1
|
Wang D, Song J, Wang J, Quan R. Serum metabolic alterations in chickens upon infectious bursal disease virus infection. BMC Vet Res 2024; 20:569. [PMID: 39696379 DOI: 10.1186/s12917-024-04402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Infectious bursal disease virus (IBDV) is a highly contagious immunosuppressive virus of chickens. Chickens acquire infection by the oral route under natural conditions. Although the histological and pathological changes after IBDV infection are well described, the alterations in serum metabolome have not been reported. In this study, SPF chickens were infected with attenuated IBDV (atIBDV) strain LM and very virulent IBDV (vvIBDV) strain LX, respectively. On the seventh day after oral infection, serum samples of experimental chickens were identified using ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS). The serum metabolic profiles were analyzed by multivariate statistical methods. KEGG enrichment analysis was performed to evaluate the dysregulated biological pathways. RESULTS We identified 368 significantly altered metabolites in response to both atIBDV and vvIBDV infection. The metabolic disorder of amino acid and lipid was associated with IBDV infection, especially tryptophan, glycerophospholipid, lysine, and tyrosine metabolism. The differential metabolites enriched in the four metabolic pathways were PC(20:4(5Z,8Z,11Z,14Z)/18:0), PE(16:0/18:2(9Z,12Z)), PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(18:0/20:4(5Z,8Z,11Z,14Z)), PE(18:0/20:4(8Z,11Z,14Z,17Z)), PE(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(20:3(8Z,11Z,14Z)/16:0), PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/16:0), PE-NMe(20:5(5Z,8Z,11Z,14Z,17Z)/18:0), PS(20:3(5Z,8Z,11Z)/18:2(9Z,12Z)), 2-aminobenzoic acid, 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylserotonin, 5-hydroxyindoleacetate, indole-3-acetaldehyde, indole-3-acetate, p-coumaric acid, L-tyrosine, homovanillin, and S-glutaryldihydrolipoamide. CONCLUSION The atIBDV and vvIBDV infection causes metabolic changes in chicken serum. The differential metabolites and dysregulated metabolic pathways reflect the host response to the IBDV infection.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and mock of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road Haidian District, Beijing, 100097, China.
| |
Collapse
|
2
|
Chen J, Wang W, Li S, Wang Z, Zuo W, Nong T, Li Y, Liu H, Wei P, He X. RNA-seq reveals role of cell-cycle regulating genes in the pathogenicity of a field very virulent infectious bursal disease virus. Front Vet Sci 2024; 11:1334586. [PMID: 38362295 PMCID: PMC10867150 DOI: 10.3389/fvets.2024.1334586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes highly contagious and immunosuppressive disease in poultry. The thymus, serving as the primary organ for T cell maturation and differentiation, plays an important role in the pathogenicity of IBDV in the infected chickens. However, there are no reports on the molecular pathogenesis of IBDV in the thymus currently. The aim of the study was to elucidate the molecular mechanisms underlying the pathogenicity of a field very virulent (vv) IBDV strain NN1172 in the thymus of SPF chickens using integrative transcriptomic and proteomic analyses. Our results showed that a total of 4,972 Differentially expressed genes (DEGs) in the thymus of NN1172-infected chickens by transcriptomic analysis, with 2,796 up-regulated and 2,176 down-regulated. Meanwhile, the proteomic analysis identified 726 differentially expressed proteins (DEPs) in the infected thymus, with 289 up-regulated and 437 down-regulated. Overall, a total of 359 genes exhibited differentially expression at both mRNA and protein levels, with 134 consistently up-regulated and 198 genes consistently down-regulated, as confirmed through a comparison of the RNA-seq and the proteomic datasets. The gene ontology (GO) analysis unveiled the involvement of both DEGs and DEPs in diverse categories encompassing cellular components, biological processes, and molecular functions in the pathological changes in IBDV-infected thymus. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the host mainly displayed severely disruption of cell survival/repair, proliferation and metabolism pathway, meanwhile, the infection triggers antiviral immune activation with a potential emphasis on the MDA5 pathway. Network inference analysis identified seven core hub genes, which include CDK1, TYMS, MCM5, KIF11, CCNB2, MAD2L1, and MCM4. These genes are all associated with cell-cycle regulating pathway and are likely key mediators in the pathogenesis induced by NN1172 infection in the thymus. This study discovered dominant pathways and genes which enhanced our understanding of the molecular mechanisms underlying IBDV pathogenesis in the thymus.
Collapse
Affiliation(s)
- Jinnan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Shangquan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Wenbo Zuo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Tingbin Nong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yihai Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongquan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
3
|
Lin J, Min R, Yi X, Zhuang Y. Overexpression of glutathione synthetase gene improving redox homeostasis and chicken infectious bursal disease virus propagation in chicken embryo fibroblast DF-1. BIORESOUR BIOPROCESS 2023; 10:60. [PMID: 38647813 PMCID: PMC10992565 DOI: 10.1186/s40643-023-00665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 04/25/2024] Open
Abstract
Infectious bursal disease (IBD) of chickens is an acute, high-contact, lytic infectious disease caused by infectious bursal disease virus (IBDV). The attenuated inactivated vaccine produced by DF-1 cells is an effective control method, but the epidemic protection demands from the world poultry industry remain unfulfilled. To improve the IBDV vaccine production capacity and reduce the economic losses caused by IBDV in chicken, cellular metabolic engineering is performed on host cells. In this study, when analyzing the metabolomic after IBDV infection of DF-1 cells and the exogenous addition of reduced glutathione (GSH), we found that glutathione metabolism had an important role in the propagation of IBDV in DF-1 cells, and the glutathione synthetase gene (gss) could be a limiting regulator in glutathione metabolism. Therefore, three stable recombinant cell lines GSS-L, GSS-M, and GSS-H (gss gene overexpression with low, medium, and high mRNA levels) were screened. We found that the recombinant GSS-M cell line had the optimal regulatory effect with a 7.19 ± 0.93-fold increase in IBDV titer. We performed oxidative stress and redox status analysis on different recombinant cell lines, and found that the overexpression of gss gene significantly enhanced the ability of host cells to resist oxidative stress caused by IBDV infection. This study established a high-efficiency DF-1 cells system for IBDV vaccine production by regulating glutathione metabolism, and underscored the importance of moderate gene expression regulation on the virus reproduction providing a way for rational and precise cell engineering.
