Reza S, Romanowicz L, Sobolewski K, Chabowski A, Baranowski M. Grade‐dependent changes in sphingolipid metabolism in clear cell renal cell carcinoma. J Cell Biochem 2022; 123:819-829. [DOI: 10.1002/jcb.30227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - Agnieszka Mikłosz
- Department of Physiology Medical University of Białystok Bialystok Poland
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology Wroclaw University of Environmental and Life Sciences Wroclaw Dolnośląskie Poland
| | - Safoura Reza
- Department of Biochemistry and Molecular Biology Wroclaw University of Environmental and Life Sciences Wroclaw Dolnośląskie Poland
| | - Lech Romanowicz
- Department of Medical Biochemistry Medical University of Białystok Bialystok Poland
| | - Krzysztof Sobolewski
- Department of Medical Biochemistry Medical University of Białystok Bialystok Poland
| | - Adrian Chabowski
- Department of Physiology Medical University of Białystok Bialystok Poland
| | - Marcin Baranowski
- Department of Physiology Medical University of Białystok Bialystok Poland
| |
Collapse
|
9
|
Xu G, Yang Z, Sun Y, Dong H, Ma J. Interaction of microRNAs with sphingosine kinases, sphingosine-1 phosphate, and sphingosine-1 phosphate receptors in cancer. Discov Oncol 2021; 12:33. [PMID: 35201458 PMCID: PMC8777508 DOI: 10.1007/s12672-021-00430-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, participates in various cellular processes during tumorigenesis, including cell proliferation, survival, drug resistance, metastasis, and angiogenesis. S1P is formed by two sphingosine kinases (SphKs), SphK1 and SphK2. The intracellularly produced S1P is delivered to the extracellular space by ATP-binding cassette (ABC) transporters and spinster homolog 2 (SPNS2), where it binds to five transmembrane G protein-coupled receptors to mediate its oncogenic functions (S1PR1-S1PR5). MicroRNAs (miRNAs) are small non-coding RNAs, 21-25 nucleotides in length, that play numerous crucial roles in cancer, such as tumor initiation, progression, apoptosis, metastasis, and angiogenesis via binding to the 3'-untranslated region (3'-UTR) of the target mRNA. There is growing evidence that various miRNAs modulate tumorigenesis by regulating the expression of SphKs, and S1P receptors. We have reviewed various roles of miRNAs, SphKs, S1P, and S1P receptors (S1PRs) in malignancies and how notable miRNAs like miR-101, miR-125b, miR-128, and miR-506, miR-1246, miR-21, miR-126, miR499a, miR20a-5p, miR-140-5p, miR-224, miR-137, miR-183-5p, miR-194, miR181b, miR136, and miR-675-3p, modulate S1P signaling. These tumorigenesis modulating miRNAs are involved in different cancers including breast, gastric, hepatocellular carcinoma, prostate, colorectal, cervical, ovarian, and lung cancer via cell proliferation, invasion, angiogenesis, apoptosis, metastasis, immune evasion, chemoresistance, and chemosensitivity. Therefore, understanding the interaction of SphKs, S1P, and S1P receptors with miRNAs in human malignancies will lead to better insights for miRNA-based cancer therapy.
Collapse
Affiliation(s)
- Guangmeng Xu
- Department of Colorectal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Yamin Sun
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Hongmei Dong
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Jingru Ma
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130000 China
| |
Collapse
|
10
|
Zulueta A, Dei Cas M, Luciano F, Mingione A, Pivari F, Righi I, Morlacchi L, Rosso L, Signorelli P, Ghidoni R, Paroni R, Caretti A. Spns2 Transporter Contributes to the Accumulation of S1P in Cystic Fibrosis Human Bronchial Epithelial Cells. Biomedicines 2021; 9:biomedicines9091121. [PMID: 34572307 PMCID: PMC8467635 DOI: 10.3390/biomedicines9091121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
The role of S1P in Cystic Fibrosis (CF) has been investigated since 2001, when it was first described that the CFTR channel regulates the inward transport of S1P. From then on, various studies have associated F508del CFTR, the most frequent mutation in CF patients, with altered S1P expression in tissue and plasma. We found that human bronchial epithelial immortalized and primary cells from CF patients express more S1P than the control cells, as evidenced by mass spectrometry analysis. S1P accumulation relies on two- to four-fold transcriptional up-regulation of SphK1 and simultaneous halving of SGPL1 in CF vs. control cells. The reduction of SGPL1 transcription protects S1P from irreversible degradation, but the excessive accumulation is partially prevented by the action of the two phosphatases that are up-regulated compared to control cells. For the first time in CF, we describe that Spns2, a non-ATP dependent transporter that normally extrudes S1P out of the cells, shows deficient transcriptional and protein expression, thus impairing S1P accrual dissipation. The in vitro data on CF human bronchial epithelia correlates with the impaired expression of Spns2 observed in CF human lung biopsies compared to healthy control.
Collapse
Affiliation(s)
- Aida Zulueta
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Francesco Luciano
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Francesca Pivari
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Ilaria Righi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.R.); (L.R.)
| | - Letizia Morlacchi
- Respiratory Unit and Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.R.); (L.R.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
- Correspondence: ; Tel.: +39-02-50323264
| |
Collapse
|
11
|
da Silva G, de Matos LL, Kowalski LP, Kulcsar M, Leopoldino AM. Profile of sphingolipid-related genes and its association with prognosis highlights sphingolipid metabolism in oral cancer. Cancer Biomark 2021; 32:49-63. [PMID: 34092610 DOI: 10.3233/cbm-203100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sphingolipids are bioactive lipids that play a role in cancer development. However, the clinical role of sphingolipid (SPL)-related genes in oral cancer (OC) remains not fully understood. OBJECTIVE This study, aimed to examine the mRNA expression of 14 sphingolipid-related genes in oral cancer patients and their implication with clinicopathological features and prognosis. METHODS qPCR analysis was performed in 50 OC tissues and their matched surgical margins. Next, Kaplan-Meier, Cox regression, and Receiver operating characteristics (ROC) analysis were applied to evaluate the impact of sphingolipid-related genes expression on the prognosis of OC. RESULTS The genes SET, ACER3, SK1 and S1PR5 were predominantly up-regulated, while ABCG2, S1PR1, ABCB1 and SPNS2 were down-regulated in OC patients. Analyzing the Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) data, which are predominantly composed of OC samples, these genes displayed a similar profile. In OC patients, high levels of SK1 were associated with lymph node metastasis, extracapsular invasion, desmoplasia, locoregional relapse, and disease status. Low levels of SPNS2 were associated with lymph node metastasis, perineural invasion, and disease status. Furthermore, OC and HNSC patients with higher SK1 expression demonstrated shorter disease-free survival (p= 0.0037; p= 0.0087), whereas those with lower SPNS2 expression exhibited shorter overall survival (p= 0.051; p= 0.0012). High levels of ACER3 and low levels of S1PR1 were associated with shorter disease-free and overall survival in HNSC patients. CONCLUSION Several sphingolipid-related genes are deregulated in OC at the mRNA level and are associated with clinicopathological features and presented potencial for the prediction of poor prognosis in OC patients.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Leandro Luongo de Matos
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil.,Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil
| | - Luiz Paulo Kowalski
- Surgery Department, Faculdade Israelita de Ciências da Saúde Albert Einstein, SP, Brazil.,Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, SP, Brazil
| | - Marco Kulcsar
- Head and Neck Surgery Department, Instituto do Câncer do Estado de São Paulo, University of São Paulo Medical School (LIM28), SP, Brazil
| | - Andreia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| |
Collapse
|
12
|
Lv L, Yi Q, Yan Y, Chao F, Li M. SPNS2 Downregulation Induces EMT and Promotes Colorectal Cancer Metastasis via Activating AKT Signaling Pathway. Front Oncol 2021; 11:682773. [PMID: 34249729 PMCID: PMC8264774 DOI: 10.3389/fonc.2021.682773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Spinster homologue 2 (SPNS2), a transporter of S1P (sphingosine-1-phosphate), has been reported to mediate immune response, vascular development, and pathologic processes of diseases such as cancer via S1P signaling pathways. However, its biological functions and expression profile in colorectal cancer (CRC) is elusive. In this study, we disclosed that SPNS2 expression, which was regulated by copy number variation and DNA methylation of its promoter, was dramatically upregulated in colon adenoma and CRC compared to normal tissues. However, its expression was lower in CRC than in colon adenoma, and low expression of SPN2 correlated with advanced T/M/N stage and poor prognosis in CRC. Ectopic expression of SPNS2 inhibited cell proliferation, migration, epithelial–mesenchymal transition (EMT), invasion, and metastasis in CRC cell lines, while silencing SPNS2 had the opposite effects. Meanwhile, measuring the intracellular and extracellular level of S1P after overexpression of SPNS2 pinpointed a S1P-independent model of SPNS2. Mechanically, SPNS2 led to PTEN upregulation and inactivation of Akt. Moreover, AKT inhibitor (MK2206) abrogated SPNS2 knockdown-induced promoting effects on the migration and invasion, while AKT activator (SC79) reversed the repression of migration and invasion by SPNS2 overexpression in CRC cells, confirming the pivotal role of AKT for SPNS2’s function. Collectively, our study demonstrated the suppressor role of SPNS2 during CRC metastasis, providing new insights into the pathology and molecular mechanisms of CRC progression.
