1
|
Yoon ML, Chun H, Lee H, Seo W, Lee JY, Yoon JH. Identification and Validation of Serum Biomarkers to Improve Colorectal Cancer Diagnosis. Cancer Med 2024; 13:e70460. [PMID: 39628390 PMCID: PMC11615507 DOI: 10.1002/cam4.70460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/16/2024] [Accepted: 11/16/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND The pressing need for reliable biomarkers in colorectal cancer (CRC) diagnosis and prognosis is a major global health concern. Current diagnostic methods rely heavily on invasive procedures like colonoscopy, and existing biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA) exhibit limitations in accuracy and specificity. AIMS This study aims to identify and validate novel biomarkers that can enhance the early detection and diagnostic precision of CRC while overcoming the shortcomings of conventional biomarkers. MATERIALS AND METHODS Leveraging advancements in genomic and proteomic technologies, gene expression datasets were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). We identified differentially expressed genes (DEGs) and conducted further analyses, including Gene Ontology (GO) enrichment and Protein-Protein Interaction (PPI) network construction. Five promising biomarkers-INHBA, MMP7, PSAT1, SLC7A5, and TGFBI-were selected based on their robust performance in Receiver Operating Characteristic (ROC) curve analysis. Serum concentrations of these biomarkers were measured in 200 CRC patients and 100 healthy controls. RESULTS The study revealed significantly elevated expression levels of the selected biomarkers in CRC tissues compared to normal tissues. Additionally, serum concentrations of INHBA, MMP7, PSAT1, SLC7A5, and TGFBI were notably higher in CRC patients than in healthy individuals, with Area Under the Curve (AUC) values ranging from 0.8361 to 0.9869 indicating high diagnostic accuracy. Optimal cutoff values for diagnosis ranged from 38.9 pg/mL to 280.7 pg/mL, yielding sensitivity and specificity values between 74.5% and 92.9%. DISCUSSION The findings underscore the potential of INHBA, MMP7, PSAT1, SLC7A5, and TGFBI as effective non-invasive biomarkers for CRC detection. Their elevated serum concentrations and robust discriminatory abilities highlight their promise in improving diagnostic accuracy and patient outcomes compared to traditional biomarkers. CONCLUSION The identification and validation of these novel biomarkers represent a significant advancement in CRC diagnosis and management. Further studies are required to validate their clinical applicability in larger cohorts and to elucidate their functional roles in CRC pathogenesis, ultimately enhancing diagnostic strategies and personalized treatment approaches.
Collapse
Affiliation(s)
- Minha Lea Yoon
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - Hyelim Chun
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - HyunJu Lee
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - WooJeong Seo
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - Jung Young Lee
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - Jung Hwan Yoon
- Department of PathologyCollege of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
| |
Collapse
|
2
|
Shi M, Wei Y, Guo R, Luo F. Integrated Analysis Identified TGFBI as a Biomarker of Disease Severity and Prognosis Correlated with Immune Infiltrates in Patients with Sepsis. J Inflamm Res 2024; 17:2285-2298. [PMID: 38645878 PMCID: PMC11027929 DOI: 10.2147/jir.s456132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Background Sepsis is a major contributor to morbidity and mortality among hospitalized patients. This study aims to identify markers associated with the severity and prognosis of sepsis, providing new approaches for its management and treatment. Methods Data were mined from the Gene Expression Omnibus (GEO) databases and were analyzed by multiple statistical methods like the Spearman correlation coefficient, Kaplan-Meier analysis, Cox regression analysis, and functional enrichment analysis. Candidate indicator' associations with immune infiltration and roles in sepsis development were evaluated. Additionally, we employed techniques such as flow cytometry and neutral red staining to evaluate its impact on macrophage functions like polarization and phagocytosis. Results Twenty-eight genes were identified as being closely linked to the severity of sepsis, among which transforming growth factor beta induced (TGFBI) emerged as a distinct marker for predicting clinical outcomes. Notably, reductions in TGFBI expression during sepsis correlate with poor prognosis and rapid disease progression. Elevated expression of TGFBI has been observed to mitigate abnormalities in sepsis-related immune cell infiltration that are critical to the pathogenesis and prognosis of the disease, including but not limited to type 17 T helper cells and activated CD8 T cells. Moreover, the protein-protein interaction network revealed the top ten genes that interact with TGFBI, showing significant involvement in the regulation of the actin cytoskeleton, extracellular matrix-receptor interactions, and phagosomes. These are pivotal elements in the formation of phagocytic cups by macrophages, squaring the findings of the Human Protein Atlas. Additionally, we discovered that TGFBI expression was significantly higher in M2-like macrophages, and its upregulation was found to inhibit lipopolysaccharide-induced polarization and phagocytosis in M1-like macrophages, thereby playing a role in preventing the onset of inflammation. Conclusion TGFBI warrants additional exploration as a promising biomarker for assessing illness severity and prognosis in patients with sepsis, considering its significant association with immunological and inflammatory responses in this condition.
Collapse
Affiliation(s)
- Mingjie Shi
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, People’s Republic of China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| | - Runmin Guo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, People’s Republic of China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| | - Fei Luo
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, People’s Republic of China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, People’s Republic of China
| |
Collapse
|
3
|
Park S, Lee H. Molecular data representation based on gene embeddings for cancer drug response prediction. Sci Rep 2023; 13:21898. [PMID: 38081928 PMCID: PMC10713675 DOI: 10.1038/s41598-023-49003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer drug response prediction is a crucial task in precision medicine, but existing models have limitations in effectively representing molecular profiles of cancer cells. Specifically, when these models represent molecular omics data such as gene expression, they employ a one-hot encoding-based approach, where a fixed gene set is selected for all samples and omics data values are assigned to specific positions in a vector. However, this approach restricts the utilization of embedding-vector-based methods, such as attention-based models, and limits the flexibility of gene selection. To address these issues, our study proposes gene embedding-based fully connected neural networks (GEN) that utilizes gene embedding vectors as input data for cancer drug response prediction. The GEN allows for the use of embedding-vector-based architectures and different gene sets for each sample, providing enhanced flexibility. To validate the efficacy of GEN, we conducted experiments on three cancer drug response datasets. Our results demonstrate that GEN outperforms other recently developed methods in cancer drug prediction tasks and offers improved gene representation capabilities. All source codes are available at https://github.com/DMCB-GIST/GEN/ .
