1
|
Mangano K, Petralia MC, Bella R, Pennisi M, Muñoz-Valle JF, Hernández-Bello J, Nicoletti F, Fagone P. Transcriptional upregulation of galectin-3 in multiple sclerosis. Immunol Res 2023; 71:950-958. [PMID: 37491623 PMCID: PMC10667405 DOI: 10.1007/s12026-023-09408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disorder of the central nervous system (CNS) affecting approximately 2.5 million people worldwide. The mechanisms underlying the pathogenesis of MS are still only partially elucidated. Galectins are a family of β-galactoside-binding lectins that are involved in the regulation of immune and inflammatory responses and have been shown to exert a role in the maintenance of central nervous system (CNS) homeostasis. There has been an increasing interest in the role of galectin-3 in neuroinflammation and neurodegeneration. In the current study, we have evaluated the expression levels of galectin-3 in different cellular populations involved in the etiopathogenesis of MS. We have observed dramatically higher transcriptomic levels of galectin-3 in encephalitogenic CD4+ T cells in a preclinical model of MS, the MOG-induced experimental allergic encephalomyelitis (EAE). Also, significantly higher levels of galectin-3 were found in microglial cells, astrocytes, and oligodendrocytes isolated from the spinal cord of EAE mice, as well as in human MS-related white matter lesions. Modular co-expression analysis revealed that galectin-3 is co-expressed with genes involved in the regulation of microglia, cytokine production, and chemotaxis. This is the first comprehensive analysis of the expression of galectin-3 in MS, further strengthening its potential pathogenetic role in the etiopathogenesis of this CNS autoimmune disorder.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122, Messina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| | - José Francisco Muñoz-Valle
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Jorge Hernández-Bello
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy.
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123, Catania, Italy
| |
Collapse
|
2
|
Feng Y, Chen Z, Xu Y, Han Y, Jia X, Wang Z, Zhang N, Lv W. The central inflammatory regulator IκBζ: induction, regulation and physiological functions. Front Immunol 2023; 14:1188253. [PMID: 37377955 PMCID: PMC10291074 DOI: 10.3389/fimmu.2023.1188253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
IκBζ (encoded by NFKBIZ) is the most recently identified IkappaB family protein. As an atypical member of the IkappaB protein family, NFKBIZ has been the focus of recent studies because of its role in inflammation. Specifically, it is a key gene in the regulation of a variety of inflammatory factors in the NF-KB pathway, thereby affecting the progression of related diseases. In recent years, investigations into NFKBIZ have led to greater understanding of this gene. In this review, we summarize the induction of NFKBIZ and then elucidate its transcription, translation, molecular mechanism and physiological function. Finally, the roles played by NFKBIZ in psoriasis, cancer, kidney injury, autoimmune diseases and other diseases are described. NFKBIZ functions are universal and bidirectional, and therefore, this gene may exert a great influence on the regulation of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Yanpeng Feng
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Zhiyuan Chen
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yi Xu
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Yuxuan Han
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiujuan Jia
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zixuan Wang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nannan Zhang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Lv
- Department of Neurosurgery & Pathophysiology, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, Qingdao, China
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Capasso D, Pirone L, Di Gaetano S, Russo R, Saviano M, Frisulli V, Antonacci A, Pedone E, Scognamiglio V. Galectins detection for the diagnosis of chronic diseases: An emerging biosensor approach. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Frentzel S, Jeron A, Pausder A, Kershaw O, Volckmar J, Schmitz I, Bruder D. IκB NS-deficiency protects mice from fatal Listeria monocytogenes infection by blunting pro-inflammatory signature in Ly6C high monocytes and preventing exaggerated innate immune responses. Front Immunol 2022; 13:1028789. [PMID: 36618344 PMCID: PMC9813228 DOI: 10.3389/fimmu.2022.1028789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
IκB proteins regulate the inhibition and activation of NF-κB transcription factor complexes. While classical IκB proteins keep NF-κB complexes inactive in the cytoplasm, atypical IκB proteins act on activated NF-κB complexes located in the nucleus. Most of the knowledge regarding the function of IκB proteins has been collected in vitro, while far less is known regarding their impact on activation and regulation of immune responses during in vivo infections. Combining in vivo Listeria monocytogenes (Lm) infection with comparative ex vivo transcriptional profiling of the hepatic response to the pathogen we observed that in contrast to wild type mice that mounted a robust inflammatory response, IκBNS-deficiency was generally associated with a transcriptional repression of innate immune responses. Whole tissue transcriptomics revealed a pronounced IκBNS-dependent reduction of myeloid cell-associated transcripts in the liver together with an exceptionally high Nfkbid promoter activity uncovered in Ly6Chigh inflammatory monocytes prompted us to further characterize the specific contribution of IκBNS in the inflammatory response of monocytes to the infectious agent. Indeed, Ly6Chigh