Collapse
Affiliation(s)
- Lei Lv
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ying Yan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fengmei Chao
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother 2021; 139:111610. [PMID: 33957567 DOI: 10.1016/j.biopha.2021.111610] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelin (SM) can be converted into ceramide (Cer) by neutral sphingomyelinase (NSM) and acid sphingomyelinase (ASM). Cer is a second messenger of lipids and can regulate cell growth and apoptosis. Increasing evidence shows that NSM and ASM play key roles in many processes, such as apoptosis, immune function and inflammation. Therefore, NSM and ASM have broad prospects in clinical treatments, especially in cancer, cardiovascular diseases (such as atherosclerosis), nervous system diseases (such as Alzheimer's disease), respiratory diseases (such as chronic obstructive pulmonary disease) and the phenotype of dwarfisms in adolescents, playing a complex regulatory role. This review focuses on the physiological functions of NSM and ASM and summarizes their roles in certain diseases and their potential applications in therapy.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenglang Tan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Wigger D, Schumacher F, Schneider-Schaulies S, Kleuser B. Sphingosine 1-phosphate metabolism and insulin signaling. Cell Signal 2021; 82:109959. [PMID: 33631318 DOI: 10.1016/j.cellsig.2021.109959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022]
Abstract
Insulin is the main anabolic hormone secreted by β-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic β-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.
Collapse
Affiliation(s)
- Dominik Wigger
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany
| | | | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany; Institute of Nutritional Science, Nutritional Toxicology, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
15
|
Lu JW, Tseng YS, Lo YS, Lin YM, Yeh CM, Lin SH. Prognostic Significance of Cytoplasmic SPNS2 Expression in Patients with Oral Squamous Cell Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:164. [PMID: 33673355 PMCID: PMC7917906 DOI: 10.3390/medicina57020164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/09/2023]
Abstract
Background and Objectives: Oral squamous cell carcinoma (OSCC) is a malignant disease with a particularly high incidence in Taiwan. Our objective in this study was to elucidate the involvement of sphingolipid transporter 2 (SPNS2) expression and SPNS2 protein expression in the clinicopathological indexes and the clinical outcomes of OSCC patients. Materials and Methods: Immunohistochemistry analysis was performed for SPNS2 protein expression in samples from 264 cases of OSCC. Correlations of SPNS2 expression with clinicopathological variables and patient survival were analyzed. Results: Our results revealed that the cytoplasmic protein expression of SPNS2 in OSCC tissue specimens was lower than in normal tissue specimens. Negative cytoplasmic protein expression of SPNS2 was significantly correlated with T status and stage. Kaplan-Meier survival curve analysis revealed that negative cytoplasmic SPNS2 expression was predictive of poorer overall survival of OSCC patients in stage III/IV. We also determined that low SPNS2 expression was an independent prognostic factor related to overall survival among OSCC patients in stage III/IV from univariate Cox proportional hazard models. Multivariate Cox proportional hazard models revealed that cytoplasmic SPNS2 expression, T status, lymph node metastasis, and histological grade were independent prognostic factors for survival. Conclusions: Overall, this study determined that SPNS2 protein may be a useful prognostic marker for OSCC patients and potential therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Yen-Shuo Tseng
- Department of Dermatology, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Yu-Sheng Lo
- Department of Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Yueh-Min Lin
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Chung-Min Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| |
Collapse
|
16
|
Differential DNA Methylation in Prostate Tumors from Puerto Rican Men. Int J Mol Sci 2021; 22:ijms22020733. [PMID: 33450964 PMCID: PMC7828429 DOI: 10.3390/ijms22020733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
In 2020, approximately 191,930 new prostate cancer (PCa) cases are estimated in the United States (US). Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. This study aims to assess methylation patterns between aggressive and indolent PCa including DNA repair genes along with ancestry proportions. Prostate tumors classified as aggressive (n = 11) and indolent (n = 13) on the basis of the Gleason score were collected. Tumor and adjacent normal tissue were annotated on H&E (Haemotoxylin and Eosin) slides and extracted by macro-dissection. Methylation patterns were assessed using the Illumina 850K DNA methylation platform. Raw data were processed using the Bioconductor package. Global ancestry proportions were estimated using ADMIXTURE (k = 3). One hundred eight genes including AOX1 were differentially methylated in tumor samples. Regarding the PCa aggressiveness, six hypermethylated genes (RREB1, FAM71F2, JMJD1C, COL5A3, RAE1, and GABRQ) and 11 hypomethylated genes (COL9A2, FAM179A, SLC17A2, PDE10A, PLEKHS1, TNNI2, OR51A4, RNF169, SPNS2, ADAMTSL5, and CYP4F12) were identified. Two significant differentially methylated DNA repair genes, JMJD1C and RNF169, were found. Ancestry proportion results for African, European, and Indigenous American were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation patterns related to PCa in H/L men along with specific patterns related to aggressiveness and DNA repair constitutes a pivotal effort for the understanding of PCa in this population.