Collapse
Affiliation(s)
- Sejin Park
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyunju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
4
|
Zhou J, Lyu N, Wang Q, Yang M, Kimchi ET, Cheng K, Joshi T, Tukuli AR, Staveley-O'Carroll KF, Li G. A novel role of TGFBI in macrophage polarization and macrophage-induced pancreatic cancer growth and therapeutic resistance. Cancer Lett 2023; 578:216457. [PMID: 37865162 DOI: 10.1016/j.canlet.2023.216457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Tumor-associated macrophages (TAMs), as a major and essential component of tumor microenvironment (TME), play a critical role in orchestrating pancreatic cancer (PaC) tumorigenesis from initiation to angiogenesis, growth, and systemic dissemination, as well as immunosuppression and resistance to chemotherapy and immunotherapy; however, the critical intrinsic factors responsible for TAMs reprograming and function remain to be identified. By performing single-cell RNA sequencing, transforming growth factor-beta-induced protein (TGFBI) was identified as TAM-producing factor in murine PaC tumors. TAMs express TGFBI in human PaC and TGFBI expression is positively related with human PaC growth. By inducing TGFBI loss-of-function in macrophage (MΦs) in vitro with siRNA and in vivo with Cre-Lox strategy in our developed TGFBI-floxed mice, we demonstrated disruption of TGFBI not only inhibited MΦ polarization to M2 phenotype and MΦ-mediated stimulation on PaC growth, but also significantly improved anti-tumor immunity, sensitizing PaC to chemotherapy in association with regulation of fibronectin 1, Cxcl10, and Ccl5. Our studies suggest that targeting TGFBI in MΦ can develop an effective therapeutic intervention for highly lethal PaC.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Nan Lyu
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qiongling Wang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Ming Yang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Trupti Joshi
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA; Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65212, USA; Department of Health Management and Informatics and MU Institute of Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Adama R Tukuli
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65212, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA; Department of Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| |
Collapse
|
5
|
Dawoud MM, Salah M, Mohamed ASED. Clinical significance of immunohistochemical expression of DDR1 and β-catenin in colorectal carcinoma. World J Surg Oncol 2023; 21:168. [PMID: 37271822 DOI: 10.1186/s12957-023-03041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Despite recent advances in therapy modalities of colorectal cancer (CRC), it is still the third cause of cancer-related deaths worldwide. Thus, the search for new target therapies became mandatory. DDR1 is a collagen receptor that has a suggested role in cellular proliferation, tumor invasion, and metastasis. MATERIAL AND METHODS Forty-eight cases of CRC, 20 of CR adenoma, and 8 cases of non-tumoral colonic tissue were subjected to immunohistochemistry by DDR1 and β-catenin antibodies. Results were compared among the different studied groups and correlated with clinicopathologic data and available survival data. Also, the expression of both proteins was compared versus each other. Results were compared among the 3 studied groups and correlated with clinicopathologic and survival data. RESULTS It revealed a stepwise increase of DDR1 expression among studied groups toward carcinoma (P = 0.006). DDR1 expression showed a direct association with stage D in the modified Dukes' staging system (P = 0.013), higher-grade histologic types (P = 0.008), and lymph node invasion (P = 0.028) but inverse correlation with the presence of intratumoral inflammatory response (TIR) (P = 0.001). The shortest OS was associated with strong intensity of DDR1 (P = 0.012). The DDR1 and β-catenin expressions were significantly correlated (P = 0.028), and the combined expression of both was correlated with TNM staging (P = 0.017). CONCLUSION DDR1 overexpression is a frequent feature in CRC and CR adenoma. DDR1 is a poor prognostic factor and a suppressor of the TIR. DDR1 and β-catenin seem to have a synergistic action.
