1
|
Ezzemani W, Ouladlahsen A, Altawalah H, Saile R, Sarih M, Kettani A, Ezzikouri S. Identification of novel T-cell epitopes on monkeypox virus and development of multi-epitopes vaccine using immunoinformatics approaches. J Biomol Struct Dyn 2024; 42:5349-5364. [PMID: 37354141 DOI: 10.1080/07391102.2023.2226733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Monkeypox virus (MPV) is closely related to the smallpox virus, and previous data from Africa suggest that the smallpox vaccine (VARV) is at least 85% effective in preventing MPV. No multi-epitope vaccine has yet been developed to prevent MPV infection. In this work, we used in silico structural biology and advanced immunoinformatic strategies to design a multi-epitope subunit vaccine against MPV infection. The designed vaccine sequence is adjuvanted with CpG-ODN and includes HTL/CTL epitopes for similar proteins between vaccinia virus (VACV) that induced T-cell production in vaccinated volunteers and the first draft sequence of the MPV genome associated with the suspected outbreak in several countries, May 2022. In addition, the specific binding of the modified vaccine and the immune Toll-like receptor 9 (TLR9) was estimated by molecular interaction studies. Strong interaction in the binding groove as well as good docking scores confirmed the stringency of the modified vaccine. The stability of the interaction was confirmed by a classical molecular dynamics simulation and normal mode analysis. Then, the immune simulation also indicated the ability of this vaccine to induce an effective immune response against MPV. Codon optimization and in silico cloning of the vaccine into the pET-28a (+) vector also showed its expression potential in the E. coli K12 system. The promising data obtained from the various in silico studies indicate that this vaccine is effective against MPV. However, additional in vitro and in vivo studies are still needed to confirm its efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
- Service des maladies infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Rachid Saile
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
2
|
Moin AT, Rani NA, Patil RB, Robin TB, Ullah MA, Rahim Z, Rahman MF, Zubair T, Hossain M, Mollah AKMM, Absar N, Hossain M, Manchur MA, Islam NN. In-silico formulation of a next-generation polyvalent vaccine against multiple strains of monkeypox virus and other related poxviruses. PLoS One 2024; 19:e0300778. [PMID: 38758816 PMCID: PMC11101047 DOI: 10.1371/journal.pone.0300778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/05/2024] [Indexed: 05/19/2024] Open
Abstract
Mpox (formerly known as monkeypox) virus and some related poxviruses including smallpox virus pose a significant threat to public health, and effective prevention and treatment strategies are needed. This study utilized a reverse vaccinology approach to retrieve conserved epitopes for monkeypox virus and construct a vaccine that could provide cross-protection against related viruses with similar antigenic properties. The selected virulent proteins of monkeypox virus, MPXVgp165, and Virion core protein P4a, were subjected to epitope mapping for vaccine construction. Two vaccines were constructed using selected T cell epitopes and B cell epitopes with PADRE and human beta-defensins adjuvants conjugated in the vaccine sequence. Both constructs were found to be highly antigenic, non-allergenic, nontoxic, and soluble, suggesting their potential to generate an adequate immune response and be safe for humans. Vaccine construct 1 was selected for molecular dynamic simulation studies. The simulation studies revealed that the TLR8-vaccine complex was more stable than the TLR3-vaccine complex. The lower RMSD and RMSF values of the TLR8 bound vaccine compared to the TLR3 bound vaccine suggested better stability and consistency of hydrogen bonds. The Rg values of the vaccine chain bound to TLR8 indicated overall stability, whereas the vaccine chain bound to TLR3 showed deviations throughout the simulation. These results suggest that the constructed vaccine could be a potential preventive measure against monkeypox and related viruses however, further experimental validation is required to confirm these findings.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Faculty of Biological Sciences, Department of Genetic Engineering and Biotechnology, Laboratory of Clinical Genetics, Genomics and Enzyme Research (LCGGER), University of Chittagong, Chattogram, Bangladesh
