1
|
He J, Xie L, Yu L, Liu L, Xu H, Wang T, Gao Y, Wang X, Duan Y, Liu H, Dai L. Maternal serum CFHR4 protein as a potential non-invasive marker of ventricular septal defects in offspring: evidence from a comparative proteomics study. Clin Proteomics 2022; 19:17. [PMID: 35590261 PMCID: PMC9117979 DOI: 10.1186/s12014-022-09356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background Despite advances in diagnosis of congenital heart defects, there is no non-invasive biomarker clinically available for the early detection of fetal ventricular septal defects (VSD). Methods This study was to profile differentially expressed proteins (DEP) in the first trimester maternal plasma samples that were collected in the 12th–14th week of gestation and identify potential biomarkers for VSD. Maternal plasma samples of ten case–control pairs of women (who had given birth to an isolated VSD infant or not) were selected from a birth cohort biospecimen bank for identifying DEPs by using high-performance liquid chromatography-tandem mass spectrometry-based comparative proteomics. Results There were 35 proteins with significantly different levels between cases and controls, including 9 upregulated and 26 downregulated proteins. With Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and protein–protein interaction analyses, most of the DEPs were clustered in pathways related to B cell-mediated immune responses, complement activation, and phagocytosis. Three DEPs were validated using enzyme-linked immunosorbent assay in another set of samples consisting of 31 cases and 33 controls. And CFHR4, a key regulator in complement cascades, was found to be significantly upregulated in cases as compared to controls. Conclusions Subsequent logistic regression and receiver operating characteristic analysis suggested maternal serum CFHR4 as a promising biomarker of fetal VSD. Further studies are warranted to verify the findings. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09356-y.
Collapse
Affiliation(s)
- Jing He
- Department of Pediatrics, Chengdu Fifth People's Hospital, Chengdu, 610041, China.,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Li Yu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Lijun Liu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Hong Xu
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Tao Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Yuyang Gao
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuedong Wang
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - You Duan
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, 610041, Chengdu, China. .,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China. .,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China. .,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Li Dai
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China. .,National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China. .,NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China.
| |
Collapse
|
2
|
Huang W, Gu H, Yuan Z. Identifying biomarkers for prenatal diagnosis of neural tube defects based on "omics". Clin Genet 2021; 101:381-389. [PMID: 34761376 DOI: 10.1111/cge.14087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/27/2022]
Abstract
Neural tube defects (NTDs) are the most severe birth defects and the main cause of newborn death; posing a great challenge to the affected children, families, and societies. Presently, the clinical diagnosis of NTDs mainly relies on ultrasound images combined with certain indices, such as alpha-fetoprotein levels in the maternal serum and amniotic fluid. Recently, the discovery of additional biomarkers in maternal tissue has presented new possibilities for prenatal diagnosis. Over the past 20 years, "omics" techniques have provided the premise for the study of biomarkers. This review summarizes recent advances in candidate biomarkers for the prenatal diagnosis of fetal NTDs based on omics techniques using maternal biological specimens of different origins, including amniotic fluid, blood, and urine, which may provide a foundation for the early prenatal diagnosis of NTDs.
Collapse
Affiliation(s)
- Wanqi Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Dong N, Gu H, Liu D, Wei X, Ma W, Ma L, Liu Y, Wang Y, Jia S, Huang J, Wang C, He X, Huang T, He Y, Zhang Q, An D, Bai Y, Yuan Z. Complement factors and alpha-fetoprotein as biomarkers for noninvasive prenatal diagnosis of neural tube defects. Ann N Y Acad Sci 2020; 1478:75-91. [PMID: 32761624 DOI: 10.1111/nyas.14443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
Neural tube defects (NTDs) are serious congenital malformations. In this study, we aimed to identify more specific and sensitive maternal serum biomarkers for noninvasive NTD screenings. We collected serum from 37 pregnant women carrying fetuses with NTDs and 38 pregnant women carrying normal fetuses. Isobaric tags for relative and absolute quantitation were conducted for differential proteomic analysis, and an enzyme-linked immunosorbent assay was used to validate the results. We then used a support vector machine (SVM) classifier to establish a disease prediction model for NTD diagnosis. We identified 113 differentially expressed proteins; of these, 23 were either up- or downregulated 1.5-fold or more, including five complement proteins (C1QA, C1S, C1R, C9, and C3); C3 and C9 were downregulated significantly in NTD groups. The accuracy rate of the SVM model of the complement factors (including C1QA, C1S, and C3) was 62.5%, with 60% sensitivity and 67% specificity, while the accuracy rate of the SVM model of alpha-fetoprotein (AFP, an established biomarker for NTDs) was 62.5%, with 75% sensitivity and 50% specificity. Combination of the complement factor and AFP data resulted in the SVM model accuracy of 75%, and receiver operating characteristic curve analysis showed 75% sensitivity and 75% specificity. These data suggest that a disease prediction model based on combined complement factor and AFP data could serve as a more accurate method of noninvasive prenatal NTD diagnosis.