Collapse
Affiliation(s)
- Marwa Mohammed Dawoud
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Marwa Salah
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | | |
Collapse
|
6
|
Borodins O, Broghammer F, Seifert M, Cordes N. Meta-analysis of expression and the targeting of cell adhesion associated genes in nine cancer types - A one research lab re-evaluation. Comput Struct Biotechnol J 2023; 21:2824-2836. [PMID: 37206618 PMCID: PMC10189096 DOI: 10.1016/j.csbj.2023.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer presents as a highly heterogeneous disease with partly overlapping and partly distinct (epi)genetic characteristics. These characteristics determine inherent and acquired resistance, which need to be overcome for improving patient survival. In line with the global efforts in identifying druggable resistance factors, extensive preclinical research of the Cordes lab and others designated the cancer adhesome as a critical and general therapy resistance mechanism with multiple druggable cancer targets. In our study, we addressed pancancer cell adhesion mechanisms by connecting the preclinical datasets generated in the Cordes lab with publicly available transcriptomic and patient survival data. We identified similarly changed differentially expressed genes (scDEGs) in nine cancers and their corresponding cell models relative to normal tissues. Those scDEGs interconnected with 212 molecular targets from Cordes lab datasets generated during two decades of research on adhesome and radiobiology. Intriguingly, integrative analysis of adhesion associated scDEGs, TCGA patient survival and protein-protein network reconstruction revealed a set of overexpressed genes adversely affecting overall cancer patient survival and specifically the survival in radiotherapy-treated cohorts. This pancancer gene set includes key integrins (e.g. ITGA6, ITGB1, ITGB4) and their interconnectors (e.g. SPP1, TGFBI), affirming their critical role in the cancer adhesion resistome. In summary, this meta-analysis demonstrates the importance of the adhesome in general, and integrins together with their interconnectors in particular, as potentially conserved determinants and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Olegs Borodins
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Felix Broghammer
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
7
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
8
|
Ko S, Jung KH, Yoon YC, Han BS, Park MS, Lee YJ, Kim SE, Cho YJ, Lee P, Lim JH, Ryu JK, Kim K, Kim TY, Hong S, Lee SH, Hong SS. A novel DDR1 inhibitor enhances the anticancer activity of gemcitabine in pancreatic cancer. Am J Cancer Res 2022; 12:4326-4342. [PMID: 36225647 PMCID: PMC9548003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extracellular matrix (ECM)-rich carcinoma, which promotes chemoresistance by inhibiting drug diffusion into the tumor. Discoidin domain receptor 1 (DDR1) increases tumor progression and drug resistance by binding to collagen, a major component of tumor ECM. Therefore, DDR1 inhibition may be helpful in cancer therapeutics by increasing drug delivery efficiency and improving drug sensitivity. In this study, we developed a novel DDR1 inhibitor, KI-301690 and investigated whether it could improve the anticancer activity of gemcitabine, a cytotoxic agent widely used for the treatment of pancreatic cancer. KI-301690 synergized with gemcitabine to suppress the growth of pancreatic cancer cells. Importantly, its combination significantly attenuated the expression of major tumor ECM components including collagen, fibronectin, and vimentin compared to gemcitabine alone. Additionally, this combination effectively decreased mitochondrial membrane potential (MMP), thereby inducing apoptosis. Further, the combination synergistically inhibited cell migration and invasion. The enhanced anticancer efficacy of the co-treatment could be explained by the inhibition of DDR1/PYK2/FAK signaling, which significantly reduced tumor growth in a pancreatic xenograft model. Our results demonstrate that KI-301690 can inhibit aberrant ECM expression by DDR1/PYK2/FAK signaling pathway blockade and attenuation of ECM-induced chemoresistance observed in desmoplastic pancreatic tumors, resulting in enhanced antitumor effect through effective induction of gemcitabine apoptosis.
Collapse
Affiliation(s)
- Soyeon Ko
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Beom Seok Han
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Min Seok Park
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Yun Ji Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Sang Eun Kim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Ye Jin Cho
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Pureunchowon Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Ji-Kan Ryu
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| | - Kewon Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute of Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)Daejeon 34141, Korea
| | - Tae Young Kim
- Chemical Kinomics Research Center, Korea Institute of Science and TechnologySeoul 02792, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalization, Institute of Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)Daejeon 34141, Korea
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and TechnologySeoul 02792, Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University3-ga, Sinheung-dong, Jung-gu, Incheon 22332, Korea
| |
Collapse
|
9
|
Pan Y, Han M, Zhang X, He Y, Yuan C, Xiong Y, Li X, Zeng C, Lu K, Zhu H, Lu X, Liu Q, Liang H, Liao Z, Ding Z, Zhang Z, Chen X, Zhang W, Zhang B. Discoidin domain receptor 1 promotes hepatocellular carcinoma progression through modulation of SLC1A5 and the mTORC1 signaling pathway. Cell Oncol (Dordr) 2022; 45:163-178. [PMID: 35089546 DOI: 10.1007/s13402-022-00659-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common cancers in the world with a high mortality rate. Receptor tyrosine kinases play important roles in the occurrence and development of various cancers. Discoid protein domain receptor 1 (DDR1) is a special type of transmembrane receptor tyrosine kinase. Here, we show that the expression of DDR1 is significantly increased in HCC and is related to a poor clinical prognosis. METHODS The expression of DDR1 in HCC cell lines and primary HCC specimens was evaluated using Western blotting and immunohistochemistry. A correlation between DDR1 and SLC1A5 expression was also investigated in primary HCC specimens. Cell proliferation was evaluated using in vitro CCK8 and colony formation assays. Gene knock-down and overexpression assays, CHX, NH4CL and Mg132 interference tests and immunoprecipitation, as well as nude mouse xenograft models were used to assess the mechanism by which DDR1 promotes tumorigenesis in vitro and in vivo. RESULTS We found that DDR1 promotes the proliferation of HCC cells and accelerates the growth of HCC tumor xenografts, while DDR1 downregulation had the opposite effect. We also found that loss or gain of DDR1 expression affected HCC cell cycle progression. Mechanistically, we found that DDR1 interacts with SLC1A5, which belongs to the solute carrier (SLC) family of transporters, and regulates its stability, thereby affecting the mTORC1 signaling pathway. In addition, we found that SLC1A5 regulation by DDR1 can be restored by lysosome inhibitors. We also found that DDR1 is highly expressed in HCC tissues and that increased DDR1 expression predicts a shorter overall survival (OS) time. We additionally found that the expression of SLC1A5 was positively correlated with that of DDR1. Together, our data indicate that DDR1 acts as a tumor-promoting factor that can control HCC cell proliferation and cell cycle progression by stabilizing SLC1A5 in a lysosome-dependent way. CONCLUSIONS Our study reveals a new mechanism by which DDR1 plays a liver cancer-promoting role. We also found that DDR1 expression serves as an independent prognostic marker, and that DDR1 and SLC1A5 expression levels are positively correlated in clinical samples. Our findings provide a new perspective for understanding HCC development and offers new targets for the treatment and management of HCC.
