1
|
Kawara RS, Moawed FS, Elsenosi Y, Elmaksoud HA, Ahmed ESA, Abo-Zaid OA. Melissa officinalis extract palliates redox imbalance and inflammation associated with hyperthyroidism-induced liver damage by regulating Nrf-2/ Keap-1 gene expression in γ-irradiated rats. BMC Complement Med Ther 2024; 24:71. [PMID: 38303002 PMCID: PMC10832092 DOI: 10.1186/s12906-024-04370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Melissa officinalis (MO) is a well-known medicinal plant species used in the treatment of several diseases; it is widely used as a vegetable, adding flavour to dishes. This study was designed to evaluate the therapeutic effect of MO Extract against hyperthyroidism induced by Eltroxin and γ-radiation. METHODS Hyperthyroidism was induced by injecting rats with Eltroxin (100 µg/kg/ day) for 14 days and exposure to γ-radiation (IR) (5 Gy single dose). The hyperthyroid rats were orally treated with MO extract (75 mg/kg/day) at the beginning of the second week of the Eltroxin injection and continued for another week. The levels of thyroid hormones, liver enzymes and proteins besides the impaired hepatic redox status and antioxidant parameters were measured using commercial kits. The hepatic gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α), Monocyte chemoattractant protein-1 (MCP-1) and fibrogenic markers such as transforming growth factor-beta1 (TGF-β1) were determined. RESULTS MO Extract reversed the effect of Eltroxin + IR on rats and attenuated the thyroid hormones. Moreover, it alleviated hyperthyroidism-induced hepatic damage by inhibiting the hepatic enzymes' activities as well as enhancing the production of proteins concomitant with improving cellular redox homeostasis by attenuating the deranged redox balance and modulating the Nrf2/Keap-1 pathway. Additionally, MO Extract alleviated the inflammatory response by suppressing the TNF- α and MCP-1 and prevented hepatic fibrosis via Nrf2-mediated inhibition of the TGF-β1/Smad pathway. CONCLUSION Accordingly, these results might strengthen the hepatoprotective effect of MO Extract in a rat model of hyperthyroidism by regulating the Nrf-2/ Keap-1 pathway.
Collapse
Affiliation(s)
- Ragaa Sm Kawara
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Fatma Sm Moawed
- Health radiation research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, 11787, Cairo, Egypt
| | - Yakout Elsenosi
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Hussein Abd Elmaksoud
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, 11787, Cairo, Egypt.
| | - Omayma Ar Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Banha, Egypt
| |
Collapse
|
2
|
Motallebzadeh E, Aghighi F, Vakili Z, Talaei SA, Mohseni M. Neuroprotective effects of alpha-lipoic acid on radiation-induced brainstem injury in rats. Res Pharm Sci 2023; 18:202-209. [PMID: 36873276 PMCID: PMC9976052 DOI: 10.4103/1735-5362.367798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 09/11/2022] [Indexed: 01/20/2023] Open
Abstract
Background and purpose Alpha-lipoic acid (ALA) is an antioxidant with radioprotective properties. We designed the current work to assess the neuroprotective function of ALA in the presence of oxidative stress induced by radiation in the brainstem of rats. Experimental approach Whole-brain radiations (X-rays) was given at a single dose of 25 Gy with or without pretreatment with ALA (200 mg/kg BW). Eighty rats were categorized into four groups: vehicle control (VC), ALA, radiation-only (RAD), and radiation + ALA (RAL). The rats were given ALA intraperitoneally 1 h before radiation and killed following 6 h, thereafter superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and total antioxidant capacity (TAC) in the brainstem were measured. Furthermore, a pathological examination was carried out after 24 h, 72 h, and five days to determine tissue damage. Findings/Results The findings indicated that MDA levels in the brainstem were 46.29 ± 1.64 μM in the RAD group and decreased in the VC group (31.66 ± 1.72 μM). ALA pretreatment reduced MDA levels while simultaneously increasing SOD and CAT activity and TAC levels (60.26 ± 5.47 U/mL, 71.73 ± 2.88 U/mL, and 227.31 ± 9.40 mol/L, respectively). The greatest pathological changes in the rat's brainstems were seen in RAD animals compared to the VC group after 24 h, 72 h, and 5 days. As a result, karyorrhexis, pyknosis, vacuolization, and Rosenthal fibers vanished in the RAL group in three periods. Conclusion and implications ALA exhibited substantial neuroprotectivity following radiation-induced brainstem damage.
Collapse
Affiliation(s)
- Elham Motallebzadeh
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zarichehr Vakili
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mehran Mohseni
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
3
|
Protective Potentials of Alpha-Lipoic Acid against Ionizing Radiation-Induced Brain Damage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4999306. [PMID: 36778212 PMCID: PMC9918365 DOI: 10.1155/2023/4999306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Background This study was aimed at determining the effects of alpha-lipoic acid on ionizing irradiation-induced oxidative damage and apoptosis in the brain of rats. Methods The animals were exposed to whole-brain X-radiation with a 15 Gy single dose in the absence or presence of alpha-lipoic acid (200 mg/kg body weight) pretreatment for one week. The rats were divided into four groups (5 rats in each group): vehicle control, alpha-lipoic acid alone (ALA), radiation alone (RAD), and radiation plus alpha-lipoic acid (RAD+ALA). In the next stage, malondialdehyde (MDA), nitric oxide, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the brain tissue of the rats were measured. Furthermore, the Western blot analysis technique was performed to assess the NOX2, NOX4, and caspase-3 protein expression levels. Results Twenty-four hours after the irradiation, MDA and nitric oxide levels in the irradiated rats were significantly higher than those in the control group (p < 0.001); however, the pretreatment with alpha-lipoic acid resulted in a significant reduction in these stress oxidative markers (p < 0.05). Moreover, a significant decrease in CAT, SOD, and GPx levels was observed in the radiation group alone compared to the control group (p < 0.01); in contrast, the activities of these antioxidant enzymes significantly increased in the radiation plus alpha-lipoic acid group in comparison to the radiation group alone (p < 0.05). The results of Western blot analysis revealed that NOX2, NOX4, and caspase-3 protein expressions significantly elevated in the irradiated rats compared to the control group (p < 0.001). The pretreatment with alpha-lipoic acid could significantly decrease the expression levels of NOX2, NOX4, and caspase-3 in comparison with the radiation group alone (p < 0.05). Conclusion According to the obtained findings, it can be mentioned that the alpha-lipoic acid pretreatment could mitigate the ionizing irradiation-induced oxidative damage and apoptosis in the brain of the rats.