Collapse
Affiliation(s)
- Naixuan Dong
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.,School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ling Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yanfu Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jieting Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chenfei Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xuan He
- School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang, China
| | - Tianchu Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qiang Zhang
- Second Respiratory Department, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dong An
- Pediatric Department, The First Hospital of China Medical University, Shenyang, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
4
|
The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum. Appl Environ Microbiol 2020; 86:AEM.00441-20. [PMID: 32414803 DOI: 10.1128/aem.00441-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023] Open
Abstract
Androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD) are valuable steroid pharmaceutical intermediates obtained by soybean phytosterol biotransformation by Mycobacterium Cyclodextrins (CDs) are generally believed to be carriers for phytosterol delivery and can improve the production of AD and ADD due to their effects on steroid solubilization and alteration in cell wall permeability for steroids. To better understand the mechanisms of CD promotion, we performed proteomic quantification of the effects of hydroxypropyl-β-CD (HP-β-CD) on phytosterol metabolism in Mycobacterium neoaurum TCCC 11978 C2. Perturbations are observed in steroid catabolism and glucose metabolism by adding HP-β-CD in a phytosterol bioconversion system. AD and ADD, as metabolic products of phytosterol, are toxic to cells, with inhibited cell growth and biocatalytic activity. Treatment of mycobacteria with HP-β-CD relieves the inhibitory effect of AD(D) on the electron transfer chain and cell growth. These results demonstrate the positive relationship between HP-β-CD and phytosterol metabolism and give insight into the complex functions of CDs as mediators of the regulation of sterol metabolism.IMPORTANCE Phytosterols from soybean are low-cost by-products of soybean oil production and, owing to their good bioavailability in mycobacteria, are preferred as the substrates for steroid drug production via biotransformation by Mycobacterium However, the low level of production of steroid hormone drugs due to the low aqueous solubility (below 0.1 mmol/liter) of phytosterols limits the commercial use of sterol-transformed strains. To improve the bioconversion of steroids, cyclodextrins (CDs) are generally used as an effective carrier for the delivery of hydrophobic steroids to the bacterium. CDs improve the biotransformation of steroids due to their effects on steroid solubilization and alterations in cell wall permeability for steroids. However, studies have rarely reported the effects of CDs on cell metabolic pathways related to sterols. In this study, the effects of hydroxypropyl-β-CD (HP-β-CD) on the expression of enzymes related to steroid catabolic pathways in Mycobacterium neoaurum were systematically investigated. These findings will improve our understanding of the complex functions of CDs in the regulation of sterol metabolism and guide the application of CDs to sterol production.
Collapse
|
5
|
Wu Y, Zhang J, Wang M, Yang L, Wang Y, Hu T, Liu A, Cheng Q, Fu Z, Zhang P, Cao L. Proteomics analysis indicated the protein expression pattern related to the development of fetal conotruncal defects. J Cell Physiol 2019; 234:13544-13556. [PMID: 30635921 DOI: 10.1002/jcp.28033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Abnormal development of embryonic conus arteriosus could lead to conotruncal defects in fetal heart, and increase the incidence of fetal congenital heart disease. Tetralogy of Fallot (TOF) is one of the most common forms of congenital heart disease. It may be helpful for us to solve this clinical problem through exploring the molecular mechanisms of development in embryonic congenital heart disease. Proteomics has attracted much attention in understanding the development of human diseases during the past decades. However, there is still little information about the relationship between protein expression pattern and TOF. In this study, we aimed to explore the potential linkage of proteomics and TOF development. Briefly, 121 differentially expressed proteins were identified from a TOF group, compared with a control group. The expression levels of 34 of these proteins were significantly different (>1.5 absolute fold change, p < 0.05) between the two groups. Gene ontology (GO) and pathway analysis showed that these proteins were mainly associated with carbon metabolism, biosynthesis of antibodies, positive regulation of transcription from RNA polymerase II promoter, nucleus, ATP binding, and so on. The ingenuity pathway analysis (IPA) results indicated that 435 of upstream regulators were identified of these differentially expressed proteins, which might be involved in the development of TOF. Data of string analysis showed the protein-protein interaction network among the differentially expressed proteins and regulators, which are related to TOF. In conclusion, our study explored the protein expression pattern of TOF, which might provide new insights into understanding the mechanism of TOF development and afford potential targets for TOF diagnosis and therapy.