Collapse
Affiliation(s)
- Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Xiaochao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Yixiao Xiong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Kan Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Xun Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Wuhan, China.
| |
Collapse
|
10
|
Ferns GA, Shabanian S, Shams Abadi MS, Farhat A, Arjmand MH. Prognostic and Clinicopathologic Significance of Discoidin Domain Receptors in Different Human Malignancies: A Meta-Analysis. Gastrointest Tumors 2021; 8:177-186. [PMID: 34722471 DOI: 10.1159/000517503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/29/2021] [Indexed: 11/19/2022] Open
Abstract
Background Discoidin domain receptors (DDRs) belong to the receptor tyrosine kinases family and are activated by different types of collagens, which play roles in various physiological processes. An abnormal expression of DDRs is reported in different types of cancers. Despite many reports about the association and roles of high DDR expression levels in cancers, the prognostic values of DDRs are still unclear. This meta-analysis was performed to evaluate the prognostic effect of DDRs in different tissue cancers. Method A literature search was performed in several related databases to find eligible English articles. Based on our research, 20 appropriate studies with 2,602 patients were selected till October 5, 2020. The pooled hazard ratio (HR) with a corresponding 95% confidence interval (CI) was computed to evaluate the strength of correlation between DDRs and survival of cancer patients. Result Pooling results showed that a high DDR expression was significantly associated with poorer overall survival (OS) (HR = 1.304, 95% CI 1.007-1.69, p = 0.04). Subgroup analysis based on cancer type revealed a significant link between a high DDR expression level and poor OS both in gastrointestinal (pooled HR = 1.78, 95% CI 1.214-2.624, p = 0.003) and urological cancers (pooled HR = 1.42, 95% CI 1.062-1.82, p = 0.018). Conclusion Our meta-analysis results suggest that high DDRs expression has the potential to be used as a biomarker of poor prognosis in cancers.
Collapse
Affiliation(s)
- Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Sheida Shabanian
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Milad Shahini Shams Abadi
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ahmadshah Farhat
- Neonatal Research Center, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Bonfil RD, Chen W, Vranic S, Sohail A, Shi D, Jang H, Kim HR, Prunotto M, Fridman R. Expression and subcellular localization of Discoidin Domain Receptor 1 (DDR1) define prostate cancer aggressiveness. Cancer Cell Int 2021; 21:507. [PMID: 34548097 PMCID: PMC8456559 DOI: 10.1186/s12935-021-02206-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Discoidin Domain Receptor 1 (DDR1) is one of the two members of a unique family of receptor tyrosine kinase receptors that signal in response to collagen, which has been implicated in cancer progression. Here, we examined the expression of DDR1 in prostate cancer (PCa), and assessed its potential value as a prognostic marker, as a function of grade, stage and other clinicopathologic parameters. METHODS We investigated the association between the expression level and subcellular localization of DDR1 protein and PCa aggressiveness by immunohistochemistry, using tissue microarrays (TMAs) encompassing 200 cases of PCa with various Gleason scores (GS) and pathologic stages with matched normal tissue, and a highly specific monoclonal antibody. RESULTS DDR1 was found to be localized in the membrane, cytoplasm, and nuclear compartments of both normal and cancerous prostate epithelial cells. Analyses of DDR1 expression in low GS (≤ 7[3 + 4]) vs high GS (≥ 7[4 + 3]) tissues showed no differences in nuclear or cytoplasmic DDR1in either cancerous or adjacent normal tissue cores. However, relative to normal-matched tissue, the percentage of cases with higher membranous DDR1 expression was significantly lower in high vs. low GS cancers. Although nuclear localization of DDR1 was consistently detected in our tissue samples and also in cultured human PCa and normal prostate-derived cell lines, its presence in that site could not be associated with disease aggressiveness. No associations between DDR1 expression and overall survival or biochemical recurrence were found in this cohort of patients. CONCLUSION The data obtained through multivariate logistic regression model analysis suggest that the level of membranous DDR1 expression status may represent a potential biomarker of utility for better determination of PCa aggressiveness.
Collapse
Affiliation(s)
- R Daniel Bonfil
- Division of Pathology, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S. University Drive, Terry Building # 1337, Fort Lauderdale, FL, 33328-2018, USA.
| | - Wei Chen
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Anjum Sohail
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Scott Hall #8200, 540 E. Canfield St, Detroit, MI, 48201, USA
| | - Dongping Shi
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Scott Hall #8200, 540 E. Canfield St, Detroit, MI, 48201, USA
| | - Hyejeong Jang
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - Hyeong-Reh Kim
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Scott Hall #8200, 540 E. Canfield St, Detroit, MI, 48201, USA
| | - Marco Prunotto
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Rafael Fridman
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Scott Hall #8200, 540 E. Canfield St, Detroit, MI, 48201, USA.