monocytes primed during Lm infection in the absence of IκBNS displayed a blunted response compared to wild type-derived Ly6Chigh monocytes as evidenced by the reduced early expression of hallmark transcripts of monocyte-driven inflammation such as Il6, Nos2 and Il1β. Strikingly, altered monocyte activation in IκBNS-deficient mice was associated with an exceptional resistance against Lm infection and protection was associated with a strong reduction in immunopathology in Lm target organs. Of note, mice lacking IκBNS exclusively in myeloid cells failed to resist Lm infection, indicating that the observed effect was not monocyte intrinsic but monocyte extrinsic. While serum cytokine-profiling did not discover obvious differences between wild type and IκBNS -/- mice for most of the analyzed mediators, IL-10 was virtually undetectable in IκBNS-deficient mice, both in the steady state and following Lm infection. Together, we show here a crucial role for IκBNS during Lm infection with IκBNS-deficient mice showing an overall blunted pro-inflammatory immune response attributed to a reduced pro-inflammatory signature in Ly6Chigh monocytes. Reduced immunopathology and complete protection of mice against an otherwise fatal Lm infection identified IκBNS as molecular driver of inflammation in listeriosis.
Collapse
Affiliation(s)
- Sarah Frentzel
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Jeron
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Pausder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Julia Volckmar
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ingo Schmitz
- Dept. of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,Institute of Medical Microbiology and Hospital Hygiene, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany,*Correspondence: Dunja Bruder,
| |
Collapse
|
5
|
Gautam P, Maenner S, Cailotto F, Reboul P, Labialle S, Jouzeau J, Bourgaud F, Moulin D. Emerging role of IκBζ in inflammation: Emphasis on psoriasis. Clin Transl Med 2022; 12:e1032. [PMID: 36245291 PMCID: PMC9574490 DOI: 10.1002/ctm2.1032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023] Open
Abstract
Psoriasis is a chronic inflammatory disorder affecting skin and joints that results from immunological dysfunction such as enhanced IL-23 induced Th-17 differentiation. IkappaB-Zeta (IκBζ) is an atypical transcriptional factor of the IκB protein family since, contrary to the other family members, it positively regulates NF-κB pathway by being exclusively localized into the nucleus. IκBζ deficiency reduces visible manifestations of experimental psoriasis by diminishing expression of psoriasis-associated genes. It is thus tempting to consider IκBζ as a potential therapeutic target for psoriasis as well as for other IL23/IL17-mediated inflammatory diseases. In this review, we will discuss the regulation of expression of NFKBIZ and its protein IκBζ, its downstream targets, its involvement in pathogenesis of multiple disorders with emphasis on psoriasis and evidences supporting that inhibition of IκBζ may be a promising alternative to current therapeutic managements of psoriasis.
Collapse
Affiliation(s)
- Preeti Gautam
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Sylvain Maenner
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Frédéric Cailotto
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Pascal Reboul
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Stéphane Labialle
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | - Jean‐Yves Jouzeau
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| | | | - David Moulin
- Laboratoire IMoPAUMR 7365 CNRS‐Université de Lorraine, Biopôle de l'Université de LorraineVandœuvre‐lès‐NancyFrance
| |
Collapse
|
6
|
Liu Y, Bockermann R, Hadi M, Safari I, Carrion B, Kveiborg M, Issazadeh-Navikas S. ADAM12 is a costimulatory molecule that determines Th1 cell fate and mediates tissue inflammation. Cell Mol Immunol 2021; 18:1904-1919. [PMID: 32572163 PMCID: PMC8322154 DOI: 10.1038/s41423-020-0486-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/31/2020] [Indexed: 12/18/2022] Open
Abstract
A disintegrin and metalloproteinase (ADAM)12 was previously found to be expressed in T cells in the inflamed brain. However, the function of ADAM12 in T-cell responses in general and in tissue inflammation has not been examined. Here, we studied the role of ADAM12 in T-cell responses, fate determination on activation, and its functions in T cells to mediate tissue inflammation. We identified ADAM12 as a costimulatory molecule that is expressed on naive T cells and downregulated on stimulation. ADAM12 mimics CD28 costimulatory signaling to activate and induce the proliferation of T-helper 1 (Th1) cells. Monoclonal ADAM12 Fab antibodies trigger T-cell activation by amplifying TCR signaling to stimulate T-bet-mediated IFNγ production. Lack of genomic ADAM12 and its knockdown in T cells diminished T-bet and IFNγ production in Th1 cells, whereas other T cells, including Th17 cells, were unaffected. ADAM12 had similar functions in vivo on myelin antigen (MOG35-55)-induced T-cell activation. We found that genetic loss of ADAM12 profoundly alleviated Th1-mediated neuroinflammation and thus disease severity in experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Transcriptomic profiling of MOG35-55-specific ADAM12-/- T cells revealed differentially expressed genes that are important for T-cell activation, proliferation, and costimulatory signaling and Th1 pathogenicity, consistent with their inability to cause T-cell-mediated skin inflammation in a model of adoptive delayed-type hypersensitivity. We conclude that ADAM12 is a T-cell costimulatory molecule that contributes to the pathogenesis of tissue inflammation and a potential target for the treatment of Th1-mediated diseases.