Collapse
|
4
|
Abedpour N, Zeinali A, Karimipour M, Pourheidar B, Farjah GH, Abak A, Shoorei H. Protective effects of chlorogenic acid against ionizing radiation-induced testicular toxicity. Heliyon 2022; 8:e10798. [PMID: 36212000 PMCID: PMC9539785 DOI: 10.1016/j.heliyon.2022.e10798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Testicular tissues could damage by ionizing radiation (IR) during the treatment of pelvic cancers. The aim of this study was to investigate both the protective and therapeutic effects of chlorogenic acid (CGA) on IR-induced mouse testis tissue damage. Methods In this experimental study, 70 mice were divided into 3 groups, including group 1 (normal saline), group 2 (IR + normal saline), and group 3 (IR + 5, 10, 20, 40, and 80 mg/kg) CGA via I.P injection. Animals in groups 2 and 3 received a dose of 2.0 Gy total-body irradiation in a single fraction. At two determined time points (16 h and 35 days after exposure), the testis and caudal part of both epididymis were isolated and underwent subsequent analyses. Results The results showed that irradiation of mice caused massive damage to spermatogenesis, seminiferous tubules, basal lamina, Leydig cells, and sperm parameters. Further biochemical assessment of the data demonstrated that 40 mg/kg CGA almost restored MDA to a normal level. In addition, the level of SOD, TAC, and GSH were significantly increased in the 40 mg/kg CGA treated group. Molecular evidence confirmed the protective effects of CGA and also revealed that the ratio of Bax/Bcl-2 in the presence of 40 mg/kg CGA was significantly decreased compared to IR and some treated groups. Conclusion The protective and therapeutic effects of CGA on testis were found to be positively correlated with the dose level.
Collapse
Affiliation(s)
- Neda Abedpour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
- Corresponding author.
| | - Ahad Zeinali
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | - Bagher Pourheidar
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | - Gholam Hossein Farjah
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Corresponding author.
| |
Collapse
|
5
|
Liu Z, Dong L, Zheng Z, Liu S, Gong S, Meng L, Xin Y, Jiang X. Mechanism, Prevention, and Treatment of Radiation-Induced Salivary Gland Injury Related to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10111666. [PMID: 34829539 PMCID: PMC8614677 DOI: 10.3390/antiox10111666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy is a common treatment for head and neck cancers. However, because of the presence of nerve structures (brain stem, spinal cord, and brachial plexus), salivary glands (SGs), mucous membranes, and swallowing muscles in the head and neck regions, radiotherapy inevitably causes damage to these normal tissues. Among them, SG injury is a serious adverse event, and its clinical manifestations include changes in taste, difficulty chewing and swallowing, oral infections, and dental caries. These clinical symptoms seriously reduce a patient’s quality of life. Therefore, it is important to clarify the mechanism of SG injury caused by radiotherapy. Although the mechanism of radiation-induced SG injury has not yet been determined, recent studies have shown that the mechanisms of calcium signaling, microvascular injury, cellular senescence, and apoptosis are closely related to oxidative stress. In this article, we review the mechanism by which radiotherapy causes oxidative stress and damages the SGs. In addition, we discuss effective methods to prevent and treat radiation-induced SG damage.
Collapse
Affiliation(s)
- Zijing Liu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shiyu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shouliang Gong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China;
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-158-0430-2750
| |
Collapse
|
6
|
Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life (Basel) 2021; 11:life11080829. [PMID: 34440577 PMCID: PMC8398261 DOI: 10.3390/life11080829] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Space radiation is one of the principal environmental factors limiting the human tolerance for space travel, and therefore a primary risk in need of mitigation strategies to enable crewed exploration of the solar system. METHODS We summarize the current state of knowledge regarding potential means to reduce the biological effects of space radiation. New countermeasure strategies for exploration-class missions are proposed, based on recent advances in nutrition, pharmacologic, and immune science. RESULTS Radiation protection can be categorized into (1) exposure-limiting: shielding and mission duration; (2) countermeasures: radioprotectors, radiomodulators, radiomitigators, and immune-modulation, and; (3) treatment and supportive care for the effects of radiation. Vehicle and mission design can augment the overall exposure. Testing in terrestrial laboratories and earth-based exposure facilities, as well as on the International Space Station (ISS), has demonstrated that dietary and pharmacologic countermeasures can be safe and effective. Immune system modulators are less robustly tested but show promise. Therapies for radiation prodromal syndrome may include pharmacologic agents; and autologous marrow for acute radiation syndrome (ARS). CONCLUSIONS Current radiation protection technology is not yet optimized, but nevertheless offers substantial protection to crews based on Lunar or Mars design reference missions. With additional research and human testing, the space radiation risk can be further mitigated to allow for long-duration exploration of the solar system.