| |
Collapse
|
12
|
Azizi R, Fallahian F, Aghaei M, Salemi Z. Down-Regulation of DDR1 Induces Apoptosis and Inhibits EMT through Phosphorylation of Pyk2/MKK7 in DU-145 and Lncap-FGC Prostate Cancer Cell Lines. Anticancer Agents Med Chem 2021; 20:1009-1016. [PMID: 32275493 DOI: 10.2174/1871520620666200410075558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND In cancer cells, re-activation of Epithelial-Mesenchymal Transition (EMT) program through Discoidin Domain Receptor1 (DDR1) leads to metastasis. DDR1-targeted therapy with siRNA might be a promising strategy for EMT inhibition. Therefore, the aim of this study was to investigate the effect of DDR1 knockdown in the EMT, migration, and apoptosis of prostate cancer cells. For this purpose, the expression of DDR1 was down regulated by the siRNA approach in LNcap-FGC and DU-145 prostate cancer cells. METHODS Immunocytochemistry was carried out for the assessment of EMT. E-cadherin, N-cadherin, Bax, Bcl2, and the phosphorylation level of Proline-rich tyrosine kinase 2 (Pyk2) and Map Kinase Kinase 7 (MKK7) was determined using the western blot. Wound healing assay was used to evaluate cell migration. Flow cytometry was employed to determine the apoptosis rate in siRNA-transfected cancer cells. RESULTS Our findings showed that the stimulation of DDR1 with collagen-I caused increased phosphorylation of Pyk2 and MKK7 signaling molecules that led to the induction of EMT and migration in DU-145 and LNcap- FGC cells. In contrast, DDR1 knockdown led to significant attenuation of EMT, migration, and phosphorylation levels of Pyk2 and MKK7. Moreover, DDR1 knockdown via induction of Bax expression and suppression of Bcl-2 expression induces apoptosis. CONCLUSION Collectively, our results indicate that the DDR1 targeting with siRNA may be beneficial for the inhibition of EMT and the induction of apoptosis in prostate cancer.
Collapse
Affiliation(s)
- Reza Azizi
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faranak Fallahian
- Department of Clinical Biochemistry, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Salemi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
13
|
Corona A, Blobe GC. The role of the extracellular matrix protein TGFBI in cancer. Cell Signal 2021; 84:110028. [PMID: 33940163 DOI: 10.1016/j.cellsig.2021.110028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
The secreted extracellular protein, transforming growth factor beta induced (TGFBI or βIGH3), has roles in regulating numerous biological functions, including cell adhesion and bone formation, both during embryonic development and during the pathogenesis of human disease. TGFBI has been most studied in the context of hereditary corneal dystrophies, where mutations in TGFBI result in accumulation of TGFBI in the cornea. In cancer, early studies focused on TGFBI as a tumor suppressor, in part by promoting chemotherapy sensitivity. However, in established tumors, TGFBI largely has a role in promoting tumor progression, with elevated levels correlating to poorer clinical outcomes. As an important regulator of cancer progression, TGFBI expression and function is tightly regulated by numerous mechanisms including epigenetic silencing through promoter methylation and microRNAs. Mechanisms to target TGFBI have potential clinical utility in treating advanced cancers, while assessing TGFBI levels could be a biomarker for chemotherapy resistance and tumor progression.
Collapse
Affiliation(s)
- Armando Corona
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University Medical center, USA; Department of Medicine, Duke University Medical Center, USA.
| |
Collapse
|
14
|
The Yin and Yang of Discoidin Domain Receptors (DDRs): Implications in Tumor Growth and Metastasis Development. Cancers (Basel) 2021; 13:cancers13071725. [PMID: 33917302 PMCID: PMC8038660 DOI: 10.3390/cancers13071725] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The tumor microenvironment plays an important role in tumor development and metastasis. Collagens are major components of the extracellular matrix and can influence tumor development and metastasis by activating discoidin domain receptors (DDRs). This work shows the different roles of DDRs in various cancers and highlights the complexity of anti-DDR therapies in cancer treatment. Abstract The tumor microenvironment is a complex structure composed of the extracellular matrix (ECM) and nontumoral cells (notably cancer-associated fibroblasts (CAFs) and immune cells). Collagens are the main components of the ECM and they are extensively remodeled during tumor progression. Some collagens are ligands for the discoidin domain receptor tyrosine kinases, DDR1 and DDR2. DDRs are involved in different stages of tumor development and metastasis formation. In this review, we present the different roles of DDRs in these processes and discuss controversial findings. We conclude by describing emerging DDR inhibitory strategies, which could be used as new alternatives for the treatment of patients.
Collapse
|
15
|
Mehta V, Chander H, Munshi A. Complex roles of discoidin domain receptor tyrosine kinases in cancer. Clin Transl Oncol 2021; 23:1497-1510. [PMID: 33634432 DOI: 10.1007/s12094-021-02552-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Discoidin domain receptors, DDR1 and DDR2 are members of the receptor tyrosine kinase (RTK) family that serves as a non-integrin collagen receptor and were initially identified as critical regulators of embryonic development and cellular homeostasis. In recent years, numerous studies have focused on the role of these receptors in disease development, in particular, cancer where they have been reported to augment ECM remodeling, invasion, drug resistance to facilitate tumor progression and metastasis. Interestingly, accumulating evidence also suggests that DDRs promote apoptosis and suppress tumor progression in various human cancers due to which their functions in cancer remain ill-defined and presents a case of an interesting therapeutic target. The present review has discussed the role of DDRs in tumorigenesis and the metastasis.
Collapse
Affiliation(s)
- V Mehta
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| | - H Chander
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.,National Institute of Biologicals, Sector 62, Noida-201309, India
| | - A Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
16
|
Wasinski B, Sohail A, Bonfil RD, Kim S, Saliganan A, Polin L, Bouhamdan M, Kim HRC, Prunotto M, Fridman R. Discoidin Domain Receptors, DDR1b and DDR2, Promote Tumour Growth within Collagen but DDR1b Suppresses Experimental Lung Metastasis in HT1080 Xenografts. Sci Rep 2020; 10:2309. [PMID: 32047176 PMCID: PMC7012844 DOI: 10.1038/s41598-020-59028-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site. However, implantation of DDR1b- or DDR2-expressing HT1080 cells with collagen I significantly accelerated tumour growth rate, an effect that could not be observed with collagen I in the absence of DDR induction. Interestingly, DDR1b, but not DDR2, completely hindered the ability of HT1080 cells to form lung colonies after intravenous inoculation, suggesting a differential role for DDR1b in primary tumour growth and lung colonization. Analyses of tumour extracts revealed specific alterations in Hippo pathway core components, as a function of DDR and collagen expression, that were associated with stimulation of tumour growth by DDRs and collagen I. Collectively, these findings identified divergent effects of DDRs on primary tumour growth and experimental lung metastasis in the HT1080 xenograft model and highlight the critical role of fibrillar collagen and DDRs in supporting the growth of tumours thriving within a collagen-rich stroma.