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Rajesh B. Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society’s, Sinhgad College of Pharmacy, Maharashtra, India
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md. Asad Ullah
- Faculty of Biological Sciences, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Zahidur Rahim
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | - Md. Foyzur Rahman
- Department of Pharmacy, Dhaka International University, Dhaka, Bangladesh
| | | | - Mohabbat Hossain
- Faculty of Biological Sciences, Department of Genetic Engineering and Biotechnology, Laboratory of Clinical Genetics, Genomics and Enzyme Research (LCGGER), University of Chittagong, Chattogram, Bangladesh
| | | | - Nurul Absar
- Faculty of Basic Medical and Pharmaceutical Sciences, Department of Biochemistry and Biotechnology, University of Science & Technology Chittagong, Khulshi, Chittagong, Bangladesh
| | - Mahboob Hossain
- Department of Mathematics and Natural Sciences, Microbiology Program, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Mohammed Abul Manchur
- Faculty of Biological Sciences, Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| | - Nazneen Naher Islam
- Faculty of Biological Sciences, Department of Genetic Engineering and Biotechnology, Laboratory of Clinical Genetics, Genomics and Enzyme Research (LCGGER), University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
3
|
Yahalom-Ronen Y, Melamed S, Politi B, Erez N, Tamir H, Bar-On L, Ryvkin J, Leshkowitz D, Israeli O, Weiss S, Ben-Shmuel A, Barlev-Gross M, Cherry Mimran L, Achdout H, Paran N, Israely T. Induction of Superior Systemic and Mucosal Protective Immunity to SARS-CoV-2 by Nasal Administration of a VSV-ΔG-Spike Vaccine. Vaccines (Basel) 2024; 12:491. [PMID: 38793742 PMCID: PMC11125831 DOI: 10.3390/vaccines12050491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The emergence of rapidly spreading variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) poses a major challenge to vaccines' protective efficacy. Intramuscular (IM) vaccine administration induces short-lived immunity but does not prevent infection and transmission. New vaccination strategies are needed to extend the longevity of vaccine protection, induce mucosal and systemic immunity and prevent viral transmission. The intranasal (IN) administration of the VSV-ΔG-spike vaccine candidate directly to mucosal surfaces yielded superior mucosal and systemic immunity at lower vaccine doses. Compared to IM vaccination in the K18-hACE2 model, IN vaccination preferentially induced mucosal IgA and T-cells, reduced the viral load at the site of infection, and ameliorated disease-associated brain gene expression. IN vaccination was protective even one year after administration. As most of the world population has been vaccinated by IM injection, we demonstrate the potential of a heterologous IM + IN vaccination regimen to induce mucosal immunity while maintaining systemic immunity. Furthermore, the IM + IN regimen prevented virus transmission in a golden Syrian hamster co-caging model. Taken together, we show that IN vaccination with VSV-ΔG-spike, either as a homologous IN + IN regimen or as a boost following IM vaccination, has a favorable potential over IM vaccination in inducing efficient mucosal immunity, long-term protection and preventing virus transmission.
Collapse
Affiliation(s)
- Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Boaz Politi
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Hadas Tamir
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Liat Bar-On
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (L.B.-O.); (O.I.)
| | - Julia Ryvkin
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 52621, Israel; (J.R.); (D.L.)
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 52621, Israel; (J.R.); (D.L.)
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (L.B.-O.); (O.I.)
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Moria Barlev-Gross
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Lilach Cherry Mimran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel; (Y.Y.-R.); (S.M.); (B.P.); (N.E.); (H.T.); (S.W.); (A.B.-S.); (M.B.-G.); (L.C.M.); (H.A.)
