1
|
Singh PP, Pandey G, Murti Y, Gairola J, Mahajan S, Kandhari H, Tivari S, Srivastava V. Light-driven photocatalysis as an effective tool for degradation of antibiotics. RSC Adv 2024; 14:20492-20515. [PMID: 38946773 PMCID: PMC11208907 DOI: 10.1039/d4ra03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
Antibiotic contamination has become a severe issue and a dangerous concern to the environment because of large release of antibiotic effluent into terrestrial and aquatic ecosystems. To try and solve these issues, a plethora of research on antibiotic withdrawal has been carried out. Recently photocatalysis has received tremendous attention due to its ability to remove antibiotics from aqueous solutions in a cost-effective and environmentally friendly manner with few drawbacks compared to traditional photocatalysts. Considerable attention has been focused on developing advanced visible light-driven photocatalysts in order to address these problems. This review provides an overview of recent developments in the field of photocatalytic degradation of antibiotics, including the doping of metals and non-metals into ultraviolet light-driven photocatalysts, the formation of new semiconductor photocatalysts, the advancement of heterojunction photocatalysts, and the building of surface plasmon resonance-enhanced photocatalytic systems.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U.P.-211010 India
| | - Geetika Pandey
- Department of Physics, Faculty of Science, United University Prayagraj-211012 India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University Mathura-281406 India
| | - Jagriti Gairola
- School of Pharmacy, Graphic Era Hill University Clement Town Dehradun 248002 Uttarakhand India
- Department of Allied Sciences, Graphic Era (Deemed to be University) Clement Town Dehradun 248002 Uttarakhand India
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Harsimrat Kandhari
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh-174103 India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| |
Collapse
|
2
|
Vasco KA, Hansen ZA, Schilmiller AL, Bowcutt B, Carbonell SL, Ruegg PL, Quinn RA, Zhang L, Manning SD. Untargeted metabolomics and metagenomics reveal signatures for intramammary ceftiofur treatment and lactation stage in the cattle hindgut. Front Mol Biosci 2024; 11:1364637. [PMID: 38836107 PMCID: PMC11148447 DOI: 10.3389/fmolb.2024.1364637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The gut microbiota in cattle is essential for protein, energy, and vitamin production and hence, microbiota perturbations can affect cattle performance. This study evaluated the effect of intramammary (IMM) ceftiofur treatment and lactation stage on the functional gut microbiome and metabolome. Forty dairy cows were enrolled at dry-off. Half received IMM ceftiofur and a non-antibiotic teat sealant containing bismuth subnitrate (cases), while the other half received the teat sealant (controls). Fecal samples were collected before treatment at dry off, during the dry period (weeks 1 and 5) and the first week after calving (week 9). Shotgun metagenomic sequencing was applied to predict microbial metabolic pathways whereas untargeted metabolomics was used identify polar and nonpolar metabolites. Compared to controls, long-term changes were observed in the cows given ceftiofur, including a lower abundance of microbial pathways linked to energy production, amino acid biosynthesis, and other vital molecules. The metabolome of treated cows had elevated levels of stachyose, phosphatidylethanolamine diacylglycerol (PE-DAG), and inosine a week after the IMM ceftiofur application, indicating alterations in microbial fermentation, lipid metabolism, energy, and cellular signaling. Differences were also observed by sampling, with cows in late lactation having more diverse metabolic pathways and a unique metabolome containing higher levels of histamine and histamine-producing bacteria. These data illustrate how IMM ceftiofur treatment can alter the functionality of the hindgut metabolome and microbiome. Understanding how antibiotics and lactation stages, which are each characterized by unique diets and physiology, impact the function of resident microbes is critical to define normal gut function in dairy cattle.