Collapse
Affiliation(s)
- Jia Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd., Shanghai, 200237, People's Republic of China
- Collaborative Innovation Center for Rehabilitation Technology, The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Rui Min
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd., Shanghai, 200237, People's Republic of China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| |
Collapse
|
4
|
Khan A, Jahejo AR, Qiao ML, Han XY, Cheng QQ, Mangi RA, Qadir MF, Zhang D, Bi YH, Wang Y, Gao GF, Tian WX. NF-кB pathway genes expression in chicken erythrocytes infected with avian influenza virus subtype H9N2. Br Poult Sci 2021; 62:666-671. [PMID: 33843365 DOI: 10.1080/00071668.2021.1902478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Chicken erythrocytes in blood vessels are the most abundant circulating cells, which participate in the host's immune responses. The transcription factor nuclear factor-kappa B (NF-κB) plays a vital role in the inflammatory response following viral infections. However, the expression of the NF-κB pathway, and other immune-related genes in chicken erythrocytes infected with low pathogenic avian influenza virus (LPAIV H9N2), has not been extensively studied.2. The following study determined the interaction of LPAIV H9N2 with chicken erythrocytes using indirect immunofluorescence microscopy. This was followed by investigating myeloid differentiation primary response 88 (MyD88), C-C motif chemokine ligand 5 (CCL5), melanoma differentiation-associated protein 5 (MDA5), the inhibitor of nuclear factor-kappa B kinase subunit epsilon (IKBKE), NF-κB inhibitor alpha (NFKBIA), NF-κB inhibitor epsilon (NFKBIE), interferon-alpha (IFN-α), colony-stimulating factor 3 (CSF3) and tumour necrosis factor receptor-associated factor 6 (TRAF6) by mRNA expression using quantitative real-time PCR (qRT-PCR) at four different time intervals (0, 2, 6 and 10 h).3. There was a significant interaction between erythrocytes and LPAIV H9N2 virus. Furthermore, the mRNA expression of the NF-κB pathway and other immune-related genes were significantly up-regulated at 2 h post-infection in infected chicken erythrocytes, except for TRAF6, which were significantly downregulated. While at 0 h post-infection, IFN-α and CSF3 were significantly upregulated, whereas NFKBIA was significantly downregulated. Further expression of MDA5, CCL5 and NFKBIA was upregulated, while TRAF6 was downregulated at 6 h post-infection. In infected erythrocytes, expression of MyD88, CCL5 and IKBKE was upregulated. However, IFN-α and TRAF6 were downregulated at 10 h post-infection.4. These results give initial evidence that the NF-κB pathway, and other genes related to immunity, in chicken erythrocytes may contribute to LPAIV subtype H9N2 and induce host immune responses.
Collapse
Affiliation(s)
- A Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - A R Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - M L Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - X Y Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Q Q Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - R A Mangi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - M F Qadir
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - D Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Y H Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center of Infectious Diseases, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, China
| | - Y Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - G F Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - W X Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
5
|
Huang X, Xu Y, Lin Q, Guo W, Zhao D, Wang C, Wang L, Zhou H, Jiang Y, Cui W, Qiao X, Li Y, Ma G, Tang L. Determination of antiviral action of long non-coding RNA loc107051710 during infectious bursal disease virus infection due to enhancement of interferon production. Virulence 2021; 11:68-79. [PMID: 31865850 PMCID: PMC6961729 DOI: 10.1080/21505594.2019.1707957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The functions and profiles of lncRNAs during infectious bursal disease virus (IBDV) infection have not been determined, yet. The objectives of this study were to determine the antiviral action of loc107051710 lncRNA during IBDV infection by investigating the relationship between loc107051710 and IRF8, Type I IFN, STATs, and ISGs. DF-1 cells were either left untreated as non-infected controls (n = 1) or infected with IBDV (n = 3). RNA sequencing was applied for analysis of mRNAs and lncRNAs expression. Differentially expressed genes were verified by RT-qPCR. Then identification, of 230 significantly different expressed genes (182 mRNAs and 48 lncRNA) by pairwise comparison of the infected and control groups, was carried out. The functions of differentially expressed lncRNAs were investigated by selection of lncRNAs and mRNAs significantly enriched in the aforementioned biological processes and signaling pathways for construction of lncRNA-mRNA co-expression networks. The techniques of gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways were applied. It was suggested that these differentially expressed genes were involved in the interaction between the host and IBDV. Loc107051710 was found to have potential antiviral effects. RT-qPCR and western blot were applied and revealed that loc107051710 was required for induction of IRF8, type I IFN, STAT, and ISG expression, and its knockdown promoted IBDV replication. By fluorescence in situ hybridization, it was found that loc107051710 was translocated from the nucleus to the cytoplasm after infection with IBDV. Overall, loc107051710 promoted the production of IFN-α and IFN-β by regulating IRF8, thereby promoting the antiviral activity of ISGs.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Qingyu Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Weilong Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Chunmei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Guangpeng Ma