Collapse
Affiliation(s)
| | - Radina Khalid
- School of Engineering, Rice University, Houston, TX 77005, USA;
| | - Octav Cristea
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Jennifer A. Lemon
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Douglas R. Boreham
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Dmitri Popov
- Advanced Medical Technologies and Systems Inc., Richmond Hill, ON L4B 1N1, Canada;
| | | | - Nandita Ramkumar
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeffrey A. Jones
- Center for Space Medicine, Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
7
|
Gezer A, Karadag-Sari E. The role of amifostine in preventing radiotherapy induced testicular tissue damage in rats. Biotech Histochem 2021; 97:215-221. [PMID: 34058938 DOI: 10.1080/10520295.2021.1933178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The germinal epithelium of the adult testis is susceptible to radiation induced damage. Amifostine is a drug used to prevent the side effects of radiotherapy (RT) and chemotherapy. We investigated the protective role of amifostine against RT induced damage to rat testis using the TUNEL assay. We used adult male rats divided equally into four groups: untreated control group; amifostine group, 200 mg/kg amifostine/day for 3 days; RT-saline group, 2 Gy/day local irradiation of testes for 3 days; RT-amifostine group, 2 Gy/day local irradiation of testes for 3 days plus 200 mg/kg amifostine 30 min before each irradiation. Four weeks after treatment, rats were sacrificed for histological examination and apoptosis was assessed using the TUNEL method. The TUNEL staining density was obtained by evaluating separate seminiferous tubules selected randomly from each section using the stereological fractionator method. Apoptosis in the seminiferous tubules in the control group and amifostine groups were evaluated as spontaneous. Frequent apoptosis was observed in the RT-saline group; a statistically significant difference was observed between the RT treated and untreated groups. Administration of amifostine 30 min before RT protected the testicular germ cells against apoptosis.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Ebru Karadag-Sari
- Histology Department, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
8
|
Azmoonfar R, Amini P, Yahyapour R, Rezaeyan A, Tavassoli A, Motevaseli E, Khodamoradi E, Shabeeb D, Musa AE, Najafi M. Mitigation of Radiation-induced Pneumonitis and Lung Fibrosis using Alpha-lipoic Acid and Resveratrol. Antiinflamm Antiallergy Agents Med Chem 2021; 19:149-157. [PMID: 30892165 PMCID: PMC7509749 DOI: 10.2174/1871523018666190319144020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Lung is a radiosensitive organ. Studies have shown that exposure of the lung to acute and high doses of radiation following inhalation of radioactive agents or an accidental radiological event may lead to pneumonitis and fibrosis, which are associated with a risk of death. So far, some agents have been studied for mitigation of pneumonitis and fibrosis following exposure of murine lung tissues to ionizing radiation. In this study, we aimed to detect the possible mitigatory effect of alpha-lipoic acid, resveratrol and their combination on mice pneumonitis and fibrosis markers following irradiation. METHODS 25 mice were divided into 5 groups: control, radiation; radiation plus alpha-lipoic acid; radiation plus resveratrol; and radiation plus both resveratrol and alpha-lipoic acid. Mice chest regions were irradiated with 18 Gy using a cobalt-60 gamma rays source. Treatments started 24 h after irradiation and continued for two weeks. After 100 days, all mice were sacrificed and their lung tissues removed for histopathological evaluation. RESULTS Pathological study showed that exposure to radiation led to severe pneumonitis and moderate fibrosis after 100 days. Both resveratrol and alpha-lipoic acid, as well as their combination could mitigate pneumonitis and fibrosis markers. Although, resveratrol could not mitigate infiltration of most inflammatory cells as well as inflammation and vascular damage, alpha-lipoic acid and its combination were able to mitigate most damaged markers. CONCLUSION Alpha-lipoic acid and its combination with resveratrol were able to mitigate fibrosis and pneumonitis markers in mice lung tissues following lung irradiation. Although resveratrol has a protective effect on some markers, it has a weaker effect on lung injury. In conclusion, our results suggest that the combination of resveratrol and alpha-lipoic acid has a potent mitigatory effect compared to the single forms of these agents.
Collapse
Affiliation(s)
- Rasoul Azmoonfar
- Department of Radiology and Nuclear Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yahyapour
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Abolhassan Rezaeyan
- Department of Medical Physics, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Tavassoli
- Department of Pathology, Fasa University of Medical Sciences, Fasa, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Khodamoradi
- Department of Radiology and Nuclear Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq.,Department of Neuro-Physiology, Al-Sadder Teaching Hospital, Ministry of Health and Environment, Misan, Iraq
| | - Ahmed E Musa
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Alpha-lipoic acid protects against pressure overload-induced heart failure via ALDH2-dependent Nrf1-FUNDC1 signaling. Cell Death Dis 2020; 11:599. [PMID: 32732978 PMCID: PMC7393127 DOI: 10.1038/s41419-020-02805-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Alpha-lipoic acid (α-LA), a well-known antioxidant, was proved to active ALDH2 in nitrate tolerance and diabetic animal model. However, the therapeutic advantage of α-LA for heart failure and related signaling pathway have not been explored. This study was designed to examine the role of α-LA–ALDH2 in heart failure injury and mitochondrial damage. ALDH2 knockout (ALDH2−/−) mice and primary neonatal rat cardiomyocytes (NRCMs) were subjected to assessment of myocardial function and mitochondrial autophagy. Our data demonstrated α-LA significantly reduced the degree of TAC-induced LV hypertrophy and dysfunction in wild-type mice, not in ALDH2−/− mice. In molecular level, α-LA significantly restored ALDH2 activity and expression as well as increased the expression of a novel mitophagy receptor protein FUNDC1 in wild-type TAC mice. Besides, we confirmed that ALDH2 which was activated by α-LA governed the activation of Nrf1–FUNDC1 cascade. Our data suggest that α-LA played a positive role in protecting the heart against adverse effects of chronic pressure overload.