Collapse
Affiliation(s)
- Karla A Vasco
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Zoe A Hansen
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Anthony L Schilmiller
- Research Technology Support Facility, Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, United States
| | - Bailey Bowcutt
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Samantha L Carbonell
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Pamela L Ruegg
- Department of Large Animal and Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Lixin Zhang
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Shannon D Manning
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Vasco KA, Carbonell S, Sloup RE, Bowcutt B, Colwell RR, Graubics K, Erskine R, Norby B, Ruegg PL, Zhang L, Manning SD. Persistent effects of intramammary ceftiofur treatment on the gut microbiome and antibiotic resistance in dairy cattle. Anim Microbiome 2023; 5:56. [PMID: 37946266 PMCID: PMC10636827 DOI: 10.1186/s42523-023-00274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Intramammary (IMM) ceftiofur treatment is commonly used in dairy farms to prevent mastitis, though its impact on the cattle gut microbiome and selection of antibiotic-resistant bacteria has not been elucidated. Herein, we enrolled 40 dairy (Holstein) cows at the end of the lactation phase for dry-cow therapy: 20 were treated with IMM ceftiofur (Spectramast®DC) and a non-antibiotic internal teat sealant (bismuth subnitrate) and 20 (controls) received only bismuth subnitrate. Fecal grab samples were collected before and after treatment (weeks 1, 2, 3, 5, 7, and 9) for bacterial quantification and metagenomic next-generation sequencing. RESULTS Overall, 90% and 24% of the 278 samples had Gram-negative bacteria with resistance to ampicillin and ceftiofur, respectively. Most of the cows treated with ceftiofur did not have an increase in the number of resistant bacteria; however, a subset (25%) shed higher levels of ceftiofur-resistant bacteria for up to 2 weeks post-treatment. At week 5, the antibiotic-treated cows had lower microbiota abundance and richness, whereas a greater abundance of genes encoding extended-spectrum β-lactamases (ESBLs), CfxA, ACI-1, and CMY, was observed at weeks 1, 5 and 9. Moreover, the contig and network analyses detected associations between β-lactam resistance genes and phages, mobile genetic elements, and specific genera. Commensal bacterial populations belonging to Bacteroidetes most commonly possessed ESBL genes followed by members of Enterobacteriaceae. CONCLUSION This study highlights variable, persistent effects of IMM ceftiofur treatment on the gut microbiome and resistome in dairy cattle. Antibiotic-treated cattle had an increased abundance of specific taxa and genes encoding ESBL production that persisted for 9 weeks. Fecal shedding of ESBL-producing Enterobacteriaceae, which was classified as a serious public health threat, varied across animals. Together, these findings highlight the need for additional studies aimed at identifying factors associated with shedding levels and the dissemination and persistence of antibiotic resistance determinants on dairy farms across geographic locations.
Collapse
Affiliation(s)
- Karla A Vasco
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Samantha Carbonell
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Rebekah E Sloup
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Bailey Bowcutt
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Rita R Colwell
- University of Maryland, Institute for Advanced Computer Studies, College Park, MD, 20742, USA
- Cosmos ID, Inc, Germantown, MD, 20874, USA
| | | | - Ronald Erskine
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA
| | - Bo Norby
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA
| | - Pamela L Ruegg
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA.
| | - Lixin Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, E. Lansing, MI, 48824, USA.
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Knowlton KF, von Keyserlingk MAG. To Treat or Not to Treat: Public Attitudes on the Therapeutic Use of Antibiotics in the Dairy Industry-A Qualitative Study. Animals (Basel) 2023; 13:2913. [PMID: 37760315 PMCID: PMC10525227 DOI: 10.3390/ani13182913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This paper describes the views of 779 U.S. residents on questions related to therapeutic antibiotic use in dairy cattle. An online survey was conducted with qualitative (open-ended) questions. Respondents were offered one of three scenarios with varying degrees of information describing a farmer with a sick cow that would benefit from antibiotic therapy. The text replies to the open-ended questions were analyzed by grouping responses with similar comments and identifying patterns or themes. Content analysis showed that many of the participants in this study provided farmers with the social license to treat sick cows with antibiotics; however, some participants commented on the social license not necessarily extending to antibiotic use for growth promotion or prophylactic use. Our findings are not generalizable, but may provide some insight that should be considered when developing policies and practices regarding the use of antibiotics on dairy farms that may promote improved alignment with societal values.