- Agricultural High Technology Department, China Rural Technology Development Center, Beijing China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
6
|
Zou M, Yang L, Niu L, Zhao Y, Sun Y, Fu Y, Peng X. Baicalin ameliorates Mycoplasma gallisepticum-induced lung inflammation in chicken by inhibiting TLR6-mediated NF-κB signalling. Br Poult Sci 2020; 62:199-210. [PMID: 33252265 DOI: 10.1080/00071668.2020.1847251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. Mycoplasma gallisepticum (MG) causes severe lung inflammation and cell damage by activating toll-like receptor (TLR) signalling, the nuclear factor-kappaB (NF-κB) pathway and pro-inflammatory cytokine gene expression. Baicalin (BA) is a flavonoid extracted from Scutellaria baicalensis, which possesses anti-inflammatory and anti-bacterial properties. This study investigated the effect of BA in MG-induced lung inflammation and its potential mechanism in MG-infected chicken embryo lungs and DF-1 cells.2. The histopathological examination result showed that BA treatment alleviated MG-induced lung pathological changes. In addition, CCK-8 and cell cycle assays showed that BA treatment inhibited MG-induced cell proliferation and cell cycle progression in DF-1 cells.3. The ELISA and RT-qPCR results demonstrated that BA treatment decreased the expression of interleukin-1beta (IL-1β), IL-6, and tumour necrosis factor-alpha (TNF-α) both in MG-infected chicken embryo lungs and DF-1 cells.4. The results revealed that BA inhibited mRNA expression levels of toll-like receptor-6 (TLR6), myeloid differentiation primary response gene-88 (MyD88) and nuclear factor-κB (NF-κB), and the nuclear translocation of NF-κB-p655. In conclusion, the results showed that BA has a protective effect against MG-induced lung inflammation in chicken by inhibiting the TLR6-mediated NF-κB signalling.
Collapse
Affiliation(s)
- M Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - L Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - L Niu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Y Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Y Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Y Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - X Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Huang X, Zhang J, Liu Z, Wang M, Fan X, Wang L, Zhou H, Jiang Y, Cui W, Qiao X, Xu Y, Li Y, Tang L. Genome-wide analysis of differentially expressed mRNAs, lncRNAs, and circRNAs in chicken bursae of Fabricius during infection with very virulent infectious bursal disease virus. BMC Genomics 2020; 21:724. [PMID: 33076825 PMCID: PMC7574500 DOI: 10.1186/s12864-020-07129-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Infectious bursal disease virus (IBDV) causes acute, highly contagious, immunosuppressive, and lethal infectious disease in young chickens and mainly infects the bursa of Fabricius (BF). To investigate interactions between IBDV and its host, RNA sequencing was applied to analyze the responses of the differentially expressed transcriptional profiles of BF infected by very virulent IBDV (vvIBDV). Results In total, 317 upregulated and 94 downregulated mRNAs were found to be significantly differentially expressed in infected chickens, compared to controls. Long non-coding RNA (lncRNA) and circular RNA (circRNA) alterations were identified in IBDV-infected chickens, and significantly different expression was observed in 272 lncRNAs and 143 circRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to assess the functions of significantly dysregulated genes, which showed that the JAK-STAT signaling pathway, the NOD-like receptor signaling pathway, and apoptosis may be activated by IBDV infection. We predicted interactions between differentially expressed genes and produced lncRNA-mRNA and circRNA-miRNA-mRNA regulator network. Conclusions The present study identified the expression profiles of mRNAs, lncRNAs, and circRNAs during vvIBDV infection and provides new insights into the pathogenesis of IBDV and antiviral immunity of the host.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Junyan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Zengsu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Meng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China.
| |
Collapse
|
8
|
Wang J, Mou C, Wang M, Pan S, Chen Z. Transcriptome analysis of senecavirus A-infected cells: Type I interferon is a critical anti-viral factor. Microb Pathog 2020; 147:104432. [PMID: 32771656 DOI: 10.1016/j.micpath.2020.104432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Senecavirus A (SVA)-associated vesicular disease (SAVD) has extensively been present in the swine industry during the past years. The mechanisms of SVA-host interactions at the molecular level, subsequent to SVA infection, are unclear. We studied the gene expression profiles of LLC-PK1 cells, with or without SVA infection, for 6 h and 12 h using an RNA-seq technology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on differentially expressed genes (DEGs). Immune-related genes and pathways were significantly modified after SVA infection. To confirm the RNA-seq data, 28 important DEGs were selected for RT-qPCR assays. All DEGs exhibited expression patterns consistent with the RNA-seq results. Among them, type I IFNs (including IFN-α and IFN-β) showed the largest upregulation, followed by RSAD2, DDX58, MX1 and the 17 other DEGs. In contrary, ID2 and another 5 DEGs were down-regulated or unchanged. These results indicated that type I IFNs play a critical role in host immune responses against SVA infection at early stage, while other immune-regulated genes directly or indirectly participate in the host immune responses.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China.
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China.
| | - Minmin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China.
| | - Shuonan Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China.