Collapse
|
10
|
Said RS, Mohamed HA, Kassem DH. Alpha-lipoic acid effectively attenuates ionizing radiation-mediated testicular dysfunction in rats: Crosstalk of NF-ĸB, TGF-β, and PPAR-ϒ pathways. Toxicology 2020; 442:152536. [PMID: 32649955 DOI: 10.1016/j.tox.2020.152536] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Radiotherapy is one of the principal approaches employed in the treatment of pelvic cancers. Nevertheless, testicular dysfunction and infertility are among the most common adverse effects in young adult cancer survivors. Clinically, alpha-lipoic acid (LA) has been applied to improve the quality of sperm with a satisfactory effect. Therefore, the present study investigated the underlying mechanisms of the radioprotective effects of LA against testicular damage. Male Sprague-Dawley rats were exposed to 10 Gy of whole-body ϒ-radiation and LA (50 mg/kg, P.O.) was administered one week before and three days post-irradiation. LA showed remarkable capacity in preserving testicular tissue against radiation damage by improving histological and ultrastructural changes of disorganized seminiferous tubules, besides enhancing its diameter, germinal epithelial thickness, and Johnsen's score. Radiation instigated a significant decrease in sperm quality and quantity associated with depletion of serum testosterone levels, while the LA administration maintained spermatogenesis. Strikingly, LA exhibited antioxidant properties by restoring reduced glutathione levels and antioxidant enzyme activities such as catalase and glutathione-s-transferase, besides diminishing malondialdehyde levels in the testis of irradiated group. Furthermore, LA alleviated testicular inflammation through downregulation of nuclear factor-ĸB (NF-ĸB) expression with a subsequent reduction in interleukin (IL)-6 and cyclooxygenase-2 expression, accompanied by the augmented expression of the anti-inflammatory cytokine IL-10. Additionally, testicular fibrosis markers including Masson's trichrome and transforming growth factor (TGF)-β expression were noticeably declined in LA-treated irradiated rats, together with the upregulation of peroxisome proliferator-activated receptor-ϒ expression. Collectively, LA ameliorates radiation-mediated spermatogenesis-defects and testicular-damage via suppression of oxidative stress/NF-ĸB/TGF-β signaling.
Collapse
Affiliation(s)
- Riham Soliman Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt.
| | - Heba A Mohamed
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Dina Hamada Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Protective Effect of Alpha-Lipoic Acid on Salivary Dysfunction in a Mouse Model of Radioiodine Therapy-Induced Sialoadenitis. Int J Mol Sci 2020; 21:ijms21114136. [PMID: 32531940 PMCID: PMC7312690 DOI: 10.3390/ijms21114136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 11/17/2022] Open
Abstract
Radioiodine (RI) therapy is known to cause salivary gland (SG) dysfunction. The effects of antioxidants on RI-induced SG damage have not been well described. This study was performed to investigate the radioprotective effects of alpha lipoic acid (ALA) administered prior to RI therapy in a mouse model of RI-induced sialadenitis. Four-week-old female C57BL/6 mice were divided into four groups (n = 10 per group): group I, normal control; group II, ALA alone (100 mg/kg); group III, RI alone (0.01 mCi/g body weight, orally); and group IV, ALA + RI (ALA at 100 mg/kg, 24 h and 30 min before RI exposure at 0.01 mCi/g body weight). The animals in these groups were divided into two subgroups and euthanized at 30 or 90 days post-RI treatment. Changes in salivary 99mTc pertechnetate uptake and excretion were tracked by single-photon emission computed tomography. Salivary histological examinations and TUNEL assays were performed. The 99mTc pertechnetate excretion level recovered in the ALA treatment group. Salivary epithelial (aquaporin 5) cells of the ALA + RI group were protected from RI damage. The ALA + RI group exhibited more mucin-containing parenchyma and less fibrotic tissues than the RI only group. Fewer apoptotic cells were observed in the ALA + RI group compared to the RI only group. Pretreatment with ALA before RI therapy is potentially beneficial in protecting against RI-induced salivary dysfunction.
Collapse
|
12
|
Kim JH, Jeong BK, Jang SJ, Yun JW, Jung MH, Kang KM, Kim TG, Woo SH. Alpha-Lipoic Acid Ameliorates Radiation-Induced Salivary Gland Injury by Preserving Parasympathetic Innervation in Rats. Int J Mol Sci 2020; 21:ijms21072260. [PMID: 32218158 PMCID: PMC7178006 DOI: 10.3390/ijms21072260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Radiation therapy is a standard treatment for patients with head and neck cancer. However, radiation exposure to the head and neck induces salivary gland (SG) dysfunction. Alpha lipoic acid (ALA) has been reported to reduce radiation-induced toxicity in normal tissues. In this study, we investigated the effect of ALA on radiation-induced SG dysfunction. Male Sprague-Dawley rats were assigned to the following treatment groups: control, ALA only (100 mg/kg, intraperitoneally), irradiation only, and ALA administration 24 h or 30 min prior to irradiation. The neck area, including SGs, was irradiated evenly at 2 Gy/min (total dose, 18 Gy) using a photon 6 MV linear accelerator. The rats were sacrificed at 2, 6, 8, and 12 weeks after irradiation. Radiation decreased SG weight, saliva secretion, AQP5 expression, parasympathetic innervation (GFRα2 and AchE expression), regeneration potentials (Shh and Ptch expression), salivary trophic factor levels (brain-derived neurotrophic factor and neurturin), and stem cell expression (Sca-1). These features were restored by treatment with ALA. This study demonstrated that ALA can rescue radiation-induced hyposalivation by preserving parasympathetic innervation and regenerative potentials.
Collapse
Affiliation(s)
- Jin Hyun Kim
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea (S.J.J.); (J.W.Y.)
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (B.K.J.); (K.M.K.)
| | - Bae Kwon Jeong
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (B.K.J.); (K.M.K.)