Collapse
Affiliation(s)
- Benjamin Wasinski
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Anjum Sohail
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - R Daniel Bonfil
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Pathology, College of Medical Sciences and Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328-2018, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Allen Saliganan
- Department of Urology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Mohamad Bouhamdan
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Hyeong-Reh C Kim
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Marco Prunotto
- Hoffmann-La Roche, Basel, Switzerland.,School of Pharmaceutical Sciences, Geneva, Switzerland
| | - Rafael Fridman
- Department of Pathology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
17
|
Henriet E, Sala M, Abou Hammoud A, Tuariihionoa A, Di Martino J, Ros M, Saltel F. Multitasking discoidin domain receptors are involved in several and specific hallmarks of cancer. Cell Adh Migr 2018; 12:363-377. [PMID: 29701112 PMCID: PMC6411096 DOI: 10.1080/19336918.2018.1465156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Discoidin domain receptors, DDR1 and DDR2, are two members of collagen receptor family that belong to tyrosine kinase receptor subgroup. Unlike other matrix receptor-like integrins, these collagen receptors have not been extensively studied. However, more and more studies are focusing on their involvement in cancer. These two receptors are present in several subcellular localizations such as intercellular junction or along type I collagen fibers. Consequently, they are involved in multiple cellular functions, for instance, cell cohesion, proliferation, adhesion, migration and invasion. Furthermore, various signaling pathways are associated with these multiple functions. In this review, we highlight and characterize hallmarks of cancer in which DDRs play crucial roles. We discuss recent data from studies that demonstrate the involvement of DDRs in tumor proliferation, cancer mutations, drug resistance, inflammation, neo-angiogenesis and metastasis. DDRs could be potential targets in cancer and we conclude this review by discussing the different ways to inhibits them.
Collapse
Affiliation(s)
- Elodie Henriet
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Margaux Sala
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Aya Abou Hammoud
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Adjanie Tuariihionoa
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Julie Di Martino
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Manon Ros
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Frédéric Saltel
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Ambrogio C, Darbo E, Lee SW, Santamaría D. A putative role for Discoidin Domain Receptor 1 in cancer chemoresistance. Cell Adh Migr 2018; 12:394-397. [PMID: 29505315 DOI: 10.1080/19336918.2018.1445954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Discoidin Domain Receptor 1 (DDR1) receptor tyrosine kinase performs pleiotropic functions in the control of cell adhesion, proliferation, survival, migration, and invasion. Aberrant DDR1 function as a consequence of either mutations or increased expression has been associated with various human diseases including cancer. Pharmacological inhibition of DDR1 results in significant therapeutic benefit in several pre-clinical cancer models. Here, we discuss the potential implication of DDR1-dependent pro-survival functions in the development of cancer resistance to chemotherapeutic regimens and speculate on the molecular mechanisms that might mediate such important feature.
Collapse
Affiliation(s)
- Chiara Ambrogio
- a Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Elodie Darbo
- b University of Bordeaux , INSERM U1218, ACTION Laboratory, Centre de Bioinformatique de Bordeaux (CBiB) , Bordeaux , France
| | - Sam W Lee
- c Cutaneous Biology Research Center , Massachusetts General Hospital and Harvard Medical School , Charlestown , MA , USA
| | - David Santamaría
- d University of Bordeaux , INSERM U1218, ACTION Laboratory, IECB , Pessac , France
| |
Collapse
|
19
|
Lee JH, Poudel B, Ki HH, Nepali S, Lee YM, Shin JS, Kim DK. Complement C1q stimulates the progression of hepatocellular tumor through the activation of discoidin domain receptor 1. Sci Rep 2018; 8:4908. [PMID: 29559654 PMCID: PMC5861131 DOI: 10.1038/s41598-018-23240-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022] Open
Abstract
C1q is known to perform several functions in addition to the role it plays in complement activation. C1q contains a collagen-like portion and DDR1 (discoidin domain receptor 1) is a well-known collagen receptor. Accordingly, we hypothesized C1q might be a novel ligand of DDR1. This study shows for the first time C1q directly induces the activation and upregulation of DDR1, and that this leads to enhanced migration and invasion of HepG2 cells. In addition, C1q was found to induce the activations of mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K)/Akt signaling, and to increase the expressions of matrix metalloproteinases (MMP2 and 9). Our results reveal a relationship between C1q and DDR1 and suggest C1q-induced DDR1 activation signaling may be involved in the progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeollabuk-do, 54907, Republic of Korea
| | - Barun Poudel
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeollabuk-do, 54907, Republic of Korea
| | - Hyeon-Hui Ki
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeollabuk-do, 54907, Republic of Korea
| | - Sarmila Nepali
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeollabuk-do, 54907, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeollabuk-do, 54538, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, BK21 PLUS for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Jeollabuk-do, 54907, Republic of Korea.