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
9
|
Comprehensive Analysis of the Expression and Prognosis for GBPs in Head and neck squamous cell carcinoma. Sci Rep 2020; 10:6085. [PMID: 32269280 PMCID: PMC7142114 DOI: 10.1038/s41598-020-63246-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Guanylate binding proteins (GBPs) belongs to the interferons (IFNs) induced guanylate-binding protein family (Guanosine triphosphatases, GTPases) consisting of seven homologous members, termed GBP1 to GBP7. We used multidimensional survey ways to explore GBPs expression, regulation, mutations, immune infiltration and functional networks in head and neck squamous cell carcinoma (HNSCC) patient data based on various open databases. The study provides staggered evidence for the significance of GBPs in HNSCC and its potential role as a novel biomarker. Our results showed that over expressions of 7 GBPs members and multivariate analysis suggested that N-stage, high expressions of GBP1 and low expression of GBP6/7 were linked to shorter OS in HNSCC patients. In addition, B cells of immune infiltrates stimulant the prognosis and might have a medical prognostic significance linked to GBPs in HNSCC. We assume that GBPs play a synergistic role in the viral related HNSCC. Our results show that data mining efficiently reveals information about GBPs expression in HNSCC and more importance lays a foundation for further research on the role of GBPs in cancers.
Collapse
|
10
|
Lin J, Yi X, Zhuang Y. Coupling metabolomics analysis and DOE optimization strategy towards enhanced IBDV production by chicken embryo fibroblast DF-1 cells. J Biotechnol 2019; 307:114-124. [PMID: 31697974 DOI: 10.1016/j.jbiotec.2019.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 11/25/2022]
Abstract
Infectious bursal disease (IBD) caused by IBD virus (IBDV) is highly contagious viral and vaccination in chicken embryo has been an effective mean to prevent acute infection. However, the current production of IBDV vaccine faces serious batch instability and external contamination. The chicken embryonic fibroblast cell line DF-1 is widely used for the proliferation of avian viruses and vaccine production. Thus, optimizing the production of IBDV by DF-1 cells has an important application value. Combining metabolomics analysis and a Design of Experiments (DOE) statistical strategy, this study successfully optimized the process of IBDV production by DF-1 cells. Differential analysis and time series analysis of metabolite data in both IBDV-infected and uninfected DF-1 cells were performed by multivariate statistical analysis. The results showed that the intracellular metabolite intensities of glycolysis, the pentose phosphate pathway, the nucleoside synthesis pathway, lipid metabolism, and glutathione metabolism were upregulated, and the TCA cycle underwent a slight downregulation after IBDV infection of DF-1 cells. Based on the metabolome results and DOE statistical optimization method, the additive components suitable for IBDV proliferation were determined. The IBDV titer increased by 20.7 times upon exogenous addition of cysteine, methionine, lysine and nucleosides in the control medium, which is consistent with the predicted result (20.0 times) by a multivariate quadratic equation. This study provides a strategy for the efficient production of IBDV vaccines and could potentially be utilized to improve the production of other viral vaccines and biologics.
Collapse
Affiliation(s)
- Jia Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China.
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| |
Collapse
|
11
|
Huang XY, Sun WY, Yan ZQ, Shi HR, Yang QL, Wang PF, Li SG, Liu LX, Zhao SG, Gun SB. Novel Insights reveal Anti-microbial Gene Regulation of Piglet Intestine Immune in response to Clostridium perfringens Infection. Sci Rep 2019; 9:1963. [PMID: 30760749 PMCID: PMC6374412 DOI: 10.1038/s41598-018-37898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
LncRNA play important roles in regulation of host immune and inflammation responses in defending bacterial infection. Clostridium perfringens (C. perfringens) type C is one of primary bacteria leading to piglet diarrhea and other intestinal inflammatory diseases. For the differences of host immune capacity, individuals usually show resistance and susceptibility to bacterial infection. However, whether and how lncRNAs involved in modulating host immune resistance have not been reported. We have investigated the expression patterns of ileum lncRNAs of 7-day-old piglets infected by C. perfringens type C through RNA sequencing. A total of 16 lncRNAs and 126 mRNAs were significantly differentially expressed in resistance (IR) and susceptibility (IS) groups. Many lncRNAs and mRNAs were identified to regulate resistance and susceptibility of piglets through immune related pathways. Five lncRNAs may have potential function on regulating the expressions of cytokines, these lncRNAs and cytokines work together to co-regulated piglet immune response to C. perfringens, affecting host resistance and susceptibility. These results provide valuable information for understanding the functions of lncRNA and mRNA in affecting piglet diarrhea resistance of defensing to C. perfringens type C, these lncRNAs and mRNAs may be used as the important biomarkers for decreasing C. perfringens spread and diseases in human and piglets.
Collapse
Affiliation(s)
- Xiao Yu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen Yang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zun Qiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hai Ren Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiao Li Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Peng Fei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sheng Gui Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li Xia Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Sheng Guo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shuang Bao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Sid H, Schusser B. Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Front Genet 2018; 9:456. [PMID: 30356667 PMCID: PMC6189320 DOI: 10.3389/fgene.2018.00456] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023] Open
Abstract
The chicken represents a valuable model for research in the area of immunology, infectious diseases as well as developmental biology. Although it was the first livestock species to have its genome sequenced, there was no reverse genetic technology available to help understanding specific gene functions. Recently, homologous recombination was used to knockout the chicken immunoglobulin genes. Subsequent studies using immunoglobulin knockout birds helped to understand different aspects related to B cell development and antibody production. Furthermore, the latest advances in the field of genome editing including the CRISPR/Cas9 system allowed the introduction of site specific gene modifications in various animal species. Thus, it may provide a powerful tool for the generation of genetically modified chickens carrying resistance for certain pathogens. This was previously demonstrated by targeting the Trp38 region which was shown to be effective in the control of avian leukosis virus in chicken DF-1 cells. Herein we review the current and future prospects of gene editing and how it possibly contributes to the development of resistant chickens against infectious diseases.