Collapse
Affiliation(s)
- Yun Wu
- Department of Echocardiography, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jingjing Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mei Wang
- Department of Pathology, Nanjing Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Yang
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yongmei Wang
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Tao Hu
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - An Liu
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qing Cheng
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ziyi Fu
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Pingyang Zhang
- Department of Echocardiography, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Cao
- Department of Ultrasonography, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
6
|
Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R. Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. MASS SPECTROMETRY REVIEWS 2018; 37:583-606. [PMID: 29120501 DOI: 10.1002/mas.21550] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 05/23/2023]
Abstract
Over the past decade, chemical labeling with isobaric tandem mass tags, such as isobaric tags for relative and absolute quantification reagents (iTRAQ) and tandem mass tag (TMT) reagents, has been employed in a wide range of different clinically orientated serum and plasma proteomics studies. In this review the scope of these works is presented with attention to the areas of research, methods employed and performance limitations. These applications have covered a wide range of diseases, disorders and infections, and have implemented a variety of different preparative and mass spectrometric approaches. In contrast to earlier works, which struggled to quantify more than a few hundred proteins, increasingly these studies have provided deeper insight into the plasma proteome extending the numbers of quantified proteins to over a thousand.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Santosh D Bhosale
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
7
|
Plasma Gelsolin: Indicator of Inflammation and Its Potential as a Diagnostic Tool and Therapeutic Target. Int J Mol Sci 2018; 19:ijms19092516. [PMID: 30149613 PMCID: PMC6164782 DOI: 10.3390/ijms19092516] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Gelsolin, an actin-depolymerizing protein expressed both in extracellular fluids and in the cytoplasm of a majority of human cells, has been recently implicated in a variety of both physiological and pathological processes. Its extracellular isoform, called plasma gelsolin (pGSN), is present in blood, cerebrospinal fluid, milk, urine, and other extracellular fluids. This isoform has been recognized as a potential biomarker of inflammatory-associated medical conditions, allowing for the prediction of illness severity, recovery, efficacy of treatment, and clinical outcome. A compelling number of animal studies also demonstrate a broad spectrum of beneficial effects mediated by gelsolin, suggesting therapeutic utility for extracellular recombinant gelsolin. In the review, we summarize the current data related to the potential of pGSN as an inflammatory predictor and therapeutic target, discuss gelsolin-mediated mechanisms of action, and highlight recent progress in the clinical use of pGSN.
Collapse
|
8
|
Garg R, Peddada N, Dolma K, Khatri N, Ashish. Pregnancy-related hormones, progesterone and human chorionic gonadotrophin, upregulate expression of maternal plasma gelsolin. Am J Physiol Regul Integr Comp Physiol 2018; 314:R509-R522. [PMID: 29341830 DOI: 10.1152/ajpregu.00131.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma gelsolin (pGSN), a protein primarily involved in clearance of circulating actin filaments, is an upcoming novel biomarker. Its level changes in multiple disease and injury conditions, attributable mainly to its consumption during actin clearance; the endogenous regulation of its expression, however, remains elusive as well as unexplored. Here, we are reporting the first isolation of the promoter region of pGSN gene and investigation of its transcriptional regulation during pregnancy (a natural process associated with a well-programmed injury course of parturition). Interestingly, two of the pregnancy-related hormones, human chorionic gonadotrophin (hCG) and progesterone, significantly upregulated pGSN promoter activity in muscle cells. This action of both hormones was found to mediate through their respective cellular receptors and involved a contribution of multiple signaling pathways including those of protein kinase A, protein kinase C, epidermal growth factor receptor and prostaglandin-endoperoxidase synthase 2 in the case of hCG-mediated upregulation. This novel upregulation was further supported by elevated levels of endogenous pGSN transcripts as well as secreted protein upon hormonal treatments of muscle cells compared with untreated controls. A participation of pGSN promoter cis-elements, capable of interacting with endogenous transcription factors, Ap1, Sp1, and p300, was also observed during this hormonal upregulation. Additionally, the augmented pGSN levels observed in pregnant mice compared with the control animals further supported an upregulation of this protein during pregnancy, implicating vital role(s) played by pGSN during this period in mammals.