| |
Collapse
|
20
|
Yuge R, Kitadai Y, Takigawa H, Naito T, Oue N, Yasui W, Tanaka S, Chayama K. Silencing of Discoidin Domain Receptor-1 (DDR1) Concurrently Inhibits Multiple Steps of Metastasis Cascade in Gastric Cancer. Transl Oncol 2018; 11:575-584. [PMID: 29547756 PMCID: PMC5854925 DOI: 10.1016/j.tranon.2018.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that a unique set of receptor tyrosine kinases, known as discoidin domain receptors (DDRs), plays a role in cancer progression by interacting with the surrounding collagen matrix. In this study, we investigated the expression and role of DDR1 in human gastric cancer metastasis. Proliferation, migration, invasion, and tube formation assays were conducted in DDR1-expressing MKN74 gastric cancer cells and corresponding DDR1-silenced cells. The effects of DDR1 on tumor growth and metastasis were examined in orthotopically implanted and experimental liver metastasis models in nude mice. The expression of DDR1 in surgical specimens was analyzed by immunohistochemistry. DDR1 was expressed in human gastric cancer cell lines, and its expression in human gastric tumors was associated with poor prognosis. Among seven gastric cancer cell lines, MKN74 expressed the highest levels of DDR1. DDR1-silenced MKN74 cells showed unaltered proliferation activity. In contrast, migration, invasion, and tube formation were significantly reduced. When examined in an orthotopic nude mouse model, DDR1-silenced implanted tumors significantly reduced angiogenesis and lymphangiogenesis, thereby leading to reductions in lymph node metastasis and liver metastasis. In a model of experimental liver metastasis, DDR1-silenced cells almost completely inhibited liver colonization and metastasis. DDR1 deficiency led to reduced expression of the genes encoding vascular endothelial growth factor (VEGF)-A, VEGF-C, and platelet-derived growth factor-B. These results suggest that DDR1 is involved in gastric cancer tumor progression and that silencing of DDR1 inhibits multiple steps of the gastric cancer metastasis process.
Collapse
Affiliation(s)
- Ryo Yuge
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Prefectural University of Hiroshima.
| | - Hidehiko Takigawa
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshikatsu Naito
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Song J, Chen X, Bai J, Liu Q, Li H, Xie J, Jing H, Zheng J. Discoidin domain receptor 1 (DDR1), a promising biomarker, induces epithelial to mesenchymal transition in renal cancer cells. Tumour Biol 2016; 37:11509-21. [PMID: 27020590 DOI: 10.1007/s13277-016-5021-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/18/2016] [Indexed: 01/08/2023] Open
Abstract
Discoidin domain receptor I (DDR1) is confirmed as a receptor tyrosine kinase (RTK), which plays a consequential role in a variety of cancers. Nevertheless, the influence of DDR1 expression and development in renal clear cell carcinoma (RCCC) are still not well corroborated. In our research, we firstly discovered that the expression level of DDR1 was remarkable related to TNM stage (p = 0.032), depth of tumor invasion (p = 0.047), and lymph node metastasis (p = 0.034) in 119 RCCC tissue samples using tissue microarray. The function of DDR1 was then evaluated in vitro using collagen I and DDR1 small interfering RNA (siRNA) to regulate the expression of DDR1 in OS-RC-2 and ACHN renal cancer cells (RCC). DDR1 expression correlated with increased RCC cell migration, invasion, and angiogenesis. Further study revealed that high expression of DDR1 can result in epithelial to mesenchymal transition (EMT) activation. Western blot assay showed that the N-cadherin protein and vimentin were induced while E-cadherin was reduced after DDR1 over expression. Our results suggest that DDR1 is both a prognostic marker for RCCC and a potential functional target for therapy.
Collapse
Affiliation(s)
- Jingyuan Song
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Xiao Chen
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Qinghua Liu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Hui Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Jianwan Xie
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Hui Jing
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou, Jiangsu, 221002, China. .,Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
22
|
Rammal H, Saby C, Magnien K, Van-Gulick L, Garnotel R, Buache E, El Btaouri H, Jeannesson P, Morjani H. Discoidin Domain Receptors: Potential Actors and Targets in Cancer. Front Pharmacol 2016; 7:55. [PMID: 27014069 PMCID: PMC4789497 DOI: 10.3389/fphar.2016.00055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/29/2016] [Indexed: 01/11/2023] Open
Abstract
The extracellular matrix critically controls cancer cell behavior by inducing several signaling pathways through cell membrane receptors. Besides conferring structural properties to tissues around the tumor, the extracellular matrix is able to regulate cell proliferation, survival, migration, and invasion. Among these receptors, the integrins family constitutes a major class of receptors that mediate cell interactions with extracellular matrix components. Twenty years ago, a new class of extracellular matrix receptors has been discovered. These tyrosine kinase receptors are the two discoidin domain receptors DDR1 and DDR2. DDR1 was first identified in the Dictyostelium discoideum and was shown to mediate cell aggregation. DDR2 shares highly conserved sequences with DDR1. Both receptors are activated upon binding to collagen, one of the most abundant proteins in extracellular matrix. While DDR2 can only be activated by fibrillar collagen, particularly types I and III, DDR1 is mostly activated by type I and IV collagens. In contrast with classical growth factor tyrosine kinase receptors which display a rapid and transient activation, DDR1 and DDR2 are unique in that they exhibit delayed and sustained receptor phosphorylation upon binding to collagen. Recent studies have reported differential expression and mutations of DDR1 and DDR2 in several cancer types and indicate clearly that these receptors have to be taken into account as new players in the different aspects of tumor progression, from non-malignant to highly malignant and invasive stages. This review will discuss the current knowledge on the role of DDR1 and DDR2 in malignant transformation, cell proliferation, epithelial to mesenchymal transition, migratory, and invasive processes, and finally the modulation of the response to chemotherapy. These new insights suggest that DDR1 and DDR2 are new potential targets in cancer therapy.