Collapse
Affiliation(s)
| | - Benjamin Schusser
- Department of Animal Sciences, Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| |
Collapse
|
13
|
Dulwich KL, Asfor AS, Gray AG, Nair V, Broadbent AJ. An Ex Vivo Chicken Primary Bursal-cell Culture Model to Study Infectious Bursal Disease Virus Pathogenesis. J Vis Exp 2018. [PMID: 30346401 PMCID: PMC6235420 DOI: 10.3791/58489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a birnavirus of economic importance to the poultry industry. The virus infects B cells, causing morbidity, mortality, and immunosuppression in infected birds. In this study, we describe the isolation of chicken primary bursal cells from the bursa of Fabricius, the culture and infection of the cells with IBDV, and the quantification of viral replication. The addition of chicken CD40 ligand significantly increased cell proliferation fourfold over six days of culture and significantly enhanced cell viability. Two strains of IBDV, a cell-culture adapted strain, D78, and a very virulent strain, UK661, replicated well in the ex vivo cell cultures. This model will be of use in determining how cells respond to IBDV infection and will permit a reduction in the number of infected birds used in IBDV pathogenesis studies. The model can also be expanded to include other viruses and could be applied to different species of birds.
Collapse
|
14
|
Sabino M, Cappelli K, Capomaccio S, Pascucci L, Biasato I, Verini-Supplizi A, Valiani A, Trabalza-Marinucci M. Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genomics 2018; 19:576. [PMID: 30068314 PMCID: PMC6090849 DOI: 10.1186/s12864-018-4962-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components. Olive oil polyphenols are known to induce beneficial effects in several pathological conditions, such as inflammatory bowel disease, and to contrast the proliferation of cancer cells or hypercholesterolemia. Polyphenols are also present in waste products derived from the olive industry: olive mill wastewaters (OMWW) are rich in polyphenols and there is an increasing interest in using OMWW in animal nutrition. OMWW are attributed with positive effects in promoting chicken performance and the quality of food-derived products. However, a tissue-specific transcriptome target analysis of chickens fed with OMWW has never been attempted. RESULTS We explored the effect of dietary OMWW on the intestinal function in broilers. A morphological analysis of the jejunum revealed that OMWW reduced crypt depth, whereas no significant modifications were observed for villus height and the villus height/crypt depth ratio. An RNA Sequencing analysis was performed on isolated, intestinal, epithelial cells and 280 differentially expressed genes were found using a count-based approach. An enrichment analysis revealed that the majority of up regulated genes in the OMWW group were over-represented by the regulation of viral genome replication-related GO-Terms, whereas down regulated genes were mainly involved in cholesterol and lipid metabolism. CONCLUSIONS Our study showed how an industrial waste product can be recycled as a feed additive with a positive relapse. OMWW dietary supplementation can be a nutritional strategy to improve chicken performance and health, prevent intestinal damage, enhance innate immunity and regulate cholesterol metabolism and fat deposition.
Collapse
Affiliation(s)
- Marcella Sabino
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Ilaria Biasato
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Andrea Verini-Supplizi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via Gaetano Salvemini 1, 06126 Perugia, Italy
| | | |
Collapse
|
15
|
Chicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses. Sci Rep 2018; 8:6794. [PMID: 29717152 PMCID: PMC5931624 DOI: 10.1038/s41598-018-24905-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
The intracellular actions of interferon (IFN)-regulated proteins, including IFN-induced proteins with tetratricopeptide repeats (IFITs), attribute a major component of the protective antiviral host defense. Here we applied genomics approaches to annotate the chicken IFIT locus and currently identified a single IFIT (chIFIT5) gene. The profound transcriptional level of this effector of innate immunity was mapped within its unique cis-acting elements. This highly virus- and IFN-responsive chIFIT5 protein interacted with negative sense viral RNA structures that carried a triphosphate group on its 5' terminus (ppp-RNA). This interaction reduced the replication of RNA viruses in lentivirus-mediated IFIT5-stable chicken fibroblasts whereas CRISPR/Cas9-edited chIFIT5 gene knockout fibroblasts supported the replication of RNA viruses. Finally, we generated mosaic transgenic chicken embryos stably expressing chIFIT5 protein or knocked-down for endogenous chIFIT5 gene. Replication kinetics of RNA viruses in these transgenic chicken embryos demonstrated the antiviral potential of chIFIT5 in ovo. Taken together, these findings propose that IFIT5 specifically antagonize RNA viruses by sequestering viral nucleic acids in chickens, which are unique in innate immune sensing and responses to viruses of both poultry and human health significance.