Collapse
Affiliation(s)
- Yawei Liu
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Robert Bockermann
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Mahdieh Hadi
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Iman Safari
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Belinda Carrion
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Marie Kveiborg
- BRIC, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
7
|
MaruYama T, Kobayashi S, Nakatsukasa H, Moritoki Y, Taguchi D, Sunagawa Y, Morimoto T, Asao A, Jin W, Owada Y, Ishii N, Iwabuchi Y, Yoshimura A, Chen W, Shibata H. The Curcumin Analog GO-Y030 Controls the Generation and Stability of Regulatory T Cells. Front Immunol 2021; 12:687669. [PMID: 34248973 PMCID: PMC8261301 DOI: 10.3389/fimmu.2021.687669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) play a crucial role in preventing antitumor immune responses in cancer tissues. Cancer tissues produce large amounts of transforming growth factor beta (TGF-β), which promotes the generation of Foxp3+ Tregs from naïve CD4+ T cells in the local tumor microenvironment. TGF-β activates nuclear factor kappa B (NF-κB)/p300 and SMAD signaling, which increases the number of acetylated histones at the Foxp3 locus and induces Foxp3 gene expression. TGF-β also helps stabilize Foxp3 expression. The curcumin analog and antitumor agent, GO-Y030, prevented the TGF-β-induced generation of Tregs by preventing p300 from accelerating NF-κB-induced Foxp3 expression. Moreover, the addition of GO-Y030 resulted in a significant reduction in the number of acetylated histones at the Foxp3 promoter and at the conserved noncoding sequence 1 regions that are generated in response to TGF-β. In vivo tumor models demonstrated that GO-Y030-treatment prevented tumor growth and reduced the Foxp3+ Tregs population in tumor-infiltrating lymphocytes. Therefore, GO-Y030 exerts a potent anticancer effect by controlling Treg generation and stability.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Coculture Techniques
- Curcumin/analogs & derivatives
- Curcumin/pharmacology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Transgenic
- NF-kappa B/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Burden/drug effects
- p300-CBP Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Takashi MaruYama
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Health, Bethesda, MS, United States
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Daiki Taguchi
- Department of Clinical Oncology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Atsuko Asao
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Health, Bethesda, MS, United States
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of Pharmaceutics, Tohoku University, Miyagi, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Health, Bethesda, MS, United States
| | - Hiroyuki Shibata
- Department of Clinical Oncology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
8
|
Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodríguez-Martínez S. NF-κB and Its Regulators During Pregnancy. Front Immunol 2021; 12:679106. [PMID: 34025678 PMCID: PMC8131829 DOI: 10.3389/fimmu.2021.679106] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Secretaría de Salud, Cátedras CONACyT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Correa
- Dirección de Investigación, Universidad Anáhuac, Huixquilucan, Mexico
| | - Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Secretaría de Salud Mexico City, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
9
|
Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules 2020; 10:biom10030389. [PMID: 32138174 PMCID: PMC7175224 DOI: 10.3390/biom10030389] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
Galectin-3 is a β-galactoside-binding lectin which is important in numerous biological activities in various organs, including cell proliferation, apoptotic regulation, inflammation, fibrosis, and host defense. Galectin-3 is predominantly located in the cytoplasm and expressed on the cell surface, and then often secreted into biological fluids, like serum and urine. It is also released from injured cells and inflammatory cells under various pathological conditions. Many studies have revealed that galectin-3 plays an important role as a diagnostic or prognostic biomarker for certain types of heart disease, kidney disease, viral infection, autoimmune disease, neurodegenerative disorders, and tumor formation. In particular, it has been recognized that galectin-3 is extremely useful for detecting many of these diseases in their early stages. The purpose of this article is to review and summarize the recent literature focusing on the biomarker characteristics and long-term outcome predictions of galectin-3, in not only patients with various types of diseases, but associated animal models.