| |
Collapse
|
4
|
Tamir H, Noy-Porat T, Melamed S, Cherry-Mimran L, Barlev-Gross M, Alcalay R, Yahalom-Ronen Y, Achdout H, Politi B, Erez N, Weiss S, Rosenfeld R, Epstein E, Mazor O, Makdasi E, Paran N, Israely T. Synergistic effect of two human-like monoclonal antibodies confers protection against orthopoxvirus infection. Nat Commun 2024; 15:3265. [PMID: 38627363 PMCID: PMC11021552 DOI: 10.1038/s41467-024-47328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
The eradication of smallpox was officially declared by the WHO in 1980, leading to discontinuation of the vaccination campaign against the virus. Consequently, immunity against smallpox and related orthopoxviruses like Monkeypox virus gradually declines, highlighting the need for efficient countermeasures not only for the prevention, but also for the treatment of already exposed individuals. We have recently developed human-like monoclonal antibodies (mAbs) from vaccinia virus-immunized non-human primates. Two mAbs, MV33 and EV42, targeting the two infectious forms of the virus, were selected for in vivo evaluation, based on their in vitro neutralization potency. A single dose of either MV33 or EV42 administered three days post-infection (dpi) to BALB/c female mice provides full protection against lethal ectromelia virus challenge. Importantly, a combination of both mAbs confers full protection even when provided five dpi. Whole-body bioimaging and viral load analysis reveal that combination of the two mAbs allows for faster and more efficient clearance of the virus from target organs compared to either MV33 or EV42 separately. The combined mAbs treatment further confers post-exposure protection against the currently circulating Monkeypox virus in Cast/EiJ female mice, highlighting their therapeutic potential against other orthopoxviruses.
Collapse
Affiliation(s)
- Hadas Tamir
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tal Noy-Porat
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Sharon Melamed
- Israel Institute for Biological Research, Ness Ziona, Israel
| | | | | | - Ron Alcalay
- Israel Institute for Biological Research, Ness Ziona, Israel
| | | | - Hagit Achdout
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Boaz Politi
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Noam Erez
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shay Weiss
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ronit Rosenfeld
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Eyal Epstein
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ohad Mazor
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Efi Makdasi
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Nir Paran
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Tomer Israely
- Israel Institute for Biological Research, Ness Ziona, Israel.
| |
Collapse
|
5
|
Do KTH, Willenzon S, Ristenpart J, Janssen A, Volz A, Sutter G, Förster R, Bošnjak B. The effect of Toll-like receptor agonists on the immunogenicity of MVA-SARS-2-S vaccine after intranasal administration in mice. Front Cell Infect Microbiol 2023; 13:1259822. [PMID: 37854858 PMCID: PMC10580083 DOI: 10.3389/fcimb.2023.1259822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background and aims Modified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S. Methods We intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA. Results TLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage. Conclusions Our study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.
Collapse
Affiliation(s)
- Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Munich, Germany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximiliam University (LMU) Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Ophinni Y, Frediansyah A, Sirinam S, Megawati D, Stoian AM, Enitan SS, Akele RY, Sah R, Pongpirul K, Abdeen Z, Aghayeva S, Ikram A, Kebede Y, Wollina U, Subbaram K, Koyanagi A, Al Serouri A, Blaise Nguendo-Yongsi H, Edwards J, Sallam DE, Khader Y, Viveiros-Rosa SG, Memish ZA, Amir-Behghadami M, Vento S, Rademaker M, Sallam M. Monkeypox: Immune response, vaccination and preventive efforts. NARRA J 2022; 2:e90. [PMID: 38449905 PMCID: PMC10914130 DOI: 10.52225/narra.v2i3.90] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/20/2022] [Indexed: 02/05/2023]
Abstract
Infectious threats to humans are continuously emerging. The 2022 worldwide monkeypox outbreak is the latest of these threats with the virus rapidly spreading to 106 countries by the end of September 2022. The burden of the ongoing monkeypox outbreak is manifested by 68,000 cumulative confirmed cases and 26 deaths. Although monkeypox is usually a self-limited disease, patients can suffer from extremely painful skin lesions and complications can occur with reported mortalities. The antigenic similarity between the smallpox virus (variola virus) and monkeypox virus can be utilized to prevent monkeypox using smallpox vaccines; treatment is also based on antivirals initially designed to treat smallpox. However, further studies are needed to fully decipher the immune response to monkeypox virus and the immune evasion mechanisms. In this review we provide an up-to-date discussion of the current state of knowledge regarding monkeypox virus with a special focus on innate immune response, immune evasion mechanisms and vaccination against the virus.