Collapse
|
17
|
Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, Chen M, Chen Y, Chen H, Yan H, Wei G, Hong P, Lu Y. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control 2020; 27:1073274820976664. [PMID: 33317322 PMCID: PMC8480355 DOI: 10.1177/1073274820976664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors’ therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Syed Manzar Abbas Shah Naqvi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Meiwen Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yuan Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hongyue Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huizi Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Guangliang Wei
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Peng Hong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Emerging roles of lysophospholipids in health and disease. Prog Lipid Res 2020; 80:101068. [PMID: 33068601 DOI: 10.1016/j.plipres.2020.101068] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022]
Abstract
Lipids are abundant and play essential roles in human health and disease. The main functions of lipids are building blocks for membrane biogenesis. However, lipids are also metabolized to produce signaling molecules. Here, we discuss the emerging roles of circulating lysophospholipids. These lysophospholipids consist of lysoglycerophospholipids and lysosphingolipids. They are both present in cells at low concentration, but their concentrations in extracellular fluids are significantly higher. The biological functions of some of these lysophospholipids have been recently revealed. Remarkably, some of the lysophospholipids play pivotal signaling roles as well as being precursors for membrane biogenesis. Revealing how circulating lysophospholipids are produced, released, transported, and utilized in multi-organ systems is critical to understand their functions. The discovery of enzymes, carriers, transporters, and membrane receptors for these lysophospholipids has shed light on their physiological significance. In this review, we summarize the biological roles of these lysophospholipids via discussing about the proteins regulating their functions. We also discuss about their potential impacts to human health and diseases.
Collapse
|
19
|
Grbčić P, Sedić M. Sphingosine 1-Phosphate Signaling and Metabolism in Chemoprevention and Chemoresistance in Colon Cancer. Molecules 2020; 25:E2436. [PMID: 32456134 PMCID: PMC7287727 DOI: 10.3390/molecules25102436] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinoma (CRC) is the leading cause of cancer-related deaths worldwide. Despite advances in prevention and treatment modalities for CRC, rapidly developing resistance to chemotherapy limits its effectiveness. For that reason, it is important to better understand the mechanisms that undergird the process of chemoresistance to enable design of novel anticancer agents specifically targeting malignant properties of cancer cells. Over recent decades, bioactive sphingolipid species have come under the spotlight for their recognized role in cancer development and progression, and the evidence has surfaced to support their role as regulators of anti-cancer drug resistance. Colon cancer is characterized by a shift in sphingolipid balance that favors the production and accumulation of oncogenic species such as sphingosine 1-phosphate (S1P). S1P is known to govern the processes that facilitate cancer cell growth and progression including proliferation, survival, migration, invasion and inflammation. In this review paper, we will give a comprehensive overview of current literature findings on the molecular mechanisms by which S1P turnover, transport and signaling via receptor-dependent and independent pathways shape colon cancer cell behavior and influence treatment outcome in colon cancer. Combining available modulators of S1P metabolism and signaling with standard chemotherapy drugs could provide a rational approach to achieve enhanced therapeutic response, diminish chemoresistance development and improve the survival outcome in CRC patients.
Collapse
Affiliation(s)
| | - Mirela Sedić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| |
Collapse
|
20
|
Huang W, Qian T, Cheng Z, Zeng T, Si C, Liu C, Deng C, Ye X, Liu Y, Cui L, Fu L. Prognostic significance of Spinster homolog gene family in acute myeloid leukemia. J Cancer 2020; 11:4581-4588. [PMID: 32489475 PMCID: PMC7255376 DOI: 10.7150/jca.44766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal and heterogeneous disease characterized by proliferation of immature myeloid cells, with impaired differentiation and maturation. Spinster homolog (SPNS) is a widely distributed transmembrane transporter, which assists sphingolipids in playing their roles through the cell membrane. However, the expression and clinical implication of the SPNS family has not been investigated in AML. From the Cancer Genome Atlas database, a total of 155 AML patients with complete clinical characteristics and SPNS1-3 expression data were contained in our study. In patients who received chemotherapy only, high expressions of SPNS2 and SPNS3 had adverse effects on event-free survival (EFS) and overall survival (OS) (all P<0.05). However, in the allogeneic hematopoietic stem cell transplantation (allo-HSCT) group, we only found a significant difference in OS between the high and low SPNS3 expression groups (P=0.001), while other SPNS members showed no effect on survival. Multivariate analysis indicated that high SPNS2 expression was an independent risk factor for both EFS and OS in chemotherapy patients. The results confirmed that high expression of SPNS2 and SPNS3 were poor prognostic factors, and the effect of SPNS2 can be neutralized by allo-HSCT.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tiansheng Zeng
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chaozeng Si
- Information Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chaojun Liu
- Yinfeng Gene Technology Co., Ltd.; No.1109, Gangxing 3 Rd,New and High-tech Zone, Jinan City, Shandong Province, 250102, China
| | - Cong Deng
- Department of Clinical laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.,Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| |
Collapse
|
21
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
22
|
Schneider G. S1P Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:129-153. [PMID: 32030688 DOI: 10.1007/978-3-030-35582-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P), together with other phosphosphingolipids, has been found to regulate complex cellular function in the tumor microenvironment (TME) where it acts as a signaling molecule that participates in cell-cell communication. S1P, through intracellular and extracellular signaling, was found to promote tumor growth, angiogenesis, chemoresistance, and metastasis; it also regulates anticancer immune response, modulates inflammation, and promotes angiogenesis. Interestingly, cancer cells are capable of releasing S1P and thus modifying the behavior of the TME components in a way that contributes to tumor growth and progression. Therefore, S1P is considered an important therapeutic target, and several anticancer therapies targeting S1P signaling are being developed and tested in clinics.
Collapse
Affiliation(s)
- Gabriela Schneider
- James Graham Brown Cancer Center, Division of Medical Oncology & Hematology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
23
|
Wang Y, Shen Y, Sun X, Hong TL, Huang LS, Zhong M. Prognostic roles of the expression of sphingosine-1-phosphate metabolism enzymes in non-small cell lung cancer. Transl Lung Cancer Res 2019; 8:674-681. [PMID: 31737503 DOI: 10.21037/tlcr.2019.10.04] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Sphingosine-1-phosphate (S1P), a bioactive lipid, is generally increased in human non-small cell lung cancer (NSCLC). Evidence has shown that the levels of enzymes in S1P metabolism were associated with clinical outcomes in patients with NSCLC. Nevertheless, the roles of mRNA expression of major enzymes (SPHK1, SPHK2 and SGPL1) in S1P metabolism for predicting outcomes in NSCLC patients have not been determined. Methods "The Kaplan-Meier plotter" (the KM plotter) is an online database which contains gene expression and clinical data of 1,928 NSCLC patients. In this study, we analyzed the relationship between mRNA expression of major enzymes in S1P metabolism and overall survival (OS) in 1,926 NSCLC patients with the KM plotter. Further analyses stratified by smoking history, non-metastasis patents, clinical stages, negative surgical margin, chemotherapy and radiotherapy were also performed. Results High SPHK1 mRNA expression [hazard ratio (HR) 1.47, 95% confident interval (CI): 1.28-1.68, P=2.6e-08] was significantly correlated to worse OS, but high SPHK2 (0.66, 95% CI: 0.59-0.75, P=1.9e-10) or SGPL1 (HR 0.64, 95% CI: 0.55-0.75, P=8.7e-09) mRNA expression was in favor of better OS in NSCLC patients. Conclusions The mRNA expression of SPHK1, SPHK2, and SGPL1 is potential predictor of outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Yingqin Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xia Sun
- Department of Nephrology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221000, China.,Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | | | - Long Shuang Huang
- Department of Pharmacology, Shanghai Hospital of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
24
|
Samaha D, Hamdo HH, Wilde M, Prause K, Arenz C. Sphingolipid-Transporting Proteins as Cancer Therapeutic Targets. Int J Mol Sci 2019; 20:ijms20143554. [PMID: 31330821 PMCID: PMC6678544 DOI: 10.3390/ijms20143554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023] Open
Abstract
The understanding of the role of sphingolipid metabolism in cancer has tremendously increased in the past ten years. Many tumors are characterized by imbalances in sphingolipid metabolism. In many cases, disorders of sphingolipid metabolism are also likely to cause or at least promote cancer. In this review, sphingolipid transport proteins and the processes catalyzed by them are regarded as essential components of sphingolipid metabolism. There is much to suggest that these processes are often rate-limiting steps for metabolism of individual sphingolipid species and thus represent potential target structures for pharmaceutical anticancer research. Here, we summarize empirical and biochemical data on different proteins with key roles in sphingolipid transport and their potential role in cancer.