Collapse
|
10
|
Frentzel S, Katsoulis-Dimitriou K, Jeron A, Schmitz I, Bruder D. Essential role of IκB NS for in vivo CD4 + T-cell activation, proliferation, and Th1-cell differentiation during Listeria monocytogenes infection in mice. Eur J Immunol 2019; 49:1391-1398. [PMID: 31049948 PMCID: PMC6771600 DOI: 10.1002/eji.201847961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
Acquisition of effector functions in T cells is guided by transcription factors, including NF‐κB, that itself is tightly controlled by inhibitory proteins. The atypical NF‐κB inhibitor, IκBNS, is involved in the development of Th1, Th17, and regulatory T (Treg) cells. However, it remained unclear to which extend IκBNS contributed to the acquisition of effector function in T cells specifically responding to a pathogen during in vivo infection. Tracking of adoptively transferred T cells in Listeria monocytogenes infected mice antigen‐specific activation of CD4+ T cells following in vivo pathogen encounter to strongly rely on IκBNS. While IκBNS was largely dispensable for the acquisition of cytotoxic effector function in CD8+ T cells, IκBNS‐deficient Th1 effector cells exhibited significantly reduced proliferation, marked changes in the pattern of activation marker expression, and reduced production of the Th1‐cell cytokines IFN‐γ, IL‐2, and TNF‐α. Complementary in vitro analyses using cells from novel reporter and inducible knockout mice revealed that IκBNS predominantly affects the early phase of Th1‐cell differentiation while its function in terminally differentiated cells appears to be negligible. Our data suggest IκBNS as a potential target to modulate specifically CD4+ T‐cell responses.
Collapse
Affiliation(s)
- Sarah Frentzel
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Konstantinos Katsoulis-Dimitriou
- Systems-oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Jeron
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Schmitz
- Systems-oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Infection Prevention and Control, Infection Immunology Group, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
11
|
Essig K, Kronbeck N, Guimaraes JC, Lohs C, Schlundt A, Hoffmann A, Behrens G, Brenner S, Kowalska J, Lopez-Rodriguez C, Jemielity J, Holtmann H, Reiche K, Hackermüller J, Sattler M, Zavolan M, Heissmeyer V. Roquin targets mRNAs in a 3'-UTR-specific manner by different modes of regulation. Nat Commun 2018; 9:3810. [PMID: 30232334 PMCID: PMC6145892 DOI: 10.1038/s41467-018-06184-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding proteins Roquin-1 and Roquin-2 redundantly control gene expression and cell-fate decisions. Here, we show that Roquin not only interacts with stem–loop structures, but also with a linear sequence element present in about half of its targets. Comprehensive analysis of a minimal response element of the Nfkbid 3′-UTR shows that six stem–loop structures cooperate to exert robust and profound post-transcriptional regulation. Only binding of multiple Roquin proteins to several stem–loops exerts full repression, which redundantly involved deadenylation and decapping, but also translational inhibition. Globally, most Roquin targets are regulated by mRNA decay, whereas a small subset, including the Nfat5 mRNA, with more binding sites in their 3′-UTRs, are also subject to translational inhibition. These findings provide insights into how the robustness and magnitude of Roquin-mediated regulation is encoded in complex cis-elements. Roquin targets are known to contain two types of sequence-structure motifs, the constitutive and the alternative decay elements (CDE and ADE). Here, the authors describe a linear Roquin binding element (LBE) also involved in target recognition, and show that Roquin binding affects the translation of a subset of targeted mRNAs.