Collapse
Affiliation(s)
- Katharine F. Knowlton
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Marina A. G. von Keyserlingk
- Animal Welfare Program, Faculty of Land and Food Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Chittireddy HNPR, Kumar JVS, Bhimireddy A, Shaik MR, Shaik AH, Alwarthan A, Shaik B. Development and Validation for Quantification of Cephapirin and Ceftiofur by Ultraperformance Liquid Chromatography with Triple Quadrupole Mass Spectrometry. Molecules 2022; 27:molecules27227920. [PMID: 36432023 PMCID: PMC9696115 DOI: 10.3390/molecules27227920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cross contamination of β-lactams is one of the highest risks for patients using pharmaceutical products. Penicillin and some non-penicillin β-lactams may cause potentially life-threatening allergic reactions. The trace detection of β-lactam antibiotics in cleaning rinse solutions of common reactors and manufacturing aids in pharmaceutical facilities is very crucial. Therefore, the common facilities adopt sophisticated cleaning procedures and develop analytical methods to assess traces of these compounds in rinsed solutions. For this, a highly sensitive and reproducible ultra-performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-MS/MS) method was developed for the analysis of Cephapirin and Ceftiofur. As per the FDA guidelines described in FDA-2011-D-0104, the contamination of these β-lactam antibiotics must be regulated. The analysis was performed on an XBridge C18 column with 100 mm length, 4.6 mm diameter, and 3.5 µm particle size at an oven temperature of about 40 °C. The mobile phase was composed of 0.15% formic acid in water and acetonitrile as mobile phases A and B, and a flow rate was set to 0.6 mL/min. The method was validated for Cephapirin and Ceftiofur. The quantification precision and accuracy were determined to be the lowest limit of detection 0.15 parts per billion (ppb) and the lowest limit of quantification 0.4 ppb. This method was linear in the range of 0.4 to 1.5 ppb with the determination of coefficient (R2 > 0.99). This sensitive and fast method was fit-for-purpose for detecting and quantifying trace amounts of β-lactam contamination, monitoring cross contamination in facility surface cleaning, and determining the acceptable level of limits for regulatory purposes.
Collapse
Affiliation(s)
- Hari Naga Prasada Reddy Chittireddy
- Department of Engineering Chemistry, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - J. V. Shanmukha Kumar
- Department of Engineering Chemistry, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
- Correspondence: (J.V.S.K.); (M.R.S.); Tel.: +91-9000586007 (J.V.S.K.); +966-11-4670439 (M.R.S.)
| | | | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (J.V.S.K.); (M.R.S.); Tel.: +91-9000586007 (J.V.S.K.); +966-11-4670439 (M.R.S.)
| | - Althaf Hussain Shaik
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwarthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Kulesza SB, Maguire R, Xia K, Ray P, Knowlton K. Effect of temperature, pH, and soil texture on pirlimycin fate in dairy manure-amended soils. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1310-1318. [PMID: 36068016 DOI: 10.1002/jeq2.20410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics applied to soil through application of manure are of increasing concern due to their adverse environmental impacts, including their potential contribution to the development of antibiotic resistance in the environment. Two 90-d laboratory incubation studies were conducted to determine the effects of temperature (10 or 21 °C), pH (5, 7, 9), and soil texture (sandy loam, loam) on the persistence of two antibiotics (pirlimycin and cephapirin) applied to soils with dairy manure amendment. Dairy manure from treated and untreated cows was used as the source for this study. However, cephapirin was not detected in manure used for the study. Initial manure pH affected pirlimycin concentration of the manure, and there were differences in initial soil concentration between soil types. In the temperature experiment, pirlimycin concentration was significantly affected by temperature and soil type. In the 10 °C treatments, pirlimycin concentration initially decreased at 7 d but increased to levels similar to 0 d concentrations at 14 d, indicating possible deconjugation of pirlimycin ribonucleotide adducts in the manure applied. Although the loam soil type had a higher pirlimycin concentration in the temperature experiment at 0 d and 14 d, concentrations decreased below the sandy loam soil at 56 d and continued in the 90-d sampling period. Pirlimycin dissipation from dairy manure-amended soils was enhanced by higher temperature and finer soil texture, both of which could affect development of resistance genes if soil microbes are exposed to pirlimycin for longer periods of time.