Collapse
Affiliation(s)
- Renu Garg
- Council of Scientific and Industrial Research-Institute of Microbial Technology , Chandigarh , India
| | - Nagesh Peddada
- Council of Scientific and Industrial Research-Institute of Microbial Technology , Chandigarh , India
| | - Kunzes Dolma
- Council of Scientific and Industrial Research-Institute of Microbial Technology , Chandigarh , India
| | - Neeraj Khatri
- Council of Scientific and Industrial Research-Institute of Microbial Technology , Chandigarh , India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
9
|
Wu L, Sun Y, Wan J, Luan T, Cheng Q, Tan Y. A proteomic analysis identifies candidate early biomarkers to predict ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients. Mol Med Rep 2017; 16:272-280. [PMID: 28534980 PMCID: PMC5482139 DOI: 10.3892/mmr.2017.6604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a potentially life‑threatening, iatrogenic complication that occurs during assisted reproduction. Polycystic ovarian syndrome (PCOS) significantly increases the risk of OHSS during controlled ovarian stimulation. Therefore, a more effective early prediction technique is required in PCOS patients. Quantitative proteomic analysis of serum proteins indicates the potential diagnostic value for disease. In the present study, the authors revealed the differentially expressed proteins in OHSS patients with PCOS as new diagnostic biomarkers. The promising proteins obtained from liquid chromatography‑mass spectrometry were subjected to ELISA and western blotting assay for further confirmation. A total of 57 proteins were identified with significant difference, of which 29 proteins were upregulated and 28 proteins were downregulated in OHSS patients. Haptoglobin, fibrinogen and lipoprotein lipase were selected as candidate biomarkers. Receiver operating characteristic curve analysis demonstrated all three proteins may have potential as biomarkers to discriminate OHSS in PCOS patients. Haptoglobin, fibrinogen and lipoprotein lipase have never been reported as a predictive marker of OHSS in PCOS patients, and their potential roles in OHSS occurrence deserve further studies. The proteomic results reported in the present study may gain deeper insights into the pathophysiology of OHSS.
Collapse
Affiliation(s)
- Lan Wu
- First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Yazhou Sun
- Department of Pediatrics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jun Wan
- Department of Obstetrics, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Ting Luan
- Department of Obstetrics, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Qing Cheng
- Department of Obstetrics, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Yong Tan
- First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| |
Collapse
|
10
|
Zhang LL, Zhang Y, Ren JN, Liu YL, Li JJ, Tai YN, Yang SZ, Pan SY, Fan G. Proteins differentially expressed during limonene biotransformation by Penicillium digitatum DSM 62840 were examined using iTRAQ labeling coupled with 2D-LC–MS/MS. ACTA ACUST UNITED AC 2016; 43:1481-95. [DOI: 10.1007/s10295-016-1826-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023]
Abstract
Abstract
This study focused on the differences in protein expression at various periods during limonene biotransformation by Penicillium digitatum DSM 62840. A total of 3644 protein-species were quantified by iTRAQ during limonene biotransformation (0 and 12 h). A total of 643 proteins were differentially expressed, 316 proteins were significantly up-regulated and 327 proteins were markedly down-regulated. GO, COG, and pathway enrichment analysis showed that the differentially expressed proteins possessed catalytic and binding functions and were involved in a variety of cellular and metabolic process. Furthermore, the enzymes involved in limonene transformation might be related to cytochrome P-450. This study provided a powerful platform for further exploration of biotransformation, and the identified proteins provided insight into the mechanism of limonene transformation.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Yan Zhang
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Jing-Nan Ren
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Yan-Long Liu
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Jia-Jia Li
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Ya-Nan Tai
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Shu-Zhen Yang
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Si-Yi Pan
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| | - Gang Fan
- grid.35155.37 0000000417904137 Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology Huazhong Agricultural University 430070 Wuhan China
| |
Collapse
|