- Department of Radiation Oncology, Gyeongsang National University, Jinju 52727, Korea
| | - Si Jung Jang
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea (S.J.J.); (J.W.Y.)
| | - Jeong Won Yun
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea (S.J.J.); (J.W.Y.)
| | - Myeong Hee Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea (S.J.J.); (J.W.Y.)
| | - Ki Mun Kang
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Korea; (B.K.J.); (K.M.K.)
- Department of Radiation Oncology, Gyeongsang National University, Jinju 52727, Korea
| | - Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea;
| | - Seung Hoon Woo
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University, Cheonan 31116, Korea
- Correspondence: ; Tel.: +82-41-550-1781; Fax: +82-41-550-7837
| |
Collapse
|
13
|
Tripathy J, Chowdhury AR, Prusty M, Muduli K, Priyadarshini N, Reddy KS, Banerjee B, Elangovan S. α-Lipoic acid prevents the ionizing radiation-induced epithelial-mesenchymal transition and enhances the radiosensitivity in breast cancer cells. Eur J Pharmacol 2020; 871:172938. [PMID: 31958458 DOI: 10.1016/j.ejphar.2020.172938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Radiotherapy is routinely used in the treatment of breast cancer. However, its efficiency is often limited by the development of radioresistance and metastasis. The cancer cells surviving irradiation show epithelial-mesenchymal transition (EMT) along with increased migration, invasion and metastasis. In this study, we have evaluated the role of α-lipoic acid in preventing the radiation-induced EMT and in sensitizing the breast cancer cells to radiation. The breast cancer cell lines, MCF-7 and MDA-MB-231 were pretreated with lipoic acid, irradiated and the changes associated with cell growth, clonogenicity, migration, matrix metalloproteinases (MMPs), EMT and TGFβ signaling were measured. Our data showed that lipoic acid pretreatment sensitized the breast cancer cells to the ionizing radiation and inhibited the radiation-induced migration and the release of MMP2 and MMP9. Lipoic acid also prevented the TGFβ1 release and inhibited the radiation-induced EMT in breast cancer cells. The inhibition of TGFβ signaling by lipoic acid is associated with the inhibition of radiation-induced activation and translocation of NF-κB. These results suggest that α-lipoic acid inhibits the radiation-induced TGFβ signaling and nuclear translocation of NF-κB, thereby inhibiting the radiation-induced EMT and sensitizing the breast cancer cells to ionizing radiation.
Collapse
Affiliation(s)
- Joytirmay Tripathy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Amit Roy Chowdhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Monica Prusty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Kartik Muduli
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Nilima Priyadarshini
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Birendranath Banerjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
14
|
Najafi M, Cheki M, Amini P, Javadi A, Shabeeb D, Eleojo Musa A. Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study. Int J Reprod Biomed 2019; 17:907-914. [PMID: 31970312 PMCID: PMC6943799 DOI: 10.18502/ijrm.v17i12.5791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 07/06/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background Testis is one of the most sensitive organs against the toxic effect of ionizing radiation. Exposure to even a low dose of radiation during radiotherapy, diagnostic radiology, or a radiological event could pose a threat to spermatogenesis. This may lead to temporary or permanent infertility or even transfer of genomic instability to the next generations. Objective In this study, we evaluated the protective effect of treatment with three natural antioxidants; resveratrol, alpha lipoic acid, and coenzyme Q10 on radiation-induced spermatogenesis injury. Materials and Methods 30 NMRI mice (6-8 wk, 30 ± 5 gr) were randomly divided into six groups (n = 5/each) as 1) control; 2) radiation; 3) radiation + resveratrol; 4) radiation + alpha lipoic acid; 5) radiation + resveratrol + alpha lipoic acid; and 6) radiation+ Q10. Mice were treated with 100 mg/kg resveratrol or 200 mg/kg alpha lipoic acid or a combination of these drugs. Also, Q10 was administered at 200 mg/kg. All treatments were performed daily from two days before to 30 min before irradiation. Afterward, mice were exposed to 2 Gy 60 Co gamma rays; 37 days after irradiation, the testicular samples were collected and evaluated for histopathological parameters. Results Results showed that these agents are able to alleviate some toxicological parameters such as basal lamina and epididymis decreased sperm density. Also, all agents were able to increase Johnsen score. However, they could not protect against radiation-induced edema, atrophy of seminiferous tubules, and hyperplasia in Leydig cells. Conclusion This study indicates that resveratrol, alpha-lipoic acid, and Q10 have the potential to reduce some of the side effects of radiation on mice spermatogenesis. However, they cannot protect Leydig cells as a source of testosterone and seminiferous tubules as the location of sperm maturation.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Cheki
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Peyman Amini
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Javadi
- Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Kim H, Yoo WS, Jung JH, Jeong BK, Woo SH, Kim JH, Kim SJ. Alpha-Lipoic Acid Ameliorates Radiation-Induced Lacrimal Gland Injury through NFAT5-Dependent Signaling. Int J Mol Sci 2019; 20:ijms20225691. [PMID: 31766286 PMCID: PMC6888725 DOI: 10.3390/ijms20225691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Dry eye syndrome related to radiation therapy is relatively common and can severely impair a patient’s daily life. The nuclear factor of activated T cells 5(NFAT5) is well known for its osmoprotective effect under hyperosmolar conditions, and it also has immune-modulating functions. We investigated the role of NFAT5 and the protective effect of α-lipoic acid(ALA) on radiation-induced lacrimal gland (LG) injuries. Rats were assigned to control, ALA only, radiation only, and ALA administered prior to irradiation groups. The head and neck area, including the LG, was evenly irradiated with 2 Gy/minute using a photon 6-MV linear accelerator. NFAT5 expression was enhanced and localized in the LG tissue after irradiation and was related to cellular apoptosis. ALA had a protective effect on radiation-induced LG injury through the inhibition of NFAT5 expression and NFAT5-dependent signaling pathways. Functional radiation–induced damage of the LG and cornea was also restored with ALA treatment. NFAT5 expression and its dependent signaling pathways were deeply related to radiation-induced dry eye, and the condition was improved by ALA treatment. Our results suggest a potential role of NFAT5 and NF-κB in the proinflammatory effect in LGs and cornea, which offers a target for new therapies to treat dry eye syndrome.