Collapse
Affiliation(s)
- Katharina Essig
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Nina Kronbeck
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Claudia Lohs
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, München, Germany
| | - Andreas Schlundt
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748, Garching, Germany
| | - Anne Hoffmann
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Gesine Behrens
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Sven Brenner
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, München, Germany
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Cristina Lopez-Rodriguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003, Barcelona, Spain
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Helmut Holtmann
- Institute of Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Kristin Reiche
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology-IZI, Leipzig, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748, Garching, Germany
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Vigo Heissmeyer
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany. .,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, München, Germany.
| |
Collapse
|
12
|
Baumjohann D, Heissmeyer V. Posttranscriptional Gene Regulation of T Follicular Helper Cells by RNA-Binding Proteins and microRNAs. Front Immunol 2018; 9:1794. [PMID: 30108596 PMCID: PMC6079247 DOI: 10.3389/fimmu.2018.01794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
T follicular helper (Tfh) cells are critically involved in the establishment of potent antibody responses against infectious pathogens, such as viruses and bacteria, but their dysregulation may also result in aberrant antibody responses that frequently coincide with autoimmune diseases or allergies. The fate and identity of Tfh cells is tightly controlled by gene regulation on the transcriptional and posttranscriptional level. Here, we provide deeper insights into the posttranscriptional mechanisms that regulate Tfh cell differentiation, function, and plasticity through the actions of RNA-binding proteins (RBPs) and small endogenously expressed regulatory RNAs called microRNAs (miRNAs). The Roquin family of RBPs has been shown to dampen spontaneous activation and differentiation of naïve CD4+ T cells into Tfh cells, since CD4+ T cells with Roquin mutations accumulate as Tfh cells and provide inappropriate B cell help in the production of autoantibodies. Moreover, Regnase-1, an endoribonuclease that regulates a set of targets, which strongly overlaps with that of Roquin, is crucial for the prevention of autoantibody production. Interestingly, both Roquin and Regnase-1 proteins are cleaved and inactivated after TCR stimulation by the paracaspase MALT1. miRNAs are expressed in naïve CD4+ T cells and help preventing spontaneous differentiation into effector cells. While most miRNAs are downregulated upon T cell activation, several miRNAs have been shown to regulate the fate of these cells by either promoting (e.g., miR-17-92 and miR-155) or inhibiting (e.g., miR-146a) Tfh cell differentiation. Together, these different aspects highlight a complex and dynamic regulatory network of posttranscriptional gene regulation in Tfh cells that may also be active in other T helper cell populations, including Th1, Th2, Th17, and Treg.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
13
|
Fontán L, Qiao Q, Hatcher JM, Casalena G, Us I, Teater M, Durant M, Du G, Xia M, Bilchuk N, Chennamadhavuni S, Palladino G, Inghirami G, Philippar U, Wu H, Scott DA, Gray NS, Melnick A. Specific covalent inhibition of MALT1 paracaspase suppresses B cell lymphoma growth. J Clin Invest 2018; 128:4397-4412. [PMID: 30024860 DOI: 10.1172/jci99436] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The paracaspase MALT1 plays an essential role in activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) downstream of B cell and TLR pathway genes mutated in these tumors. Although MALT1 is considered a compelling therapeutic target, the development of tractable and specific MALT1 protease inhibitors has thus far been elusive. Here, we developed a target engagement assay that provides a quantitative readout for specific MALT1-inhibitory effects in living cells. This enabled a structure-guided medicinal chemistry effort culminating in the discovery of pharmacologically tractable, irreversible substrate-mimetic compounds that bind the MALT1 active site. We confirmed that MALT1 targeting with compound 3 is effective at suppressing ABC DLBCL cells in vitro and in vivo. We show that a reduction in serum IL-10 levels exquisitely correlates with the drug pharmacokinetics and degree of MALT1 inhibition in vitro and in vivo and could constitute a useful pharmacodynamic biomarker to evaluate these compounds in clinical trials. Compound 3 revealed insights into the biology of MALT1 in ABC DLBCL, such as the role of MALT1 in driving JAK/STAT signaling and suppressing the type I IFN response and MHC class II expression, suggesting that MALT1 inhibition could prime lymphomas for immune recognition by cytotoxic immune cells.
Collapse
Affiliation(s)
- Lorena Fontán
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Qi Qiao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - John M Hatcher
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriella Casalena
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Ilkay Us
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Matt Teater
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Matt Durant
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Guangyan Du
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Min Xia
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Natalia Bilchuk
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Spandan Chennamadhavuni
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Giuseppe Palladino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ulrike Philippar
- Oncology Discovery, Janssen Research and Development, Beerse, Belgium
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Scott
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, and.,Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
14
|
Hoefig KP, Heissmeyer V. Posttranscriptional regulation of T helper cell fate decisions. J Cell Biol 2018; 217:2615-2631. [PMID: 29685903 PMCID: PMC6080923 DOI: 10.1083/jcb.201708075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/19/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Hoefig and Heissmeyer review how microRNAs, long noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate T helper cell differentiation downstream of transcription. T helper cell subsets orchestrate context- and pathogen-specific responses of the immune system. They mostly do so by secreting specific cytokines that attract or induce activation and differentiation of other immune or nonimmune cells. The differentiation of T helper 1 (Th1), Th2, T follicular helper, Th17, and induced regulatory T cell subsets from naive T cells depends on the activation of intracellular signal transduction cascades. These cascades originate from T cell receptor and costimulatory receptor engagement and also receive critical input from cytokine receptors that sample the cytokine milieu within secondary lymphoid organs. Signal transduction then leads to the expression of subset-specifying transcription factors that, in concert with other transcription factors, up-regulate downstream signature genes. Although regulation of transcription is important, recent research has shown that posttranscriptional and posttranslational regulation can critically shape or even determine the outcome of Th cell differentiation. In this review, we describe how specific microRNAs, long noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate their targets to skew cell fate decisions.