Collapse
Affiliation(s)
- Hassan Rammal
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Charles Saby
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Kevin Magnien
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Laurence Van-Gulick
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Roselyne Garnotel
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Emilie Buache
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Hassan El Btaouri
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Pierre Jeannesson
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| | - Hamid Morjani
- Extracellular Matrix and Cellular Dynamics, Faculty of Pharmacy, MEDyC Centre National de la Recherche Scientifique UMR7369 Reims, France
| |
Collapse
|
23
|
Krohn JB, Hutcheson JD, Martínez-Martínez E, Irvin WS, Bouten CVC, Bertazzo S, Bendeck MP, Aikawa E. Discoidin Domain Receptor-1 Regulates Calcific Extracellular Vesicle Release in Vascular Smooth Muscle Cell Fibrocalcific Response via Transforming Growth Factor-β Signaling. Arterioscler Thromb Vasc Biol 2016; 36:525-33. [PMID: 26800565 DOI: 10.1161/atvbaha.115.307009] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Collagen accumulation and calcification are major determinants of atherosclerotic plaque stability. Extracellular vesicle (EV)-derived microcalcifications in the collagen-poor fibrous cap may promote plaque rupture. In this study, we hypothesize that the collagen receptor discoidin domain receptor-1 (DDR-1) regulates collagen deposition and release of calcifying EVs by vascular smooth muscle cells (SMCs) through the transforming growth factor-β (TGF-β) pathway. APPROACH AND RESULTS SMCs from the carotid arteries of DDR-1(-/-) mice and wild-type littermates (n=5-10 per group) were cultured in normal or calcifying media. At days 14 and 21, SMCs were harvested and EVs isolated for analysis. Compared with wild-type, DDR-1(-/-) SMCs exhibited a 4-fold increase in EV release (P<0.001) with concomitantly elevated alkaline phosphatase activity (P<0.0001) as a hallmark of EV calcifying potential. The DDR-1(-/-) phenotype was characterized by increased mineralization (Alizarin Red S and Osteosense, P<0.001 and P=0.002, respectively) and amorphous collagen deposition (P<0.001). We further identified a novel link between DDR-1 and the TGF-β pathway previously implicated in both fibrotic and calcific responses. An increase in TGF-β1 release by DDR-1(-/-) SMCs in calcifying media (P<0.001) stimulated p38 phosphorylation (P=0.02) and suppressed activation of Smad3. Inhibition of either TGF-β receptor-I or phospho-p38 reversed the fibrocalcific DDR-1(-/-) phenotype, corroborating a causal relationship between DDR-1 and TGF-β in EV-mediated vascular calcification. CONCLUSIONS DDR-1 interacts with the TGF-β pathway to restrict calcifying EV-mediated mineralization and fibrosis by SMCs. We therefore establish a novel mechanism of cell-matrix homeostasis in atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Jona B Krohn
- From the Department of Medicine, Cardiovascular Division, Center for Excellence in Vascular Biology (J.B.K., E.M.-M., W.S.I., E.A.) and Center for Interdisciplinary Cardiovascular Sciences (J.D.H., E.A.), Harvard Medical School, Boston, MA; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (C.V.C.B.); Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom (S.B.); and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada (M.P.B.)
| | - Joshua D Hutcheson
- From the Department of Medicine, Cardiovascular Division, Center for Excellence in Vascular Biology (J.B.K., E.M.-M., W.S.I., E.A.) and Center for Interdisciplinary Cardiovascular Sciences (J.D.H., E.A.), Harvard Medical School, Boston, MA; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (C.V.C.B.); Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom (S.B.); and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada (M.P.B.)
| | - Eduardo Martínez-Martínez
- From the Department of Medicine, Cardiovascular Division, Center for Excellence in Vascular Biology (J.B.K., E.M.-M., W.S.I., E.A.) and Center for Interdisciplinary Cardiovascular Sciences (J.D.H., E.A.), Harvard Medical School, Boston, MA; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (C.V.C.B.); Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom (S.B.); and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada (M.P.B.)
| | - Whitney S Irvin
- From the Department of Medicine, Cardiovascular Division, Center for Excellence in Vascular Biology (J.B.K., E.M.-M., W.S.I., E.A.) and Center for Interdisciplinary Cardiovascular Sciences (J.D.H., E.A.), Harvard Medical School, Boston, MA; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (C.V.C.B.); Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom (S.B.); and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada (M.P.B.)
| | - Carlijn V C Bouten
- From the Department of Medicine, Cardiovascular Division, Center for Excellence in Vascular Biology (J.B.K., E.M.-M., W.S.I., E.A.) and Center for Interdisciplinary Cardiovascular Sciences (J.D.H., E.A.), Harvard Medical School, Boston, MA; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (C.V.C.B.); Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom (S.B.); and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada (M.P.B.)
| | - Sergio Bertazzo
- From the Department of Medicine, Cardiovascular Division, Center for Excellence in Vascular Biology (J.B.K., E.M.-M., W.S.I., E.A.) and Center for Interdisciplinary Cardiovascular Sciences (J.D.H., E.A.), Harvard Medical School, Boston, MA; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (C.V.C.B.); Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom (S.B.); and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada (M.P.B.)
| | - Michelle P Bendeck
- From the Department of Medicine, Cardiovascular Division, Center for Excellence in Vascular Biology (J.B.K., E.M.-M., W.S.I., E.A.) and Center for Interdisciplinary Cardiovascular Sciences (J.D.H., E.A.), Harvard Medical School, Boston, MA; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (C.V.C.B.); Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom (S.B.); and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada (M.P.B.)
| | - Elena Aikawa
- From the Department of Medicine, Cardiovascular Division, Center for Excellence in Vascular Biology (J.B.K., E.M.-M., W.S.I., E.A.) and Center for Interdisciplinary Cardiovascular Sciences (J.D.H., E.A.), Harvard Medical School, Boston, MA; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (C.V.C.B.); Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom (S.B.); and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada (M.P.B.).
| |
Collapse
|
24
|
Reyes-Uribe E, Serna-Marquez N, Perez Salazar E. DDRs: receptors that mediate adhesion, migration and invasion in breast cancer cells. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|