Collapse
Affiliation(s)
- Doaa Samaha
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
- Depatment of Pharmaceutical Chemistry, College of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Housam H Hamdo
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Max Wilde
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kevin Prause
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.
| |
Collapse
|
25
|
Gu X, Jiang Y, Xue W, Song C, Wang Y, Liu Y, Cui B. SPNS2 promotes the malignancy of colorectal cancer cells via regulating Akt and ERK pathway. Clin Exp Pharmacol Physiol 2019; 46:861-871. [PMID: 31206801 DOI: 10.1111/1440-1681.13124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a prevalent malignant tumour that causes considerable cancer-related deaths globally. The sphingolipid transporter 2 (SPNS2), a sphingosine-1-phosphate (S1P) transporter, modulates multiple biological events including malignancy of cancer cells. In this study, the effects of SPNS2 on CRC progression were studied. We found that SPNS2 expression was significantly upregulated in CRC tissues compared to that in adjacent non-tumour tissues. To assess the role of SPNS2 in CRC cells, we performed loss- and gain-of-function experiments in SW480 and HCT116 cells, respectively. The results demonstrated that SPNS2 promoted proliferation, migration and invasion, and inhibited apoptosis in CRC cells. Additionally, SPNS2 enhanced the release of intracellular S1P, and increased S1P receptor 1 (S1PR1) and S1PR3 expression. Moreover, SPNS2 activated the Akt and ERK pathways, and the biological behaviours of SPNS2 were attenuated by Akt or ERK inhibitor in HCT116 cells. In conclusion, our results demonstrated that SPNS2 promoted proliferation, migration and invasion, and inhibited apoptosis by regulating S1P/S1PR1/3 axis and activating Akt and ERK pathway in CRC cells.
Collapse
Affiliation(s)
- Xinyue Gu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Jiang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weinan Xue
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chengxin Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yangyang Wang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Binbin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
26
|
Nakano Y. Stories of spinster with various faces: from courtship rejection to tumor metastasis rejection. J Neurogenet 2019; 33:90-95. [PMID: 30939968 DOI: 10.1080/01677063.2019.1586897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Drosophila spinster (spin) mutant was isolated as a mutant that showed abnormal morphology and function in the nervous system. The spin defect induces neural degeneration similar to human lysosomal storage diseases. Various studies have shown that Spin proteins are localized in lysosomes and participate in the late stages of the autophagic process. Vertebrates have three spinster orthologs, Spns1, Spns2, and Spns3. A defect in Spns1 caused a short lifespan with aberrant lysosomal function in zebrafish. Spns2 was originally isolated as the gene responsible for abnormal heart development and was identified as a sphingosine 1-phosphate transporter in zebrafish. An endothelial cell-specific defect in Spns2 resulted in impaired egress of lymphocytes and the prevention of tumor metastasis in mice. Herein, I reviewed the history of spin/Spns research and discussed the conserved and newly diverged spin/Spns function and possible implications for human diseases.
Collapse
Affiliation(s)
- Yoshiro Nakano
- a Department of Genetics , Hyogo College of Medicine , Nishinomiya , Japan
| |
Collapse
|
27
|
Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis. Arch Pharm Res 2019; 42:232-243. [DOI: 10.1007/s12272-019-01114-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
|
28
|
Spiegel S, Maczis MA, Maceyka M, Milstien S. New insights into functions of the sphingosine-1-phosphate transporter SPNS2. J Lipid Res 2019; 60:484-489. [PMID: 30655317 DOI: 10.1194/jlr.s091959] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/09/2019] [Indexed: 01/29/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent bioactive signaling molecule that regulates many physiological processes important for development, epithelial and endothelial barrier integrity, and the immune system, as well as for pathologies, such as autoimmune diseases, cancer, and metastasis. Most of the well-known actions of S1P are mediated by five specific G protein-coupled receptors located on the plasma membrane. Because S1P is synthesized intracellularly by two sphingosine kinase isoenzymes, we have proposed the paradigm of inside-out signaling by S1P, suggesting that S1P must be exported out of cells to interact with its receptors. While several transporters of S1P have previously been identified, spinster homologue 2 (SPNS2), a member of the large family of non-ATP-dependent organic ion transporters, has recently attracted much attention as an S1P transporter. Here, we discuss recent advances in understanding the physiological actions of SPNS2 in regulating levels of S1P and the S1P gradient that exists between the high circulating concentrations of S1P and low tissue levels that control lymphocyte trafficking. Special emphasis is on the functions of SPNS2 in inflammatory and autoimmune diseases and its recently discovered unexpected importance in metastasis.
Collapse
Affiliation(s)
- Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Melissa A Maczis
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
29
|
Wang G, Bieberich E. Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul 2018; 70:51-64. [PMID: 30287225 PMCID: PMC6251739 DOI: 10.1016/j.jbior.2018.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 04/14/2023]
Abstract
For many decades, research on sphingolipids associated with neurodegenerative disease focused on alterations in glycosphingolipids, particularly glycosylceramides (cerebrosides), sulfatides, and gangliosides. This seemed quite natural since many of these glycolipids are constituents of myelin and accumulated in lipid storage diseases (sphingolipidoses) resulting from enzyme deficiencies in glycolipid metabolism. With the advent of recognizing ceramide and its derivative, sphingosine-1-phosphate (S1P), as key players in lipid cell signaling and regulation of cell death and survival, research focus shifted toward these two sphingolipids. Ceramide and S1P are invoked in a plethora of cell biological processes participating in neurodegeneration such as ER stress, autophagy, dysregulation of protein and lipid transport, exosome secretion and neurotoxic protein spreading, neuroinflammation, and mitochondrial dysfunction. Hence, it is timely to discuss various functions of ceramide and S1P in neurodegenerative disease and to define sphingolipid metabolism and cell signaling pathways as potential targets for therapy.