Collapse
Affiliation(s)
- Youdiil Ophinni
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Andri Frediansyah
- PRTPP-National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Salin Sirinam
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dewi Megawati
- Department of Veterinary Pathobiology, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Microbiology and Parasitology, School of Medicine, Universitas Warmadewa, Bali, Indonesia
| | - Ana M. Stoian
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, CA, United States
| | - Seyi S. Enitan
- Department of Medical Laboratory Science, Babcock University, Ilishan-Remo, Nigeria
| | - Richard Y. Akele
- Department of Biomedical Science, School of Applied Science, University of Brighton, London, United Kingdom
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Krit Pongpirul
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Bumrungrad International Hospital, Bangkok, Thailand
| | - Ziad Abdeen
- Department of Community Health, Faculty of Medicine, Al-Quds University, Jerusalem
| | - Sevda Aghayeva
- Department of Gastroenterology, Baku Medical Plaza Hospital, Baku, Azerbaijan
| | - Aamer Ikram
- National Institute of Heath, Islamabad, Pakistan
| | - Yohannes Kebede
- Department of Health, Behavior and Society, Faculty of Public Health, Jimma University, Jimma, Ethiopia
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Dresden, Germany
| | - Kannan Subbaram
- School of Medicine, The Maldives National University, Maldives
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Barcelona, Spain
| | | | - H. Blaise Nguendo-Yongsi
- Department of Epidemiology, School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Jeffrey Edwards
- Medical Research Foundation of Trinidad and Tobago, Port of Spain, Trinidad
| | - Dina E. Sallam
- Department of Pediatrics and Pediatric Nephrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yousef Khader
- The Center of Excellence for Applied Epidemiology, The Eastern Mediterranean Public Health Network (EMPHNET), Amman, Jordan
| | | | - Ziad A. Memish
- Research & Innovation Centre, King Saud Medical City, Ministry of Health, Riyadh, Kingdom of Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Mehrdad Amir-Behghadami
- Iranian Center of Excellence in Health Management, Department of Health Service Management, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sandro Vento
- Faculty of Medicine, University of Puthisastra, Phnom Penh, Cambodia
| | - Marius Rademaker
- Clinical Trial New Zealand, Waikato Hospital Campus, Hamilton, New Zealand
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
7
|
Mechrez G, Mani KA, Saha A, Lachman O, Luria N, Molad O, Kotliarevski L, Zelinger E, Smith E, Yaakov N, Stone DS, Reches M, Dombrovsky A. Platform for Active Vaccine Formulation Using a Two-Mode Enhancement Mechanism of Epitope Presentation by Pickering Emulsion. ACS APPLIED BIO MATERIALS 2022; 5:3859-3869. [PMID: 35913405 PMCID: PMC9382630 DOI: 10.1021/acsabm.2c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficiency of epitope-based vaccination (subunit vaccines) is tightly correlated with heterogeneity and the high density of epitope presentation, which maximizes the potential antigenic determinants. Here, we developed a two-mode platform for intensifying the epitope presentation of subunit vaccines. The two-mode epitope presentation enhancement includes a covalent attachment of high concentrations of SARS-CoV-2-S1 peptide epitope to the surface of virus-like-particles (VLPs) and the subsequent assembly of VLP/epitope conjugates on the oil droplet surface at an oil/water interface of an emulsion as Pickering stabilizers. The resultant emulsions were stable for weeks in ambient conditions, and our platform was challenged using the epitope of the SARS-CoV-2-S1 peptide that served as a model epitope in this study. In vivo assays showed that the αSARS-CoV-2-S1 immunoglobulin G (IgG) titers of the studied mouse antisera, developed against the SARS-CoV-2-S1 peptide under different epitope preparation conditions, showed an order of magnitude higher IgG titers in the studied VLP-based emulsions than epitopes dissolved in water and epitopes administered with an adjuvant, thereby confirming the efficacy of the formulation. This VLP-based Pickering emulsion platform is a fully synthetic approach that can be readily applied for vaccine development to a wide range of pathogens.