Collapse
Affiliation(s)
- Hyuna Kim
- Department of Ophthalmology, Gyeongsang National University School of medicine and Gyeongsang National University Hospital, Jinju 52727, Korea; (H.K.); (W.-S.Y.)
| | - Woong-Sun Yoo
- Department of Ophthalmology, Gyeongsang National University School of medicine and Gyeongsang National University Hospital, Jinju 52727, Korea; (H.K.); (W.-S.Y.)
| | - Jung Hwa Jung
- Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (J.H.J.); (B.K.J.)
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Bae Kwon Jeong
- Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (J.H.J.); (B.K.J.)
- Department of Radiation Oncology, Gyeongsang National University School of medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Seung Hoon Woo
- Department of Otolaryngology-Head and Neck surgery, Dankook University College of Medicine, Cheonan 31116, Korea;
| | - Jin Hyun Kim
- Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (J.H.J.); (B.K.J.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea
- Correspondence: (J.H.K.); (S.J.K.); Tel.: +82-55-750-9250 (J.H.K.); Tel.: +82-55-758-4158 (S.J.K.)
| | - Seong Jae Kim
- Department of Ophthalmology, Gyeongsang National University School of medicine and Gyeongsang National University Hospital, Jinju 52727, Korea; (H.K.); (W.-S.Y.)
- Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (J.H.J.); (B.K.J.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea
- Correspondence: (J.H.K.); (S.J.K.); Tel.: +82-55-750-9250 (J.H.K.); Tel.: +82-55-758-4158 (S.J.K.)
| |
Collapse
|
16
|
Aksoy U, Savtekin G, Şehirli AÖ, Kermeoğlu F, Kalender A, Özkayalar H, Sayıner S, Orhan K. Effects of alpha-lipoic acid therapy on experimentally induced apical periodontitis: a biochemical, histopathological and micro-CT analysis. Int Endod J 2019; 52:1317-1326. [PMID: 30900747 DOI: 10.1111/iej.13121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
AIM To investigate the possible therapeutic effects of alpha-lipoic acid (ALA) in a model of chronic apical periodontitis in rats by analysing biochemical, histopathological and micro-CT parameters. METHODOLOGY The study was approved by the Animal Ethics Committee of the Near East University. Thirty-two Wistar rats were divided into four groups of eight rats each: Control Group; ALA Group; AP Group; AP + ALA Group. In the AP and AP + ALA groups, the pulp chambers of the mandibular first molars were surgically exposed and were left open to the oral environment for 4-weeks to allow the establishment of periapical lesions. The rats in the Control and AP groups were treated intraperitoneally with saline solution (with a daily dose of 100 mg kg-1 , for 28 days after periapical lesion induction). The rats in the ALA and AP + ALA groups were treated intraperitoneally with ALA (with a daily dose of 100 mg kg-1 , for 28 days after periapical lesion induction). After decapitation, the trunk blood was collected for the assessment of biochemical parameters. The mandibles were surgically removed and dissected for histopathologic analysis and further scanned with micro-CT. Groups of data were compared with a two-way analysis of variance (two-way anova) followed by Sidak's multiple comparison tests. Values of P < 0.05 were regarded as significant. RESULTS TNF-α, IL-1β, MMP-1, MMP-2 levels were significantly lower in AP + ALA group compared with AP group (P < 0.05). There was a significant difference between the AP and AP + ALA groups according to assessment of the inflammatory scores (P < 0.05). The periapical inflammatory infiltrates were significantly more severe (P < 0.05) in the AP group. The AP + ALA group exhibited lower values both in terms of surface area and volume of resorption cavities than the AP group and this difference was significant (P < 0.05). CONCLUSION alpha-lipoic acid treatment provided therapeutic effects on the inhibition of periapical bone loss.
Collapse
Affiliation(s)
- U Aksoy
- Department of Endodontics, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - G Savtekin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - A Ö Şehirli
- Departments of Pharmacology, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - F Kermeoğlu
- Department of Endodontics, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - A Kalender
- Department of Endodontics, Faculty of Dentistry, Near East University, Mersin 10, Turkey
| | - H Özkayalar
- Department of Pathology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - S Sayıner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Mersin 10, Turkey
| | - K Orhan
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| |
Collapse
|
17
|
Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4278658. [PMID: 30881591 PMCID: PMC6381575 DOI: 10.1155/2019/4278658] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF.