Collapse
Affiliation(s)
- Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
30
|
Zhong L, Jiang X, Zhu Z, Qin H, Dinkins MB, Kong JN, Leanhart S, Wang R, Elsherbini A, Bieberich E, Zhao Y, Wang G. Lipid transporter Spns2 promotes microglia pro-inflammatory activation in response to amyloid-beta peptide. Glia 2018; 67:498-511. [PMID: 30484906 DOI: 10.1002/glia.23558] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
Accumulating evidence indicates that neuroinflammation contributes to the pathogenesis and exacerbation of neurodegenerative disorders, such as Alzheimer's disease (AD). Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid that regulates many pathophysiological processes including inflammation. We present evidence here that the spinster homolog 2 (Spns2), a S1P transporter, promotes microglia pro-inflammatory activation in vitro and in vivo. Spns2 knockout (Spns2KO) in primary cultured microglia resulted in significantly reduced levels of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) and amyloid-beta peptide 1-42 oligomers (Aβ42) when compared with littermate controls. Fingolimod (FTY720), a S1P receptor 1 (S1PR1) functional antagonist and FDA approved drug for relapsing-remitting multiple sclerosis, partially blunted Aβ42-induced pro-inflammatory cytokine generation, suggesting that Spns2 promotes microglia pro-inflammatory activation through S1P-signaling. Spns2KO significantly reduced Aβ42-induced nuclear factor kappa B (NFκB) activity. S1P increased, while FTY720 dampened, Aβ42-induced NFκB activity, suggesting that Spns2 activates microglia inflammation through, at least partially, NFκB pathway. Spns2KO mouse brains showed significantly reduced Aβ42-induced microglia activation/accumulation and reduced levels of pro-inflammatory cytokines when compared with age-matched controls. More interestingly, Spns2KO ameliorated Aβ42-induced working memory deficit detected by Y-Maze. In summary, these results suggest that Spns2 promotes pro-inflammatory polarization of microglia and may play a crucial role in AD pathogenesis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ji-Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Rebecca Wang
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yujie Zhao
- Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
31
|
Vuckovic S, Minnie SA, Smith D, Gartlan KH, Watkins TS, Markey KA, Mukhopadhyay P, Guillerey C, Kuns RD, Locke KR, Pritchard AL, Johansson PA, Varelias A, Zhang P, Huntington ND, Waddell N, Chesi M, Miles JJ, Smyth MJ, Hill GR. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest 2018; 129:106-121. [PMID: 30300141 DOI: 10.1172/jci98888] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for patients with multiple myeloma (MM) and is thought to prolong the disease plateau phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma-bearing recipient mice and donor mice that were myeloma naive or myeloma experienced to simulate autologous transplantation. Surprisingly, we demonstrated broad induction of T cell-dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naive T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct T cell receptor (TCR) repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell-dependent myeloma control could be adoptively transferred to secondary recipients and was myeloma cell clone specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17 receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFN-γ secretion and signaling were critical to protective immunity and were profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and provide rational approaches to improving clinical outcomes.
Collapse
Affiliation(s)
- Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Simone A Minnie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - David Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Kate A Markey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Division of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Camille Guillerey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kelly R Locke
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Genetics and Immunology, University of the Highlands and Islands, Inverness, United Kingdom
| | | | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology and.,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Haematology, The Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Biological function of SPNS2: From zebrafish to human. Mol Immunol 2018; 103:55-62. [DOI: 10.1016/j.molimm.2018.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023]
|
33
|
Kuo TC, Tseng YJ. LipidPedia: a comprehensive lipid knowledgebase. Bioinformatics 2018; 34:2982-2987. [PMID: 29648583 PMCID: PMC6129305 DOI: 10.1093/bioinformatics/bty213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
Motivation Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Results Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3923 lipids and more than 400 000 annotations of associated diseases, pathways, functions and locations that are essential for interpreting lipid functions and mechanisms from over 1 400 000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. Availability and implementation LipidPedia is available at http://lipidpedia.cmdm.tw. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tien-Chueh Kuo
- Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Yufeng Jane Tseng
- Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
34
|
Peltier L, Bendavid C, Cavey T, Island ML, Doyard M, Leroyer P, Allain C, De Tayrac M, Ropert M, Loréal O, Guggenbuhl P. Iron excess upregulates SPNS2 mRNA levels but reduces sphingosine-1-phosphate export in human osteoblastic MG-63 cells. Osteoporos Int 2018; 29:1905-1915. [PMID: 29721575 DOI: 10.1007/s00198-018-4531-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
UNLABELLED We aimed to study the mechanisms involved in bone-related iron impairment by using the osteoblast-like MG-63 cell line. Our results indicate that iron impact the S1P/S1PR signalizing axis and suggest that iron can affect the S1P process and favor the occurrence of osteoporosis during chronic iron overload. INTRODUCTION Systemic iron excess favors the development of osteoporosis, especially during genetic hemochromatosis. The cellular mechanisms involved are still unclear despite numerous data supporting a direct effect of iron on bone biology. Therefore, the aim of this study was to characterize mechanisms involved in the iron-related osteoblast impairment. METHODS We studied, by using the MG-63 cell lines, the effect of iron excess on SPNS2 gene expression which was previously identified by us as potentially iron-regulated. Cell-type specificity was investigated with hepatoma HepG2 and enterocyte-like Caco-2 cell lines as well as in iron-overloaded mouse liver. The SPNS2-associated function was also investigated in MG-63 cells by fluxomic strategy which led us to determinate the S1P efflux in iron excess condition. RESULTS We showed in MG-63 cells that iron exposure strongly increased the mRNA level of the SPNS2 gene. This was not observed in HepG2, in Caco-2 cells, and in mouse livers. Fluxomic study performed concomitantly on MG-63 cells revealed an unexpected decrease in the cellular capacity to export S1P. Iron excess did not modulate SPHK1, SPHK2, SGPL1, or SGPP1 gene expression, but decreased COL1A1 and S1PR1 mRNA levels, suggesting a functional implication of low extracellular S1P concentration on the S1P/S1PR signalizing axis. CONCLUSIONS Our results indicate that iron impacts the S1P/S1PR signalizing axis in the MG-63 cell line and suggest that iron can affect the bone-associated S1P pathway and favor the occurrence of osteoporosis during chronic iron overload.
Collapse
Affiliation(s)
- L Peltier
- Service de Biochimie - Toxicologie, CHU Rennes, F-35033, Rennes, France
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France
| | - C Bendavid
- Service de Biochimie - Toxicologie, CHU Rennes, F-35033, Rennes, France
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France
| | - T Cavey
- Service de Biochimie - Toxicologie, CHU Rennes, F-35033, Rennes, France
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France
| | - M-L Island
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - M Doyard
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - P Leroyer
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - C Allain
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - M De Tayrac
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU Rennes, F-35033, Rennes, France
| | - M Ropert
- Service de Biochimie - Toxicologie, CHU Rennes, F-35033, Rennes, France
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - O Loréal
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - P Guggenbuhl
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France.
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France.
- Service de Rhumatologie, CHU Rennes, F-35203, Rennes, France.
| |
Collapse
|
35
|
Abstract
While normal angiogenesis is critical for development and tissue growth, pathological angiogenesis is important for the growth and spread of cancers by supplying nutrients and oxygen as well as providing a conduit for distant metastasis. The interaction among extracellular matrix molecules, tumor cells, endothelial cells, fibroblasts, and immune cells is critical in pathological angiogenesis, in which various angiogenic growth factors, chemokines, and lipid mediators produced from these cells as well as hypoxic microenvironment promote angiogenesis by regulating expression and/or activity of various related genes. Sphingosine 1-phosphate and lysophosphatidic acid, bioactive lipid mediators which act via specific G protein-coupled receptors, play critical roles in angiogenesis. In addition, other lipid mediators including prostaglandin E2, lipoxin, and resolvins are produced in a stimulus-dependent manner and have pro- or anti-angiogenic effects, presumably through their specific GPCRs. Dysregulated lipid mediator signaling pathways are observed in the contxt of some tumors. This review will focus on LPA and S1P, two bioactive lipid mediators in their regulation of angiogenesis and cell migration that are critical for tumor growth and spread.