Collapse
Affiliation(s)
- Guy Mechrez
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Karthik Ananth Mani
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Abhijit Saha
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Ori Molad
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Liliya Kotliarevski
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Noga Yaakov
- Department of Food Science, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | | | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
8
|
Tamir H, Melamed S, Erez N, Politi B, Yahalom-Ronen Y, Achdout H, Lazar S, Gutman H, Avraham R, Weiss S, Paran N, Israely T. Induction of Innate Immune Response by TLR3 Agonist Protects Mice against SARS-CoV-2 Infection. Viruses 2022; 14:v14020189. [PMID: 35215785 PMCID: PMC8878863 DOI: 10.3390/v14020189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hadas Tamir
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Boaz Politi
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (S.L.); (H.G.)
| | - Hila Gutman
- Department of Pharmacology, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (S.L.); (H.G.)
| | - Roy Avraham
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
- Correspondence:
| |
Collapse
|
9
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
10
|
A single dose of recombinant VSV-∆G-spike vaccine provides protection against SARS-CoV-2 challenge. Nat Commun 2020; 11:6402. [PMID: 33328475 PMCID: PMC7745033 DOI: 10.1038/s41467-020-20228-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2. Here, the authors generate a replication-competent VSV based vaccine expressing SARS-CoV-2 spike protein and show protection in the hamster model with one dose. Analysis of the antibody response in mice shows induction of neutralizing antibodies and suggests a desirable Th1-biased response to the vaccine.
Collapse
|
11
|
Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. DRUG DISCOVERY TARGETING DRUG-RESISTANT BACTERIA 2020. [PMCID: PMC7258707 DOI: 10.1016/b978-0-12-818480-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research to discover and develop antibacterial and antiviral drugs with potent activity against pathogens of biothreat concern presents unique methodological and process-driven challenges. Herein, we review laboratory approaches for finding new antibodies, antibiotics, and antiviral molecules for pathogens of biothreat concern. Using high-throughput screening techniques, molecules that directly inhibit a pathogen’s entry, replication, or growth can be identified. Alternatively, molecules that target host proteins can be interesting targets for development when countering biothreat pathogens, due to the modulation of the host immune response or targeting proteins that interfere with the pathways required by the pathogen for replication. Monoclonal and cocktail antibody therapies approved by the Food and Drug Administration for countering anthrax and under development for treatment of Ebola virus infection are discussed. A comprehensive tabular review of current in vitro, in vivo, pharmacokinetic and efficacy datasets has been presented for biothreat pathogens of greatest concern. Finally, clinical trials and animal rule or traditional drug approval pathways are also reviewed. Opinions; interpretations; conclusions; and recommendations are those of the authors and are not necessarily endorsed by the US Army.
Collapse
|
12
|
Green MS, LeDuc J, Cohen D, Franz DR. Confronting the threat of bioterrorism: realities, challenges, and defensive strategies. THE LANCET. INFECTIOUS DISEASES 2018; 19:e2-e13. [PMID: 30340981 PMCID: PMC7106434 DOI: 10.1016/s1473-3099(18)30298-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 01/30/2023]
Abstract
Global terrorism is a rapidly growing threat to world security, and increases the risk of bioterrorism. In this Review, we discuss the potential threat of bioterrorism, agents that could be exploited, and recent developments in technologies and policy for detecting and controlling epidemics that have been initiated intentionally. The local and international response to infectious disease epidemics, such as the severe acute respiratory syndrome and west African Ebola virus epidemic, revealed serious shortcomings which bioterrorists might exploit when intentionally initiating an epidemic. Development of new vaccines and antimicrobial therapies remains a priority, including the need to expedite clinical trials using new methodologies. Better means to protect health-care workers operating in dangerous environments are also needed, particularly in areas with poor infrastructure. New and improved approaches should be developed for surveillance, early detection, response, effective isolation of patients, control of the movement of potentially infected people, and risk communication. Access to dangerous pathogens should be appropriately regulated, without reducing progress in the development of countermeasures. We conclude that preparedness for intentional outbreaks has the important added value of strengthening preparedness for natural epidemics, and vice versa.
Collapse
Affiliation(s)
- Manfred S Green
- School of Public Health, University of Haifa, Haifa, Israel.