Collapse
|
18
|
Arıcıgil M, Dündar MA, Yücel A, Eryılmaz MA, Aktan M, Alan MA, Fındık S, Kılınç İ. Melatonin prevents possible radiotherapy-induced thyroid injury. Int J Radiat Biol 2017; 93:1350-1356. [DOI: 10.1080/09553002.2017.1397296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mitat Arıcıgil
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Akif Dündar
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Abitter Yücel
- Department of Otorhinolaryngology, Horasan State Hospital, Erzurum, Turkey
| | - Mehmet Akif Eryılmaz
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Meryem Aktan
- Department of Radiation Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Akif Alan
- Department of Otorhinolaryngology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sıdıka Fındık
- Department of Pathology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - İbrahim Kılınç
- Department of Medical Biochemistry, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
19
|
Kim JH, Jung MH, Kim JP, Kim HJ, Jung JH, Hahm JR, Kang KM, Jeong BK, Woo SH. Alpha lipoic acid attenuates radiation-induced oral mucositis in rats. Oncotarget 2017; 8:72739-72747. [PMID: 29069822 PMCID: PMC5641165 DOI: 10.18632/oncotarget.20286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/25/2017] [Indexed: 12/04/2022] Open
Abstract
Purpose Radiotherapy is currently one of the main treatment modalities for head and neck cancer; however, it also results in severe toxicity to the normal tissue, to the detriment of patients. This study aimed to investigate whether alpha lipoic acid (ALA) could protect against radiation-induced oral mucositis in a rat model. Results On post-irradiation days 4 and 7, the epithelial layer on oral mucosa showed pronounced injury (shortening of the layer) and it is diminished by ALA pretreatment before radiation. Hif-1a expression was significantly induced in the radiation group on days 4, 7, and 28. GLUT1 expression was also induced by radiation at all time points, and the expression levels peaked on day 28. Phosphorylated p53 level was significantly higher in the radiation group on days 4 and 7, and Bax protein expression was significantly higher in the same group on day 4 than ALA-pretreated radiation group. TUNEL-positive staining was significantly lower in the ALA-pretreated radiation group. Materials and methods Rats were assigned to one of the following four groups: control, ALA only (100 mg/kg, i.p.), irradiated, and ALA administered 24 h and 30 min prior to irradiation, with the neck area including the oral mucosa evenly irradiated with 2 Gy per minute (total dose, 18 Gy) using a photon 6-MV linear accelerator. Rats were sacrificed 4, 7, 28, or 56 days after radiation. Conclusions The results show that ALA can be used to ameliorate radiation-induced oral mucositis with head and neck cancer.
Collapse
Affiliation(s)
- Jin Hyun Kim
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea.,Institute of Health Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Myeong Hee Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | - Jin Pyeong Kim
- Institute of Health Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Department of Otolaryngology, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Hyun-Jung Kim
- Institute of Health Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Department of Internal Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jung Hwa Jung
- Institute of Health Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Department of Internal Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jong Ryeal Hahm
- Institute of Health Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Department of Internal Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Ki Mun Kang
- Institute of Health Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Department of Radiation Oncology, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Bae-Kwon Jeong
- Institute of Health Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Department of Radiation Oncology, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Seung Hoon Woo
- Institute of Health Science, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Department of Otolaryngology, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.,Beckman Laser Institute, University of California, Irvine, California, USA
| |
Collapse
|
20
|
Prathima P, Venkaiah K, Pavani R, Daveedu T, Munikumar M, Gobinath M, Valli M, Sainath SB. α-lipoic acid inhibits oxidative stress in testis and attenuates testicular toxicity in rats exposed to carbimazole during embryonic period. Toxicol Rep 2017; 4:373-381. [PMID: 28959662 PMCID: PMC5615143 DOI: 10.1016/j.toxrep.2017.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022] Open
Abstract
The intrauterine exposure of carbiamzole (CBZ) on male fertility is not well defined. CBZ exposure in utero results in spermatotoxic effects and impaired steroidogenesis in offspring rats at their adulthood. Gestational exposure to CBZ augmented testicular oxidative damage in offspring rats. α-lipoic acid supplementation with its antioxidant properties ameliorated diminished male reproductive health in rats exposed to CBZ prenatally.
The aim of this study was to evaluate the probable protective effect of α-lipoic acid against testicular toxicity in rats exposed to carbimazole during the embryonic period. Time-mated pregnant rats were exposed to carbimazole from the embryonic days 9–21. After completion of the gestation period, all the rats were allowed to deliver pups and weaned. At postnatal day 100, F1 male pups were assessed for the selected reproductive endpoints. Gestational exposure to carbimazole decreased the reproductive organ indices, testicular daily sperm count, epididymal sperm variables viz., sperm count, viable sperm, motile sperm and HOS-tail coiled sperms. Significant decrease in the activity levels of 3β- and 17β-hydroxysteroid dehydrogenases and expression of StAR mRNA levels with a significant increase in the total cholesterol levels were observed in the testis of experimental rats over the controls. These events were also accompanied by a significant reduction in the serum testosterone levels in CBZ exposed rats, indicating reduced steroidogenesis. In addition, the deterioration of the testicular architecture and reduced fertility ability were noticed in the carbimazole exposed rats. Significant reduction in the activity levels of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione content with a significant increase in the levels of lipid peroxidation were observed in the testis of carbimazole exposed rats over the controls. Conversely, supplementation of α-lipoic acid (70 mg/Kg bodyweight) ameliorated the male reproductive health in rats exposed to carbimazole during the embryonic period as evidenced by enhanced reproductive organ weights, selected sperm variables, testicular steroidogenesis, and testicular enzymatic and non-enzymatic antioxidants. To conclude, diminished testicular antioxidant balance associated with reduced spermatogenesis and steroidogenesis might be responsible for the suppressed reproduction in rats exposed to the carbimazole transplacentally. On the other hand, α-lipoic acid through its antioxidant and steroidogenic properties mitigated testicular toxicity which eventually restored the male reproductive health of carbimazole-exposed rats.