Collapse
Affiliation(s)
- Yu Hisano
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
36
|
Zhong L, Kong JN, Dinkins MB, Leanhart S, Zhu Z, Spassieva SD, Qin H, Lin HP, Elsherbini A, Wang R, Jiang X, Nikolova-Karakashian M, Wang G, Bieberich E. Increased liver tumor formation in neutral sphingomyelinase-2-deficient mice. J Lipid Res 2018; 59:795-804. [PMID: 29567647 DOI: 10.1194/jlr.m080879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, but not adjacent tissue, exhibited substantial accumulation of lipid droplets, suggesting that nSMase2 deficiency is associated with tumor growth and increased neutral lipid generation in the tumor. Tumor tissue expressed significantly increased levels of CD133 and EpCAM mRNA, two markers of liver cancer stem-like cells (CSCs) and higher levels of phosphorylated signal transducer and activator of transcription 3, an essential regulator of stemness. CD133(+) cells showed strong labeling for SM and ceramide. In conclusion, these results suggest that SMase-2 deficiency plays a role in the survival or proliferation of CSCs, leading to spontaneous tumors, which is associated with tumor-specific effects on lipid homeostasis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ji Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Stefka D Spassieva
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Haiyan Qin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Hsuan-Pei Lin
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | | | - Xue Jiang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY.,Rehabilitation Center, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China
| | | | - Guanghu Wang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
37
|
Fang C, Bian G, Ren P, Xiang J, Song J, Yu C, Zhang Q, Liu L, Chen K, Liu F, Zhang K, Wu C, Sun R, Hu D, Ju G, Wang J. S1P transporter SPNS2 regulates proper postnatal retinal morphogenesis. FASEB J 2018; 32:3597-3613. [DOI: 10.1096/fj.201701116r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Fang
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Ganlan Bian
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Pan Ren
- Department of Plastic SurgeryTangdu HospitalXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jie Xiang
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jun Song
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Caiyong Yu
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Qian Zhang
- Department of NeurologyHainan Branch of Chinese People's Liberation Army General HospitalSanyaChina
| | - Ling Liu
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Kun Chen
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Fangfang Liu
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Kun Zhang
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chunfeng Wu
- BIOS LaboratoryBIOS Bioscience and Technology Limited CompanyGuangzhouChina
| | - Ruixia Sun
- BIOS LaboratoryBIOS Bioscience and Technology Limited CompanyGuangzhouChina
| | - Dan Hu
- Department of OphthalmologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Gong Ju
- Department of NeurobiologyXijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jian Wang
- BIOS LaboratoryBIOS Bioscience and Technology Limited CompanyGuangzhouChina
- Institutes for Life Sciences and School of MedicineSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
38
|
Tran HB, Jersmann H, Truong TT, Hamon R, Roscioli E, Ween M, Pitman MR, Pitson SM, Hodge G, Reynolds PN, Hodge S. Disrupted epithelial/macrophage crosstalk via Spinster homologue 2-mediated S1P signaling may drive defective macrophage phagocytic function in COPD. PLoS One 2017; 12:e0179577. [PMID: 29112690 PMCID: PMC5675303 DOI: 10.1371/journal.pone.0179577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION We have previously established a link between impaired phagocytic capacity and deregulated S1P signaling in alveolar macrophages from COPD subjects. We hypothesize that this defect may include a disruption of epithelial-macrophage crosstalk via Spns2-mediated intercellular S1P signaling. METHODS Primary alveolar macrophages and bronchial epithelial cells from COPD subjects and controls, cell lines, and a mouse model of chronic cigarette smoke exposure were studied. Cells were exposed to 10% cigarette smoke extract, or vehicle control. Spns2 expression and subcellular localization was studied by immunofluorescence, confocal microscopy and RT-PCR. Phagocytosis was assessed by flow-cytometry. Levels of intra- and extracellular S1P were measured by S1P [3H]-labeling. RESULTS Spns2 expression was significantly increased (p<0.05) in alveolar macrophages from current-smokers/COPD patients (n = 5) compared to healthy nonsmokers (n = 8) and non-smoker lung transplant patients (n = 4). Consistent with this finding, cigarette smoke induced a significant increase in Spns2 expression in both human alveolar and THP-1 macrophages. In contrast, a remarkable Spns2 down-regulation was noted in response to cigarette smoke in 16HBE14o- cell line (p<0.001 in 3 experiments), primary nasal epithelial cells (p<0.01 in 2 experiments), and in smoke-exposed mice (p<0.001, n = 6 animals per group). Spns2 was localized to cilia in primary bronchial epithelial cells. In both macrophage and epithelial cell types, Spns2 was also found localized to cytoplasm and the nucleus, in line with a predicted bipartile Nuclear Localization Signal at the position aa282 of the human Spns2 sequence. In smoke-exposed mice, alveolar macrophage phagocytic function positively correlated with Spns2 protein expression in bronchial epithelial cells. CONCLUSION Our data suggest that the epithelium may be the major source for extracellular S1P in the airway and that there is a possible disruption of epithelial/macrophage cross talk via Spns2-mediated S1P signaling in COPD and in response to cigarette smoke exposure.
Collapse
Affiliation(s)
- Hai B. Tran
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Hubertus Jersmann
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Tung Thanh Truong
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
- Department of TB & Lung Diseases, Hospital 175, Hochiminh City, Vietnam
| | - Rhys Hamon
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Eugene Roscioli
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Miranda Ween
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Melissa R. Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Greg Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Paul N. Reynolds
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Sandra Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
39
|
Dobrosak C, Gooi JH. Increased sphingosine-1-phosphate production in response to osteocyte mechanotransduction. Bone Rep 2017; 7:114-120. [PMID: 29085869 PMCID: PMC5651498 DOI: 10.1016/j.bonr.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Accepted: 10/15/2017] [Indexed: 01/01/2023] Open
Abstract
Over the past few years interest has greatly increased in how the lipid mediator sphingosine-1-phosphate (S1P) influences bone homeostasis. Recent work has postulated multiple effects of S1P on osteoblasts and osteoclasts. Based on these findings, S1P has been proposed as a potential osteoporosis treatment. However, to date, there has been only a single study investigating S1P signalling in the cells that co-ordinate bone metabolism: osteocytes. This study aimed to elucidate the role of S1P signalling in osteocyte mechanotransduction. Utilising 3D cell culture we established the expression profile of all genes related to the S1P signalling system in the Ocy454 osteocyte cell line. Exposure to mechanical loading resulted in a downregulation in Sost, Spns2, the S1P transporter, Sgpl1 and Sgppl1 the enzymes responsible for degradation and dephosphorylation of S1P. These findings, in conjunction with fluid-flow induced upregulation of Sphk1, the kinase responsible for phosphorylation of sphingosine, suggest that mechanical stimulation of osteocytes leads to an increase in intracellular S1P. This was confirmed with mechanical loading of Ocy454 cells rapidly increasing S1P production in conditioned media and protein lysates. These findings strongly suggest an important role for S1P in the response to mechanical loading of bone. Osteocytes form a cellular network throughout bone ideally suited for sensing the needs of the skeleton and responding to them. Over the past few years interest has greatly increased in how S1P influences bone homeostasis. Exposure to mechanical loading significantly modifies osteocyte S1P signalling. This suggests an important role for S1P production in the response to mechanical loading of bone.