Collapse
Affiliation(s)
- Stephanie B Kulesza
- Dep. of Crop and Soil Sciences, North Carolina State Univ., Campus Box 7620, 101 Derieux Place, Raleigh, NC, 27695, USA
| | - Rory Maguire
- Dep. of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State Univ., Blacksburg, VA, 24061-0131, USA
| | - Kang Xia
- Dep. of Crop and Soil Environmental Science, Virginia Polytechnic Institute and State Univ., Blacksburg, VA, 24061-0131, USA
| | - Partha Ray
- The Nature Conservancy, Arlington, VA, 22203-1606, USA
| | - Katharine Knowlton
- Dep. of Dairy Science, Virginia Polytechnic Institute and State Univ., Blacksburg, VA, 24061-0131, USA
| |
Collapse
|
7
|
Speksnijder DC, Hopman NEM, Kusters NE, Timmerman A, Swinkels JM, Penterman PAA, Krömker V, Bradley AJ, Botteldoorn N, Gehring R, Zomer AL. Potential of ESBL-producing Escherichia coli selection in bovine feces after intramammary administration of first generation cephalosporins using in vitro experiments. Sci Rep 2022; 12:15083. [PMID: 36065056 PMCID: PMC9445091 DOI: 10.1038/s41598-022-15558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Selection and spread of Extended Spectrum Beta-Lactamase (ESBL) -producing Enterobacteriaceae within animal production systems and potential spillover to humans is a major concern. Intramammary treatment of dairy cows with first-generation cephalosporins is a common practice and potentially selects for ESBL-producing Enterobacteriaceae, although it is unknown whether this really occurs in the bovine fecal environment. We aimed to study the potential effects of intramammary application of cephapirin (CP) and cefalonium (CL) to select for ESBL-producing Escherichia coli in the intestinal content of treated dairy cows and in manure slurry, using in vitro competition experiments with ESBL and non-ESBL E. coli isolates. No selection of ESBL-producing E. coli was observed at or below concentrations of 0.8 µg/ml and 4.0 µg/ml in bovine feces for CP and CL, respectively, and at or below 8.0 µg/ml and 4.0 µg/ml, respectively, in manure slurry. We calculated that the maximum concentration of CP and CL after intramammary treatment with commercial products will not exceed 0.29 µg/ml in feces and 0.03 µg/ml in manure slurry. Therefore, the results of this study did not find evidence supporting the selection of ESBL-producing E. coli in bovine feces or in manure slurry after intramammary use of commercial CP or CL-containing products.
Collapse
Affiliation(s)
- David C Speksnijder
- Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
- University Farm Animal Clinic, Harmelen, The Netherlands.
| | - Nonke E M Hopman
- Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nina E Kusters
- Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Arjen Timmerman
- Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jantijn M Swinkels
- Global Ruminant Business Unit, MSD Animal Health, Boxmeer, The Netherlands
| | | | - Volker Krömker
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J Bradley
- Quality Milk Management Services Ltd, Cedar Barn, Easton, Wells, UK
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | | | - Ronette Gehring
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Aldert L Zomer
- Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Gelalcha BD, Ensermu DB, Agga GE, Vancuren M, Gillespie BE, D'Souza DH, Okafor CC, Kerro Dego O. Prevalence of Antimicrobial Resistant and Extended-Spectrum Beta-Lactamase-producing Escherichia coli in Dairy Cattle Farms in East Tennessee. Foodborne Pathog Dis 2022; 19:408-416. [PMID: 35451874 DOI: 10.1089/fpd.2021.0101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobials have been widely used in dairy farms to prevent and control dairy cattle diseases since 1960s. This led to the emergence of antimicrobial resistant bacteria (ARB) that, along with their antimicrobial resistance genes (ARGs), can spread from dairy farms to humans. Therefore, regular antimicrobial resistance (AMR) monitoring is important to implement proper mitigation measures. The objective of this study was to determine the prevalence of AMR and extended-spectrum beta-lactamases (ESBLs)-producing Escherichia coli in dairy cattle. A cross-sectional study was conducted in four dairy cattle farms (A-D) in East Tennessee. A total of 80 samples consisting of 20 samples each of bulk tank milk, feces, dairy