Collapse
|
16
|
Bavananthasivam J, Kulkarni RR, Read L, Sharif S. Reduction of Marek's Disease Virus Infection by Toll-Like Receptor Ligands in Chicken Embryo Fibroblast Cells. Viral Immunol 2018; 31:389-396. [PMID: 29570417 DOI: 10.1089/vim.2017.0195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolutionarily conserved pattern recognition receptors, including Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) that are present in microbes. PAMPs induce several pathways downstream of TLRs that lead to induction of antiviral responses. The objective of this study was to investigate the stimulatory effect of various PAMPs (in the form of TLR ligands) in reducing Marek's disease virus (MDV) infection in chicken embryo fibroblast cells (CEFs). To this end, CEFs were pretreated with Pam3CSK4, Poly(IC), lipopolysaccharide (LPS), and CpG ODN as TLR2, TLR3, TLR4, and TLR21 ligands, respectively for 24 h followed by infection with MDV. The results indicated that pretreatment with Poly(IC) resulted in a robust reduction (by about 81%) of MDV infection in CEFs at 96 h postinfection while a moderate reduction was observed with treatment of Pam3CSK4 (35%), LPS (26%), and CpG ODN (23%) PAMPs. Transcriptional analysis of gene expression in CEFs demonstrated that all TLR ligand treatments and MDV infection significantly increased the expression of type I interferons, interleukin (IL)-1β, interferon regulatory factor 7 (IRF7), interferon induced protein with tetratricopeptide repeats 5 (IFIT5), and myxoma-resistance protein (Mx). Further studies are needed to explore the mechanism by which PAMPs, particularly the TLR3 ligands could reduce MDV infection in CEFs, which may play an important role in controlling the replication of MDV in chicken.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph , Guelph, Ontario, Canada
| | - Raveendra R Kulkarni
- Department of Pathobiology, Ontario Veterinary College, University of Guelph , Guelph, Ontario, Canada
| | - Leah Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph , Guelph, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph , Guelph, Ontario, Canada
| |
Collapse
|
17
|
Dulwich KL, Giotis ES, Gray A, Nair V, Skinner MA, Broadbent AJ. Differential gene expression in chicken primary B cells infected ex vivo with attenuated and very virulent strains of infectious bursal disease virus (IBDV). J Gen Virol 2017; 98:2918-2930. [PMID: 29154745 DOI: 10.1099/jgv.0.000979] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae and is economically important to the poultry industry worldwide. IBDV infects B cells in the bursa of Fabricius (BF), causing immunosuppression and morbidity in young chickens. In addition to strains that cause classical Gumboro disease, the so-called 'very virulent' (vv) strain, also in circulation, causes more severe disease and increased mortality. IBDV has traditionally been controlled through the use of live attenuated vaccines, with attenuation resulting from serial passage in non-lymphoid cells. However, the factors that contribute to the vv or attenuated phenotypes are poorly understood. In order to address this, we aimed to investigate host cell-IBDV interactions using a recently described chicken primary B-cell model, where chicken B cells are harvested from the BF and cultured ex vivo in the presence of chicken CD40L. We demonstrated that these cells could support the replication of IBDV when infected ex vivo in the laboratory. Furthermore, we evaluated the gene expression profiles of B cells infected with an attenuated strain (D78) and a very virulent strain (UK661) by microarray. We found that key genes involved in B-cell activation and signalling (TNFSF13B, CD72 and GRAP) were down-regulated following infection relative to mock, which we speculate could contribute to IBDV-mediated immunosuppression. Moreover, cells responded to infection by expressing antiviral type I IFNs and IFN-stimulated genes, but the induction was far less pronounced upon infection with UK661, which we speculate could contribute to its virulence.
Collapse
Affiliation(s)
- Katherine L Dulwich
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Efstathios S Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Alice Gray
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | | | - Michael A Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
18
|
Niu X, Wang Y, Li M, Zhang X, Wu Y. Transcriptome analysis of avian reovirus-mediated changes in gene expression of normal chicken fibroblast DF-1 cells. BMC Genomics 2017; 18:911. [PMID: 29178824 PMCID: PMC5702118 DOI: 10.1186/s12864-017-4310-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/15/2017] [Indexed: 01/22/2023] Open
Abstract
Background Avian reovirus (ARV) is an important poultry pathogen that can cause immunosuppression. In this study, RNA-Seq technology was applied to investigate the transcriptome-wide changes of DF-1 cells upon ARV infection at the middle stage. Results Total RNA of ARV-infected or mock-infected samples at 10 and 18 h post infection (hpi) was extracted to build RNA-Seq datasets. Analysis of the sequencing data revealed that the expressions of numerous genes were altered, and a panel of differentially expressed genes were confirmed with RT-qPCR. At 10 hpi, 104 genes were down-regulated and 64 were up-regulated, while the expressions of 47 genes were increased and only one was down-regulated, which may play a role in retinoic acid biosynthesis, at 18 hpi in the ARV-infected cells. The similar profiles of up-regulated genes between the two groups of infected cells suggest that ARV infection activated a prolonged antiviral response of host cells. Alternative splicing analysis found no significantly changed events altered by ARV infection. Conclusions Overall, the differential expression profile presented in this study can be used to expand our understanding of the comprehensive interactions between ARV and the host cells, and may be helpful for us to reveal the pathogenic mechanism on the molecular level. Electronic supplementary material The online version of this article (10.1186/s12864-017-4310-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaosai Niu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yuyang Wang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Min Li
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention of Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
19
|
Bassano I, Ong SH, Lawless N, Whitehead T, Fife M, Kellam P. Accurate characterization of the IFITM locus using MiSeq and PacBio sequencing shows genetic variation in Galliformes. BMC Genomics 2017; 18:419. [PMID: 28558694 PMCID: PMC5450142 DOI: 10.1186/s12864-017-3801-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/16/2017] [Indexed: 01/16/2023] Open
Abstract