Collapse
Affiliation(s)
- Cale Dobrosak
- Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Jonathan H Gooi
- Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Melbourne, VIC 3065, Australia
| |
Collapse
|
40
|
Mohammed S, Harikumar KB. Sphingosine 1-Phosphate: A Novel Target for Lung Disorders. Front Immunol 2017; 8:296. [PMID: 28352271 PMCID: PMC5348531 DOI: 10.3389/fimmu.2017.00296] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 01/11/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is involved in a wide range of cellular processes, which include proliferation, apoptosis, lymphocyte egress, endothelial barrier function, angiogenesis, and inflammation. S1P is produced by two isoenzymes, namely, sphingosine kinase 1 and 2 (SphK1 and 2) and once produced, S1P can act both in an autocrine and paracrine manner. S1P can be dephosphorylated back to sphingosine by two phosphatases (SGPP 1 and 2) or can be irreversibly cleaved by S1P lyase. S1P has a diverse range of functions, which is mediated in a receptor dependent, through G-protein coupled receptors (S1PR1-5) or receptor independent manner, through intracellular targets such as HDACs and TRAF2. The involvement of S1P signaling has been confirmed in various disease conditions including lung diseases. The SphK inhibitors and S1PR modulators are currently under clinical trials for different pathophysiological conditions. There is a significant effort in targeting various components of S1P signaling for several diseases. This review focuses on the ways in which S1P signaling can be therapeutically targeted in lung disorders.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| |
Collapse
|
41
|
|
42
|
Abstract
Sphingosine-1-phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled receptors, S1P1-5, which are differentially expressed in different cell types, S1P generates downstream signals that play crucial role in developmental and disease related pathologies. In addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act intracellularly, independently of S1P1-5, affecting calcium homeostasis and cell proliferation. The SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels could offer therapeutic potential in ameliorating lung diseases. This review focuses on the prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
43
|
Fu P, Ebenezer DL, Berdyshev EV, Bronova IA, Shaaya M, Harijith A, Natarajan V. Role of Sphingosine Kinase 1 and S1P Transporter Spns2 in HGF-mediated Lamellipodia Formation in Lung Endothelium. J Biol Chem 2016; 291:27187-27203. [PMID: 27864331 DOI: 10.1074/jbc.m116.758946] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/18/2016] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) signaling via c-Met is known to promote endothelial cell motility and angiogenesis. We have previously reported that HGF stimulates lamellipodia formation and motility of human lung microvascular endothelial cells (HLMVECs) via PI3K/Akt signal transduction and reactive oxygen species generation. Here, we report a role for HGF-induced intracellular sphingosine-1-phosphate (S1P) generation catalyzed by sphingosine kinase 1 (SphK1), S1P transporter, spinster homolog 2 (Spns2), and S1P receptor, S1P1, in lamellipodia formation and perhaps motility of HLMVECs. HGF stimulated SphK1 phosphorylation and enhanced intracellular S1P levels in HLMVECs, which was blocked by inhibition of SphK1. HGF enhanced co-localization of SphK1/p-SphK1 with actin/cortactin in lamellipodia and down-regulation or inhibition of SphK1 attenuated HGF-induced lamellipodia formation in HLMVECs. In addition, down-regulation of Spns2 also suppressed HGF-induced lamellipodia formation, suggesting a key role for inside-out S1P signaling. The HGF-mediated phosphorylation of SphK1 and its localization in lamellipodia was dependent on c-Met and ERK1/2 signaling, but not the PI3K/Akt pathway; however, blocking PI3K/Akt signaling attenuated HGF-mediated phosphorylation of Spns2. Down-regulation of S1P1, but not S1P2 or S1P3, with specific siRNA attenuated HGF-induced lamellipodia formation. Further, HGF enhanced association of Spns2 with S1P1 that was blocked by inhibiting SphK1 activity with PF-543. Moreover, HGF-induced migration of HLMVECs was attenuated by down-regulation of Spns2. Taken together, these results suggest that HGF/c-Met-mediated lamellipodia formation, and perhaps motility is dependent on intracellular generation of S1P via activation and localization of SphK1 to cell periphery and Spns2-mediated extracellular transportation of S1P and its inside-out signaling via S1P1.
Collapse
Affiliation(s)
| | | | - Evgeny V Berdyshev
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Irina A Bronova
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | | | | | - Viswanathan Natarajan
- From the Departments of Pharmacology, .,Medicine, University of Illinois, Chicago, Illinois 60612 and
| |
Collapse
|
44
|
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol 2016; 6:218. [PMID: 27800303 PMCID: PMC5066089 DOI: 10.3389/fonc.2016.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023] Open
Abstract
In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response.
Collapse
Affiliation(s)
- Yamila I Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ludmila E Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Melina G Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ahmed Aladhami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Sergio E Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET, San Luis, Argentina; Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
45
|
Jones ZB, Ren Y. Sphingolipids in spinal cord injury. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2016; 8:52-69. [PMID: 27570580 PMCID: PMC4981650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition that affects millions of individuals worldwide. Despite progress over the last few decades, the molecular mechanisms of secondary SCI that continue to occur days and weeks after the original trauma remain poorly understood. As a result, current therapies for SCI are only marginally effective. Sphingolipids, a diverse class of bioactive lipids, have been shown to regulate SCI repair and key secondary injury processes such as apoptosis, ischemia and inflammation. This review will discuss the numerous roles of sphingolipids and highlight the potential of sphingolipid-targeted therapies for SCI.
Collapse
Affiliation(s)
- Zachary B Jones
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA
| | - Yi Ren
- Department of Biomedical Sciences, Florida State UniversityTallahassee, FL, USA
- Institute of Inflammation and Diseases, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
46
|
Harijith A, Pendyala S, Ebenezer DL, Ha AW, Fu P, Wang YT, Ma K, Toth PT, Berdyshev EV, Kanteti P, Natarajan V. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium. Am J Physiol Lung Cell Mol Physiol 2016; 311:L337-51. [PMID: 27343196 DOI: 10.1152/ajplung.00447.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Hyperoxia-induced lung injury adversely affects ICU patients and neonates on ventilator assisted breathing. The underlying culprit appears to be reactive oxygen species (ROS)-induced lung damage. The major contributor of hyperoxia-induced ROS is activation of the multiprotein enzyme complex NADPH oxidase. Sphingosine-1-phosphate (S1P) signaling is known to be involved in hyperoxia-mediated ROS generation; however, the mechanism(s) of S1P-induced NADPH oxidase activation is unclear. Here, we investigated various steps in the S1P signaling pathway mediating ROS production in response to hyperoxia in lung endothelium. Of the two closely related sphingosine kinases (SphKs)1 and 2, which synthesize S1P from sphingosine, only Sphk1(-/-) mice conferred protection against hyperoxia-induced lung injury. S1P is metabolized predominantly by S1P lyase and partial deletion of Sgpl1 (Sgpl1(+/-)) in mice accentuated lung injury. Hyperoxia stimulated S1P accumulation in human lung microvascular endothelial cells (HLMVECs), and downregulation of S1P transporter spinster homolog 2 (Spns2) or S1P receptors S1P1&2, but not S1P3, using specific siRNA attenuated hyperoxia-induced p47(phox) translocation to cell periphery and ROS generation in HLMVECs. These results suggest a role for Spns2 and S1P1&2 in hyperoxia-mediated ROS generation. In addition, p47(phox) (phox:phagocyte oxidase) activation and ROS generation was also reduced by PF543, a specific SphK1 inhibitor in HLMVECs. Our data indicate a novel role for Spns2 and S1P1&2 in the activation of p47(phox) and production of ROS involved in hyperoxia-mediated lung injury in neonatal and adult mice.