Collapse
Affiliation(s)
- Kai P Hoefig
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany .,Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
16
|
Yokota M, Tamachi T, Yokoyama Y, Maezawa Y, Takatori H, Suto A, Suzuki K, Hirose K, Takeda K, Nakajima H. IκBNS induces Muc5ac expression in epithelial cells and causes airway hyper-responsiveness in murine asthma models. Allergy 2017; 72:1043-1053. [PMID: 27878831 DOI: 10.1111/all.13079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND In allergic asthma, environmental allergens including house dust mite (HDM) trigger pattern recognition receptors and activate downstream signaling pathways including NF-κB pathways not only in immune cells but also in airway epithelial cells. Recent studies have shown that NF-κB activation is regulated positively or negatively depending on the cellular context by IκBNS (encoded by the gene Nfkbid), one of atypical IκB proteins, in the nucleus. Therefore, we hypothesized that IκBNS expressed in immune cells or epithelial cells is involved in the regulation of asthmatic responses. AIM To determine the roles of IκBNS in HDM-induced asthmatic responses. METHODS Roles of IκBNS in HDM-induced airway inflammation and airway hyper-responsiveness (AHR) were examined by using IκBNS-deficient (Nfkbid-/- ) mice. Roles of IκBNS expressed in hematopoietic cells and nonhematopoietic cells were separately evaluated by bone marrow chimeric mice. Roles of IκBNS expressed in murine tracheal epithelial cells (mTECs) were examined by air-liquid interface culture. RESULTS House dust mite-induced airway inflammation and AHR were exacerbated in mice lacking IκBNS in hematopoietic cells. In contrast, HDM-induced airway inflammation was exacerbated, but AHR was attenuated in mice lacking IκBNS in nonhematopoietic cells. The induction of Muc5ac, a representative mucin in asthmatic airways, was reduced in Nfkbid-/- mTEC, whereas the induction of Spdef, a master regulator of goblet cell metaplasia, was not impaired in Nfkbid-/- mTEC. Moreover, IκBNS bound to and activated the MUC5AC distal promoter in epithelial cells. CONCLUSION IκBNS is involved in inducing Muc5ac expression in lung epithelial cells and causing AHR in HDM-induced asthma models.
Collapse
Affiliation(s)
- M. Yokota
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - T. Tamachi
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Y. Yokoyama
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Y. Maezawa
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - H. Takatori
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - A. Suto
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - K. Suzuki
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - K. Hirose
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - K. Takeda
- Laboratory of Immune Regulation; Department of Microbiology and Immunology; Graduate School of Medicine and Laboratory of Mucosal Immunology; WPI Immunology Frontier Research Center; Osaka University; Osaka Japan
| | - H. Nakajima
- Department of Allergy and Clinical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| |
Collapse
|
17
|
Schuster M, Plaza-Sirvent C, Matthies AM, Heise U, Jeron A, Bruder D, Visekruna A, Huehn J, Schmitz I. c-REL and IκB NS Govern Common and Independent Steps of Regulatory T Cell Development from Novel CD122-Expressing Pre-Precursors. THE JOURNAL OF IMMUNOLOGY 2017; 199:920-930. [PMID: 28652399 DOI: 10.4049/jimmunol.1600877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/31/2017] [Indexed: 01/13/2023]
Abstract
Foxp3-expressing regulatory T cells (Tregs) are essential regulators of immune homeostasis and, thus, are prime targets for therapeutic interventions of diseases such as cancer and autoimmunity. c-REL and IκBNS are important regulators of Foxp3 induction in Treg precursors upon γ-chain cytokine stimulation. In c-REL/IκBNS double-deficient mice, Treg numbers were dramatically reduced, indicating that together, c-REL and IκBNS are pivotal for Treg development. However, despite the highly reduced Treg compartment, double-deficient mice did not develop autoimmunity even when aged to more than 1 y, suggesting that c-REL and IκBNS are required for T cell effector function as well. Analyzing Treg development in more detail, we identified a CD122+ subset within the CD25-Foxp3- precursor population, which gave rise to classical CD25+Foxp3- Treg precursors. Importantly, c-REL, but not IκBNS, controlled the generation of classical CD25+Foxp3- precursors via direct binding to the Cd25 locus. Thus, we propose that CD4+GITR+CD122+CD25-Foxp3- cells represent a Treg pre-precursor population, whose transition into Treg precursors is mediated via c-REL.