| | - James LeDuc
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel Cohen
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - David R Franz
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
13
|
Melamed S, Israely T, Paran N. Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines (Basel) 2018; 6:vaccines6010008. [PMID: 29382130 PMCID: PMC5874649 DOI: 10.3390/vaccines6010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023] Open
Abstract
Declaration of smallpox eradication by the WHO in 1980 led to discontinuation of the worldwide vaccination campaign. The increasing percentage of unvaccinated individuals, the existence of its causative infectious agent variola virus (VARV), and the recent synthetic achievements increase the threat of intentional or accidental release and reemergence of smallpox. Control of smallpox would require an emergency vaccination campaign, as no other protective measure has been approved to achieve eradication and ensure worldwide protection. Experimental data in surrogate animal models support the assumption, based on anecdotal, uncontrolled historical data, that vaccination up to 4 days postexposure confers effective protection. The long incubation period, and the uncertainty of the exposure status in the surrounding population, call for the development and evaluation of safe and effective methods enabling extension of the therapeutic window, and to reduce the disease manifestations and vaccine adverse reactions. To achieve these goals, we need to evaluate the efficacy of novel and already licensed vaccines as a sole treatment, or in conjunction with immune modulators and antiviral drugs. In this review, we address the available data, recent achievements, and open questions.
Collapse
Affiliation(s)
- Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel.
| |
Collapse
|
14
|
Cheng WY, Jia HJ, He XB, Chen GH, Feng Y, Wang CY, Wang XX, Jing ZZ. Comparison of Host Gene Expression Profiles in Spleen Tissues of Genetically Susceptible and Resistant Mice during ECTV Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6456180. [PMID: 29430463 PMCID: PMC5752998 DOI: 10.1155/2017/6456180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/19/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022]
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, has emerged as a valuable model for investigating the host-Orthopoxvirus relationship as it relates to pathogenesis and the immune response. ECTV is a mouse-specific virus and causes high mortality in susceptible mice strains, including BALB/c and C3H, whereas C57BL/6 and 129 strains are resistant to the disease. To understand the host genetic factors in different mouse strains during the ECTV infection, we carried out a microarray analysis of spleen tissues derived from BALB/c and C57BL/6 mice, respectively, at 3 and 10 days after ECTV infection. Differential Expression of Genes (DEGs) analyses revealed distinct differences in the gene profiles of susceptible and resistant mice. The susceptible BALB/c mice generated more DEGs than the resistant C57BL/6 mice. Additionally, gene ontology and KEGG pathway analysis showed the DEGs of susceptible mice were involved in innate immunity, apoptosis, metabolism, and cancer-related pathways, while the DEGs of resistant mice were largely involved in MAPK signaling and leukocyte transendothelial migration. Furthermore, the BALB/c mice showed a strong induction of interferon-induced genes, which, however, were weaker in the C57BL/6 mice. Collectively, the differential transcriptome profiles of susceptible and resistant mouse strains with ECTV infection will be crucial for further uncovering the molecular mechanisms of the host-Orthopoxvirus interaction.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Huai-Jie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xiao-Bing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Guo-Hua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Chun-Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xiao-Xia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
15
|
Immunoprotection induced by CpG-ODN/Poly(I:C) combined with recombinant gp90 protein in chickens against reticuloendotheliosis virus infection. Antiviral Res 2017; 147:1-10. [PMID: 28465147 DOI: 10.1016/j.antiviral.2017.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/11/2017] [Accepted: 04/28/2017] [Indexed: 11/20/2022]
Abstract
The present study is focused on investigating the immunoprotective effects of CpG-ODN/Poly(I:C) combined with the viral glycoprotein gp90 protein against reticuloendotheliosis virus (REV) infection in chickens. REV's gp90 gene was amplified from the REV-infected cells and expressed in Escherichia coli (E.coli). The expressed products, upon purification, were inoculated into 7-day-old chickens with PBS, CpG-ODN or Poly(I:C) adjuvant; Two booster inoculations were then conducted, and then each chicken was challenged. The presence of REV-antibodies in serum was determined weekly after the first vaccination. The viremia and immunosuppressive effects of REV infection were also monitored after the challenge. The neutralizing effects of the antisera were tested in vitro. The results showed that the recombinant gene containing REV gp90 gene was expressed into the recombinant protein with a size of 51 Kilo Dalton (KD), which could be recognized by a monoclonal antibody (MAb) against the gp90 protein. The viremia and immunosuppressive effects of avian influenza virus (AIV) vaccine caused by REV challenge in CpG-ODN group and in Poly(I:C) group were dramatically decreased. REV antibody with low titers was induced in gp90 group and the inoculated chickens were partly protected. Compared with those in gp90 group, the titers and the positive ratios of REV antibody in CpG+gp90 group were significantly increased, whereas the viremia and immunosuppressive effects of AIV vaccine caused by REV infection were significantly decreased. In the Poly(I:C) +gp90 group, the viremia and immunosuppressive effects caused by REV infection were also dramatically decreased, although REV antibody responses were softly increased. The diluted antisera from the vaccinated chickens in both groups could completely inhibit the replication of REV in chick fibroblast cells (CEF). Hence, it can be concluded that CpG-ODN or the Poly(I:C) adjuvant can enhance the antiviral effects of the REV subunit vaccine against REV infection, which may result from different mechanisms.