Collapse
Affiliation(s)
- Anantha Harijith
- Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Pharmacology, National Jewish Health, Denver, Colorado;
| | - Srikanth Pendyala
- Department of Pharmacology, National Jewish Health, Denver, Colorado
| | - David L Ebenezer
- Department of Biochemistry & Molecular Genetics, National Jewish Health, Denver, Colorado
| | - Alison W Ha
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Panfeng Fu
- Department of Pharmacology, National Jewish Health, Denver, Colorado
| | - Yue-Ting Wang
- Department of Medicinal Chemistry, National Jewish Health, Denver, Colorado
| | - Ke Ma
- Department of Pathology, National Jewish Health, Denver, Colorado
| | - Peter T Toth
- Department of Pathology, National Jewish Health, Denver, Colorado
| | | | - Prasad Kanteti
- Department of Pharmacology, National Jewish Health, Denver, Colorado
| | - Viswanathan Natarajan
- Department of Pharmacology, National Jewish Health, Denver, Colorado; Department of Biochemistry & Molecular Genetics, National Jewish Health, Denver, Colorado; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
47
|
Nema R, Vishwakarma S, Agarwal R, Panday RK, Kumar A. Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther 2016; 9:3269-80. [PMID: 27330306 PMCID: PMC4898435 DOI: 10.2147/ott.s99989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer type, with an annual incidence of approximately half a million people worldwide. It has a high recurrence rate and an extremely low survival rate. This is due to limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of patients with advanced stages of the disease. HNSCC often develops resistance to chemotherapy and targeted drug therapy. Thus, to overcome the problem of drug resistance, there is a need to explore novel drug targets. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in inflammation, tumor progression, and angiogenesis. S1P is synthesized intracellularly by two sphingosine kinases (SphKs). It can be exported to the extracellular space, where it can activate a family of G-protein-coupled receptors. Alternatively, S1P can act as an intracellular second messenger. SphK1 regulates tumor progression, invasion, metastasis, and chemoresistance in HNSCC. SphK1 expression is highly elevated in advanced stage HNSCC tumors and correlates with poor survival. In this article, we review current knowledge regarding the role of S1P receptors and enzymes of S1P metabolism in HNSCC carcinogenesis. Furthermore, we summarize the current perspectives on therapeutic approaches for targeting S1P pathway for treating HNSCC.
Collapse
Affiliation(s)
- Rajeev Nema
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Supriya Vishwakarma
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Rahul Agarwal
- Jawaharlal Nehru Cancer Hospital & Research Centre, Indrapuri, Bhopal, India
| | | | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| |
Collapse
|
48
|
Meshcheryakova A, Svoboda M, Tahir A, Köfeler HC, Triebl A, Mungenast F, Heinze G, Gerner C, Zimmermann P, Jaritz M, Mechtcheriakova D. Exploring the role of sphingolipid machinery during the epithelial to mesenchymal transition program using an integrative approach. Oncotarget 2016; 7:22295-323. [PMID: 26967245 PMCID: PMC5008362 DOI: 10.18632/oncotarget.7947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/20/2016] [Indexed: 12/30/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) program is activated in epithelial cancer cells and facilitates their ability to metastasize based on enhanced migratory, proliferative, anti-apoptotic, and pluripotent capacities. Given the fundamental impact of sphingolipid machinery to each individual process, the sphingolipid-related mechanisms might be considered among the most prominent drivers/players of EMT; yet, there is still limited knowledge. Given the complexity of the interconnected sphingolipid system, which includes distinct sphingolipid mediators, their synthesizing enzymes, receptors and transporters, we herein apply an integrative approach for assessment of the sphingolipid-associated mechanisms underlying EMT program. We created the sphingolipid-/EMT-relevant 41-gene/23-gene signatures which were applied to denote transcriptional events in a lung cancer cell-based EMT model. Based on defined 35-gene sphingolipid/EMT-attributed signature of regulated genes, we show close associations between EMT markers, genes comprising the sphingolipid network at multiple levels and encoding sphingosine 1-phosphate (S1P)-/ceramide-metabolizing enzymes, S1P and lysophosphatidic acid (LPA) receptors and S1P transporters, pluripotency genes and inflammation-related molecules, and demonstrate the underlying biological pathways and regulators. Mass spectrometry-based sphingolipid analysis revealed an EMT-attributed shift towards increased S1P and LPA accompanied by reduced ceramide levels. Notably, using transcriptomics data across various cell-based perturbations and neoplastic tissues (24193 arrays), we identified the sphingolipid/EMT signature primarily in lung adenocarcinoma tissues; besides, bladder, colorectal and prostate cancers were among the top-ranked. The findings also highlight novel regulatory associations between influenza virus and the sphingolipid/EMT-associated mechanisms. In sum, data propose the multidimensional contribution of sphingolipid machinery to pathological EMT and may yield new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Anastasia Meshcheryakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Martin Svoboda
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Ammar Tahir
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
- Mass Spectrometry Center, University of Vienna, Vienna, Austria
| | - Harald C. Köfeler
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Alexander Triebl
- Core Facility for Mass Spectrometry, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Felicitas Mungenast
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Georg Heinze
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University Vienna, Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
- Mass Spectrometry Center, University of Vienna, Vienna, Austria
| | | | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Jernigan PL, Makley AT, Hoehn RS, Edwards MJ, Pritts TA. The role of sphingolipids in endothelial barrier function. Biol Chem 2016; 396:681-91. [PMID: 25867999 DOI: 10.1515/hsz-2014-0305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 12/31/2022]
Abstract
Sphingolipids are a ubiquitous family of essential lipids with an increasingly understood role as biologically active mediators in numerous physiologic and pathologic processes. Two particular sphingolipid species, sphingosine-1-phosphate and ceramide, and their metabolites interact both directly and indirectly with endothelial cells to regulate vascular permeability. Sphingosine-1-phosphate generally augments endothelial integrity while ceramide tends to promote vascular leak, and a tight balance between the two is necessary to maintain normal physiologic function. The mechanisms by which sphingolipids regulate endothelial barrier function are complex and occur through multiple different pathways, and disruptions or imbalances in these pathways have been implicated in a number of specific disease processes. With improved understanding of sphingolipid biology, endothelial function, and the interactions between the two, several targets for therapeutic intervention have emerged and there is immense potential for further advancement in this field.
Collapse
|
50
|
Zhou K, Blom T. Trafficking and Functions of Bioactive Sphingolipids: Lessons from Cells and Model Membranes. Lipid Insights 2015; 8:11-20. [PMID: 26715852 PMCID: PMC4685176 DOI: 10.4137/lpi.s31615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
Ceramide and sphingosine and their phosphorylated counterparts are recognized as "bioactive sphingolipids" and modulate membrane integrity, the activity of enzymes, or act as ligands of G protein-coupled receptors. The subcellular distribution of the bioactive sphingolipids is central to their function as the same lipid can mediate diametrically opposite effects depending on its location. To ensure that these lipids are present in the right amount and in the appropriate organelles, cells employ selective lipid transport and compartmentalize sphingolipid-metabolizing enzymes to characteristic subcellular sites. Our knowledge of key mechanisms involved in sphingolipid signaling and trafficking has increased substantially in the past decades-thanks to advances in biochemical and cell biological methods. In this review, we focus on the bioactive sphingolipids and discuss how the combination of studies in cells and in model membranes have contributed to our understanding of how they behave and function in living organisms.
Collapse
Affiliation(s)
- Kecheng Zhou
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|