Background Interferon inducible transmembrane (IFITM) proteins are effectors of the immune system widely characterized for their role in restricting infection by diverse enveloped and non-enveloped viruses. The chicken IFITM (chIFITM) genes are clustered on chromosome 5 and to date four genes have been annotated, namely chIFITM1, chIFITM3, chIFITM5 and chIFITM10. However, due to poor assembly of this locus in the Gallus Gallus v4 genome, accurate characterization has so far proven problematic. Recently, a new chicken reference genome assembly Gallus Gallus v5 was generated using Sanger, 454, Illumina and PacBio sequencing technologies identifying considerable differences in the chIFITM locus over the previous genome releases. Methods We re-sequenced the locus using both Illumina MiSeq and PacBio RS II sequencing technologies and we mapped RNA-seq data from the European Nucleotide Archive (ENA) to this finalized chIFITM locus. Using SureSelect probes capture probes designed to the finalized chIFITM locus, we sequenced the locus of a different chicken breed, namely a White Leghorn, and a turkey. Results We confirmed the Gallus Gallus v5 consensus except for two insertions of 5 and 1 base pair within the chIFITM3 and B4GALNT4 genes, respectively, and a single base pair deletion within the B4GALNT4 gene. The pull down revealed a single amino acid substitution of A63V in the CIL domain of IFITM2 compared to Red Jungle fowl and 13, 13 and 11 differences between IFITM1, 2 and 3 of chickens and turkeys, respectively. RNA-seq shows chIFITM2 and chIFITM3 expression in numerous tissue types of different chicken breeds and avian cell lines, while the expression of the putative chIFITM1 is limited to the testis, caecum and ileum tissues. Conclusions Locus resequencing using these capture probes and RNA-seq based expression analysis will allow the further characterization of genetic diversity within Galliformes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3801-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Bassano
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Division of Infectious Diseases, Department of Medicine, Imperial College Faculty of Medicine, Wright Fleming Wing, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Swee Hoe Ong
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nathan Lawless
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, GU24 0NF, UK
| | - Thomas Whitehead
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, GU24 0NF, UK
| | - Mark Fife
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, GU24 0NF, UK
| | - Paul Kellam
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Division of Infectious Diseases, Department of Medicine, Imperial College Faculty of Medicine, Wright Fleming Wing, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
20
|
Ou C, Wang Q, Zhang Y, Kong W, Zhang S, Yu Y, Ma J, Liu X, Kong X. Transcription profiles of the responses of chicken bursae of Fabricius to IBDV in different timing phases. Virol J 2017; 14:93. [PMID: 28486945 PMCID: PMC5424287 DOI: 10.1186/s12985-017-0757-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Background Infectious bursal disease virus (IBDV) infection causes immunosuppression in chickens and increases their susceptibility to secondary infections. To explore the interaction between host and IBDV, RNA-Seq was applied to analyse the transcriptional profiles of the responses of chickens’ bursas of Fabricius in the early stage of IBDV infection. Results The results displayed that a total of 15546 genes were identified in the chicken bursa libraries. Among the annotated genes, there were 2006 and 4668 differentially expressed genes in the infection group compared with the mock group on day 1 and day 3 post inoculation (1 and 3 dpi), respectively. Moreover, there were 676 common up-regulated and 83 common down-regulated genes in the bursae taken from the chickens infected with IBDV on both 1 and 3 dpi. Meanwhile, there were also some characteristic differentially expressed genes on 1 and 3 dpi. On day 1 after inoculation with IBDV, host responses mainly displayed immune response processes, while metabolic pathways played an important role on day three post infection. Six genes were confirmed by quantitative reverse transcription-PCR. Conclusions In conclusion, the differential gene expression profile demonstrated with RNA-Seq might offer a better understanding of the molecular interactions between host and IBDV during the early stage of infection. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0757-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changbo Ou
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.,College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Qiuxia Wang
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.,College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Weili Kong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shouping Zhang
- College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Yan Yu
- College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Xingyou Liu
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China. .,College of Animal Science and veterinary medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
| | - Xianghui Kong
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
21
|
Quan R, Zhu S, Wei L, Wang J, Yan X, Li Z, Liu J. Transcriptional profiles in bursal B-lymphoid DT40 cells infected with very virulent infectious bursal disease virus. Virol J 2017; 14:7. [PMID: 28086922 PMCID: PMC5237357 DOI: 10.1186/s12985-016-0668-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Background Infectious bursal disease virus (IBDV) causes a highly contagious, immunosuppressive disease in chickens. The virus mainly infects immature B lymphocytes in the bursa of Fabricius (BF). Chicken B cell line DT40, an avian leukosis virus-induced B cell line, supports very virulent IBDV (vvIBDV) infection in vitro and thereby serves as a good model for investigating the infection and pathogenesis of this virus. However, a transcriptome-wide understanding of the interaction between vvIBDV and B cells has not yet been achieved. This study aimed to employ time-course DNA microarrays to investigate gene expression patterns in DT40 cells after infection with vvIBDV strain LX. Results DT40 cells infected with vvIBDV exhibited alterations in the expression of many important host genes involved in signal transduction pathways, including MAPK signaling, PI3K/mTOR signaling, cell death and survival, BCR signaling, and antigen presentation. The changes in cellular mRNA levels identified by microarray analysis were confirmed for 8 selected genes using real-time reverse transcription-PCR. The upregulation of inflammatory cytokines and Toll-like receptors (TLRs) in the bursa of vvIBDV-infected chickens might involve excessive activation of the innate immune and inflammatory responses and contribute to tissue damage. Conclusions The present study is the first to provide a comprehensive differential transcriptional profile of cultured DT40 cells in response to vvIBDV infection and further extends our understanding of the molecular mechanisms underlying vvIBDV infection and pathogenesis.