Collapse
Affiliation(s)
- Marc Schuster
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Carlos Plaza-Sirvent
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anne-Marie Matthies
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ulrike Heise
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Andreas Jeron
- Institute of Medical Microbiology, Otto-von-Guericke University, 39120 Magdeburg, Germany.,Immune Regulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Institute of Medical Microbiology, Otto-von-Guericke University, 39120 Magdeburg, Germany.,Immune Regulation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Alexander Visekruna
- Institute of Medical Microbiology and Hospital Hygiene, Phillips-University Marburg, 35043 Marburg, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; .,Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
18
|
Leibowitz SM, Yan J. NF-κB Pathways in the Pathogenesis of Multiple Sclerosis and the Therapeutic Implications. Front Mol Neurosci 2016; 9:84. [PMID: 27695399 PMCID: PMC5023675 DOI: 10.3389/fnmol.2016.00084] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways are involved in cell immune responses, apoptosis and infections. In multiple sclerosis (MS), NF-κB pathways are changed, leading to increased levels of NF-κB activation in cells. This may indicate a key role for NF-κB in MS pathogenesis. NF-κB signaling is complex, with many elements involved in its activation and regulation. Interestingly, current MS treatments are found to be directly or indirectly linked to NF-κB pathways and act to adjust the innate and adaptive immune system in patients. In this review, we will first focus on the intricacies of NF-κB signaling, including the activating pathways and regulatory elements. Next, we will theorize about the role of NF-κB in MS pathogenesis, based on current research findings, and discuss some of the associated therapeutic implications. Lastly, we will review four new MS treatments which interrupt NF-κB pathways—fingolimod, teriflunomide, dimethyl fumarate (DMF) and laquinimod (LAQ)—and explain their mechanisms, and the possible strategy for MS treatments in the future.
Collapse
Affiliation(s)
- Saskia M Leibowitz
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| | - Jun Yan
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
19
|
Alternative splicing of MALT1 controls signalling and activation of CD4(+) T cells. Nat Commun 2016; 7:11292. [PMID: 27068814 PMCID: PMC4832065 DOI: 10.1038/ncomms11292] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
Abstract
MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify hnRNP U as a suppressor of exon7 inclusion. Whereas selective depletion of MALT1A impairs T-cell signalling and activation, downregulation of hnRNP U enhances MALT1A expression and T-cell activation. Thus, TCR-induced alternative splicing augments MALT1 scaffolding to enhance downstream signalling and to promote optimal T-cell activation. MALT1 regulates NFκB signalling both as a scaffolding protein and as a protease. Here the authors show that during T cell activation the expression of MALT1 gene switches to an alternatively spliced variant, which increases TCR signal transduction due to enhanced TRAF6 binding.
Collapse
|
20
|
Jeltsch KM, Heissmeyer V. Regulation of T cell signaling and autoimmunity by RNA-binding proteins. Curr Opin Immunol 2016; 39:127-35. [DOI: 10.1016/j.coi.2016.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/15/2016] [Accepted: 01/24/2016] [Indexed: 01/14/2023]
|
21
|
Atypical IκB proteins in immune cell differentiation and function. Immunol Lett 2016; 171:26-35. [DOI: 10.1016/j.imlet.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
|
22
|
Miura M, Hasegawa N, Noguchi M, Sugimoto K, Touma M. The atypical IκB protein IκB(NS) is important for Toll-like receptor-induced interleukin-10 production in B cells. Immunology 2016; 147:453-63. [PMID: 26749055 DOI: 10.1111/imm.12578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/18/2015] [Accepted: 01/03/2016] [Indexed: 02/05/2023] Open
Abstract
Although a major function of B cells is to mediate humoral immunity by producing antigen-specific antibodies, a specific subset of B cells is important for immune suppression, which is mainly mediated by the secretion of the anti-inflammatory cytokine interleukin-10 (IL-10). However, the mechanism by which IL-10 is induced in B cells has not been fully elucidated. Here, we report that IκBNS , an inducible nuclear IκB protein, is important for Toll-like receptor (TLR)-mediated IL-10 production in B cells. Studies using IκB(NS) knockout mice revealed that the number of IL-10-producing B cells is reduced in IκB(NS)(-/-) spleens and that the TLR-mediated induction of cytoplasmic IL-10-positive cells and IL-10 secretion in B cells are impaired in the absence of IκB(NS). The impairment of IL-10 production by a lack of IκB(NS) was not observed in TLR-triggered macrophages or T-cell-receptor-stimulated CD4(+) CD25(+) T cells. In addition, IκB(NS)-deficient B cells showed reduced expression of Prdm1 and Irf4 and failed to generate IL-10(+) CD138(+) plasmablasts. These results suggest that IκB(NS) is selectively required for IL-10 production in B cells responding to TLR signals, so defining an additional role for IκB(NS) in the control of the B-cell-mediated immune responses.