Collapse
|
16
|
Abstract
Ectromelia virus is a mouse-specific orthopoxvirus that, following footpad infection or natural transmission, causes mousepox in most strains of mice, while a few strains, such as C57BL/6, are resistant to the disease but not to the infection. Mousepox is an acute, systemic, highly lethal disease of remarkable semblance to smallpox, caused by the human-specific variola virus. Starting in 1929 with its discovery by Marchal, work with ECTV has provided essential information for our current understanding on how viruses spread lympho-hematogenously, the genetic control of antiviral resistance, the role of different components of the innate and adaptive immune system in the control of primary and secondary infections with acute viruses, and how the mechanisms of immune evasion deployed by the virus affect virulence in vivo. Here, I review the literature on the pathogenesis and immunobiology of ECTV infection in vivo.
Collapse
Affiliation(s)
- Luis J Sigal
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
17
|
Müller A, Sutherland BJG, Koop BF, Johnson SC, Garver KA. Infectious hematopoietic necrosis virus (IHNV) persistence in Sockeye Salmon: influence on brain transcriptome and subsequent response to the viral mimic poly(I:C). BMC Genomics 2015; 16:634. [PMID: 26306576 PMCID: PMC4549833 DOI: 10.1186/s12864-015-1759-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Sockeye Salmon are an iconic species widely distributed throughout the North Pacific. A devastating pathogen of Sockeye Salmon is infectious hematopoietic necrosis virus (IHNV, genus Novirhabdovirus, family Rhabdoviridae). It has been postulated that IHNV is maintained in salmon populations by persisting over the life of its host and/or by residing in natural reservoirs other than its susceptible hosts. Herein we demonstrate the presence of IHNV in the brain of Sockeye Salmon that survived an experimentally-induced outbreak, suggesting the presence of viral persistence in this susceptible species. To understand the viral persistent state in Sockeye Salmon we profiled the transcriptome to evaluate the host response in asymptomatic carriers and to determine what effects (if any) IHNV exposure may have on subsequent virus challenges. Results A laboratory disease model to simulate a natural IHNV outbreak in Sockeye Salmon resulted in over a third of the population incurring acute IHN disease and mortality during the first four months after initial exposure. Nine months post IHNV exposure, despite the absence of disease and mortality, a small percentage (<4 %) of the surviving population contained IHNV in brain. Transcriptome analysis in brain of asymptomatic virus carriers and survivors without virus exhibited distinct transcriptional profiles in comparison to naïve fish. Characteristic for carriers was the up-regulation of genes involved in antibody production and antigen presentation. In both carriers and survivors a down-regulation of genes related to cholesterol biosynthesis, resembling an antiviral mechanism observed in higher vertebrates was revealed along with differences in nervous system development. Moreover, following challenge with poly(I:C), survivors and carriers displayed an elevated antiviral immune response in comparison to naïve fish. Conclusions IHN virus persistence was identified in Sockeye Salmon where it elicited a unique brain transcriptome profile suggesting an ongoing adaptive immune response. IHNV carriers remained uncompromised in mounting efficient innate antiviral responses when exposed to a viral mimic. The capacity of IHNV to reside in asymptomatic hosts supports a virus carrier hypothesis and if proven infectious, could have significant epidemiological consequences towards maintaining and spreading IHNV among susceptible host populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1759-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anita Müller
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T 6N7, British Columbia, Canada.
| | - Ben J G Sutherland
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada. .,Present address: Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada.
| | - Ben F Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada.
| | - Stewart C Johnson
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T 6N7, British Columbia, Canada.
| | - Kyle A Garver
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, V9T 6N7, British Columbia, Canada.
| |
Collapse
|