Collapse
Affiliation(s)
- Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Xu Yan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, 100097, People's Republic of China.
| |
Collapse
|
22
|
Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens. Int J Mol Sci 2016; 17:ijms17121990. [PMID: 27916934 PMCID: PMC5187790 DOI: 10.3390/ijms17121990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 01/10/2023] Open
Abstract
Goose parvovirus (GPV) and avian influenza virus subtype H9N2 are single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA) viruses, respectively, both of which can spread in goslings and cause a significant economic loss. To explore the comprehensive transcriptome of GPV- or H9N2-infected goose spleens and to understand the immune responses induced by a DNA virus (GPV) or a RNA virus (H9N2), RNA-seq was performed on the spleens of goslings at the fifth day post infection. In the present study, 2604 and 2409 differentially expressed unigenes were identified in the GPV- and H9N2-infected groups, respectively. Through KEGG pathway enrichment analyses, the up-regulated transcripts in the two virus-infected groups were mainly involved in immune-related pathways. In addition, the two virus-infected groups displayed similar expression patterns in the immune response pathways, including pattern-recognition receptor signaling pathways, the antigen processing and presentation pathway, the NF-κB signaling pathway and the JAK-STAT signaling pathway, as well as cytokines. Furthermore, most of the immune-related genes, particularly TLR7, TRAF3, Mx, TRIM25, CD4, and CD8α, increased in response to GPV and H9N2 infection. However, the depression of NF-κB signaling may be a mechanism by which the viruses evade the host immune system or a strategy to achieve immune homeostasis.
Collapse
|
23
|
Lin J, Xia J, Zhang K, Yang Q. Genome-wide profiling of chicken dendritic cell response to infectious bursal disease. BMC Genomics 2016; 17:878. [PMID: 27816055 PMCID: PMC5097849 DOI: 10.1186/s12864-016-3157-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Avian infectious bursal disease virus (IBDV) is a highly contagious, immunosuppressive disease of young chickens, which causes high mortality rates and large economic losses in the poultry industry. Dendritic cells (DCs), which are antigen-presenting cells, have the unique ability to induce both innate and acquired immune responses and may significantly influence virus pathogenicity. To understand the interaction between IBDV and DCs, a microarray was used to analyse the response of DCs infected by IBDV. RESULTS IBDV infection induced 479 upregulated and 466 downregulated mRNAs in chicken DCs. Analysis of Gene Ontology suggested that transcription from the RNA polymerase II promoter and the RNA biosynthetic process were enriched, and pathway analyses suggested that oxidative phosphorylation, as well as the T cell receptor and Interleukin-17 (IL-17) signalling pathways might be activated by IBDV infection. Moreover, microRNA (miRNA) and long non-coding RNA (lncRNA) alterations in IBDV-infected chicken DCs were observed. A total of 18 significantly upregulated or downregulated miRNAs and 441 significantly upregulated or downregulated lncRNAs were identified in IBDV-stimulated DCs. We constructed 42 transcription factor (TF)-miRNA-mRNA interactions involving 1 TF, 3 miRNAs, and 42 mRNAs in IBDV-stimulated DCs. Finally, we predicted the target genes of differentially expressed lncRNAs, and constructed lncRNA-mRNA regulatory networks. CONCLUSIONS The results of this study suggest a mechanism to explain how IBDV infection triggers an effective immune response in chicken DCs.
Collapse
Affiliation(s)
- Jian Lin
- College of Life Science, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Jing Xia
- College of Life Science, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Keyun Zhang
- College of Life Science, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| | - Qian Yang
- College of Life Science, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095 People’s Republic of China
| |
Collapse
|
24
|
Zhang WX, Zuo EW, He Y, Chen DY, Long X, Chen MJ, Li TT, Yang XG, Xu HY, Lu SS, Zhang M, Lu KH, Lu YQ. Promoter structures and differential responses to viral and non-viral inducers of chicken melanoma differentiation-associated gene 5. Mol Immunol 2016; 76:1-6. [PMID: 27327127 PMCID: PMC7127162 DOI: 10.1016/j.molimm.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/28/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023]
Abstract
A 2.5 kb chicken MDA5 promoter fragment was cloned and characterized (Accession number KT335979). The activity of the promoter is extremely low under basal conditions. Viral (IBDV) and non-viral (IFN-β or poly (I:C) inducers could activate the promoter. Gene expression driven by exogenous MDA5 promoter is in accordance with endogenous MDA5.
Melanoma differentiation-associated gene 5 (MDA5) is a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) family and plays a pivotal role in the anti-viral innate immune response. As RIG-I is absent in chickens, MDA5 is hypothesized to be important in detecting viral nucleic acids in the cytoplasm. However, the molecular mechanism of the regulation of chicken MDA5 (chMDA5) expression has yet to be fully elucidated. With this in mind, a ∼2.5 kb chMDA5 gene promoter region was examined and PCR amplified to assess its role in immune response. A chMDA5 promoter reporter plasmid (piggybac-MDA5-DsRed) was constructed and transfected into DF-1 cells to establish a Piggybac-MDA5-DsRed cell line. The MDA5 promoter activity was extremely low under basal condition, but was dramatically increased when cells were stimulated with polyinosinic: polycytidylic acid (poly I:C), interferon beta (IFN-β) or Infectious Bursal Disease Virus (IBDV). The DsRed mRNA level represented the promoter activity and was remarkably increased, which matched the expression of endogenous MDA5. However, Infectious Bronchitis Virus (IBV) and Newcastle disease virus (NDV) failed to increase the MDA5 promoter activity and the expression of endogenous MDA5. The results indicated that the promoter and the Piggybac-MDA5-DsRed cell line could be utilized to determine whether a ligand regulates MDA5 expression. For the first time, this study provides a tool for testing chMDA5 expression and regulation.
Collapse
Affiliation(s)
- Wen-Xin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Er-Wei Zuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Ying He
- Guangxi Key Laboratory of Animal Vaccines and New Technology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Dong-Yang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Xie Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Mei-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Ting-Ting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Hui-Yan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
- Corresponding authors.
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
- Corresponding authors.
| |
Collapse
|
25
|
Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds. PLoS One 2016; 11:e0153649. [PMID: 27078641 PMCID: PMC4841636 DOI: 10.1371/journal.pone.0153649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV.
Collapse
|