Collapse
Affiliation(s)
- Minami Miura
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Naoki Hasegawa
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Mitsuo Noguchi
- Department of Life Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kenkichi Sugimoto
- Department of Life Sciences, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Maki Touma
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| |
Collapse
|
23
|
Regulation of Interleukin-17 Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:139-166. [DOI: 10.1007/978-94-024-0921-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
MaruYama T. The nuclear IκB family of proteins controls gene regulation and immune homeostasis. Int Immunopharmacol 2015; 28:836-40. [DOI: 10.1016/j.intimp.2015.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/07/2015] [Accepted: 03/28/2015] [Indexed: 01/12/2023]
|
25
|
Venkatesha SH, Dudics S, Weingartner E, So EC, Pedra J, Moudgil KD. Altered Th17/Treg balance and dysregulated IL-1β response influence susceptibility/resistance to experimental autoimmune arthritis. Int J Immunopathol Pharmacol 2015; 28:318-28. [PMID: 26227656 DOI: 10.1177/0394632015595757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/16/2015] [Indexed: 12/21/2022] Open
Abstract
This study was aimed at gaining an insight into immune mechanisms of differential susceptibility to autoimmunity of individuals sharing the same major histocompatibility complex by studying arthritis-susceptible Lewis (LEW) and arthritis-resistant Wistar Kyoto (WKY) rats (both RT.1(l)) using the adjuvant arthritis (AA) model of rheumatoid arthritis (RA). Lymph node cells (LNC) and synovium-infiltrating cells (SIC) of LEW and WKY rat subjected to an arthritogenic challenge were tested. The frequency of T helper 17 (Th17) and T regulatory (Treg) cells was determined by flow cytometry, whereas serum and spleen adherent cell (SAC)-derived supernatant were analyzed for specific cytokines and chemokines. We observed that WKY rats are not deficient in generating a Th17 response to the arthritogenic challenge in LNC (periphery); however, the Th17/Treg ratio is markedly reduced in the joint (target organ) of WKY versus LEW rats because of reduced Th17 levels therein in WKY rats. These results suggest differential and selective decrease in Th17 cell migration into the joints of WKY rats. Interestingly, serum levels of chemokines RANTES and MCP-1 were reduced in WKY rats. Furthermore, WKY rats showed reduced serum IL-1β level in vivo but no defect in IL-1β production by SAC in vitro, suggesting an effective in vivo regulation of IL-1β response. We also unraveled the role of interferon-γ (IFNγ), which we have previously reported to be increased in WKY versus LEW rats, in regulation of IL-1β. Thus, reduced Th17/Treg ratio in the target organ (joints) and decreased systemic IL-1β might contribute to the AA-resistance of WKY rats; whereas the converse factors render LEW more vulnerable to AA.
Collapse
Affiliation(s)
- S H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Dudics
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E Weingartner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E C So
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jhf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Annemann M, Wang Z, Plaza-Sirvent C, Glauben R, Schuster M, Ewald Sander F, Mamareli P, Kühl AA, Siegmund B, Lochner M, Schmitz I. IκBNS Regulates Murine Th17 Differentiation during Gut Inflammation and Infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:2888-98. [DOI: 10.4049/jimmunol.1401964] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Correction: The Nuclear IκB Family Protein IκBNS Influences the Susceptibility to Experimental Autoimmune Encephalomyelitis in a Murine Model. PLoS One 2015; 10:e0118159. [PMID: 25658316 PMCID: PMC4319850 DOI: 10.1371/journal.pone.0118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0110838.].
Collapse
|