Collapse
Affiliation(s)
- P Prathima
- Department of Biotechnology, Vikrama Simhapuri University, Nellore-524003, AP, India, India
| | - K Venkaiah
- Department of Biotechnology, Vikrama Simhapuri University, Nellore-524003, AP, India, India
| | - R Pavani
- Department of Biotechnology, Vikrama Simhapuri University, Nellore-524003, AP, India, India
| | - T Daveedu
- Department of Biotechnology, Vikrama Simhapuri University, Nellore-524003, AP, India, India
| | - M Munikumar
- Biomedical Informatics Centre, National Institute of Nutrition-ICMR, Jamia Islamia (Post), Hyderabad-500007, Telangana, India, India
| | - M Gobinath
- Department of Pharmacy, Ratnam Institute of Pharmacy, Nellore-524346, AP, India
| | - M Valli
- Department of Genetics, Narayana Medical College, Nellore-524003, AP, India
| | - S B Sainath
- Department of Biotechnology, Vikrama Simhapuri University, Nellore-524003, AP, India, India
| |
Collapse
|
21
|
Anti-inflammatory effects of hyperbaric oxygen on irradiated laryngeal tissues. Braz J Otorhinolaryngol 2017; 84:206-211. [PMID: 28341337 PMCID: PMC9449171 DOI: 10.1016/j.bjorl.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/05/2017] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION To manage the complications of irradiation of head and neck tissue is a challenging issue for the otolaryngologist. Definitive treatment of these complications is still controversial. Recently, hyperbaric oxygen therapy is promising option for these complications. OBJECTIVE In this study, we used biochemical and histopathological methods to investigate the efficacy of hyperbaric oxygen against the inflammatory effects of radiotherapy in blood and laryngeal tissues when radiotherapy and hyperbaric oxygen are administered on the same day. METHODS Thirty-two Wistar Albino rats were divided into four groups. The control group was given no treatment, the hyperbaric oxygen group was given only hyperbaric oxygen therapy, the radiotherapy group was given only radiotherapy, and the radiotherapy plus hyperbaric oxygen group was given both treatments on the same day. RESULTS Histopathological and biochemical evaluations of specimens were performed. Serum tumor necrosis factor-α, interleukin-1β, and tissue inflammation levels were significantly higher in the radiotherapy group than in the radiotherapy plus hyperbaric oxygen group, whereas interleukin-10 was higher in the radiotherapy plus hyperbaric oxygen group. CONCLUSION When radiotherapy and hyperbaric oxygen are administered on the same day, inflammatory cytokines and tissue inflammation can be reduced in an early period of radiation injury.
Collapse
|
22
|
Li D, Tian Z, Tang W, Zhang J, Lu L, Sun Z, Zhou Z, Fan F. The Protective Effects of 5-Methoxytryptamine-α-lipoic Acid on Ionizing Radiation-Induced Hematopoietic Injury. Int J Mol Sci 2016; 17:ijms17060935. [PMID: 27314327 PMCID: PMC4926468 DOI: 10.3390/ijms17060935] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 02/06/2023] Open
Abstract
Antioxidants are prospective radioprotectors because of their ability to scavenge radiation-induced reactive oxygen species (ROS). The hematopoietic system is widely studied in radiation research because of its high radiosensitivity. In the present study, we describe the beneficial effects of 5-methoxytryptamine-α-lipoic acid (MLA), which was synthesized from melatonin and α-lipoic acid, against radiation-induced hematopoietic injury. MLA administration significantly enhanced the survival rate of mice after 7.2 Gy total body irradiation. The results showed that MLA not only markedly increased the numbers and clonogenic potential of hematopoietic cells but also decreased DNA damage, as determined by flow cytometric analysis of histone H2AX phosphorylation. In addition, MLA decreased the levels of ROS in hematopoietic cells by inhibiting NOX4 expression. These data demonstrate that MLA prevents radiation-induced hematopoietic syndrome by increasing the number and function of and by inhibiting DNA damage and ROS production in hematopoietic cells. These data suggest MLA is beneficial for the protection of radiation injuries.
Collapse
Affiliation(s)
- Deguan Li
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Zhenyuan Tian
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Weisheng Tang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Junling Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Lu Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Zhaojin Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Zewei Zhou
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Feiyue Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical Collage, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
23
|
Jung JH, Jung J, Kim SK, Woo SH, Kang KM, Jeong BK, Jung MH, Kim JH, Hahm JR. Correction: Alpha Lipoic Acid Attenuates Radiation-Induced Thyroid Injury in Rats. PLoS One 2015; 10:e0131147. [PMID: 26083031 PMCID: PMC4471122 DOI: 10.1371/journal.pone.0131147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
24
|
Morcos N, Omran M, Ghanem H, Elahdal M, Kamel N, Attia E. Phototherapeutic Effect of Low-Level Laser on Thyroid Gland of Gamma-Irradiated Rats. Photochem Photobiol 2015; 91:942-51. [PMID: 25975382 DOI: 10.1111/php.12465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/29/2015] [Indexed: 12/22/2022]
Abstract
One inescapable feature of life on the earth is exposure to ionizing radiation. The thyroid gland is one of the most sensitive organs to gamma-radiation and endocrine disrupters. Low-level laser therapy (LLLT) has been used to stimulate tissue repair, and reduce inflammation. The aim of this study was to gauge the value of using Helium-Neon laser to repair the damaged tissues of thyroid gland after gamma-irradiation. Albino rats were used in this study (144 rats), divided into control, gamma, laser, and gamma plus laser-irradiated groups, each group was divided into six subgroups according to time of treatment (total six sessions). Rats were irradiated once with gamma radiation (6 Gy), and an external dose of laser (Wavelength 632.8 nm, 12 mW, CW, Illuminated area 5.73 cm(2), 2.1 mW cm(-2) 120 s, 1.4 J, 0.252 J cm(-2)) twice weekly localized on thyroid region of the neck, for a total of six sessions. Animals were sacrificed after each session. Analysis included thyroid function, oxidative stress markers, liver function and blood picture. Results revealed improvement in thyroid function, liver function and antioxidant levels, and the blood cells count after LLLT.
Collapse
Affiliation(s)
- Nadia Morcos
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Manar Omran
- Radiation Biology Department, National Centre for Radiation Research & Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hala Ghanem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mahmoud Elahdal
- Radiation Protection and Dosimetry Department, National Centre for Radiation Research & Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Nashwa Kamel
- Radiation Biology Department, National Centre for Radiation Research & Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Elbatoul Attia
- Radiation Biology Department, National Centre for Radiation Research & Technology (NCRRT), Atomic Energy Authority, Nasr City, Cairo, Egypt
| |
Collapse
|