cattle manure-amended soil, and prairie soil adjacent to the farms were collected and cultured for the isolation of E. coli. Tetracycline (TETr)-, third-generation cephalosporin (TGCr)- and nalidixic acid (NALr)-resistant E. coli (n = 88) were isolated and identified on agar media supplemented with TET, cefotaxime, and NAL, respectively. TGCr E. coli were tested for ESBLs and other coselected ARGs. TETr (74%, n = 88) was the most common, followed by TGCr (20%) and NALr (8%). Farms had significant (p < 0.001) differences: the highest prevalence of TGCr (55%) and TETr (100%) were observed in farm D, while all NALr isolates were from farm C. Over 83% of TGCr isolates (n = 18) harbored ESBL gene blaCTX-M. Majority (78%) of the E. coli isolates were multidrug-resistant (MDR), being positive for beta-lactams (blaCTX-M), TETs tet(A), tet(B), tet(M)), sulfonamides (sul2), aminoglycosides (strA), and phenicols (floR). This study indicated the widespread occurrence of MDR ESBLs-E. coli in dairy cattle farms. AMR surveillance of more dairy farms and identification of farm-level risk factors are important to mitigate the occurrence and spread of ARB of significant public health importance, such as ESBLs-E. coli.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Desta B Ensermu
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Molly Vancuren
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Barbara E Gillespie
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Doris H D'Souza
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Chika C Okafor
- Department of Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Guironnet A, Wiest L, Vulliet E. Improvement of the QuEChERS extraction step by matrix-dispersion effect and application on beta-lactams analysis in wastewater sludge by LC-MS/MS. Talanta 2022; 237:122923. [PMID: 34736660 DOI: 10.1016/j.talanta.2021.122923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023]
Abstract
In the last decade, beta-lactams use in veterinary and human medicine increased to represent today about 15% of the overall consumption. Beta-lactams tend to degrade and metabolize in the environment. Therefore, analytical methods must be sensitive enough to quantify low concentrations of the parent molecules and also allow detection of metabolites. This study presents the development of a modified QuEChERS method for the extraction of seven beta-lactams and one degradation product (Amoxicillin, Ampicillin, Cefapirin, Cefoperazone, Cefquinome, Ceftiofur, Cloxacillin, and Amoxicillin-Diketopiperazine) from sewage treatment plant sludge and their analysis by liquid chromatography coupled with tandem mass spectrometry. Before the QuEChERS extraction, a dispersion step of the sample with EDTA-treated sand was optimized and added, allowing to facilitate the exchanges between the matrix and the extraction solvent. Then, to decrease the interferences present in the extract, a fast and efficient pass-through SPE was implemented. The optimized method was validated and showed satisfactory performances, in adequacy with the analysis of beta-lactams in solid environmental matrices. Limits of quantification lower than 20 ng.g-1 for all analytes, high accuracy (96%-114% quantification on spiked samples nominal concentration) and interday precision (2%-12% RSD) were obtained. This method was then applied to eight sludge samples. Cefapirin and amoxicillin-diketopiperazine were detected in four samples each, at concentrations of 10.2-53.3 ng.g-1 and 3.0-9.5 ng.g-1 respectively. Thus, the developed method is very effective for the extraction of beta-lactams from environmental solid matrices.
Collapse
Affiliation(s)
- Alexandre Guironnet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France.
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| |
Collapse
|
10
|
Efficacy of Different Waste and By-Products from Forest and Food Industries in the Removal/Retention of the Antibiotic Cefuroxime. Processes (Basel) 2021. [DOI: 10.3390/pr9071151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Environmental pollution due to antibiotics is a serious problem. In this work, the adsorption and desorption of the antibiotic cefuroxime (CFX) were studied in four by-products/residues from the forestry and food industries. For this, batch-type experiments were carried out, adding increasing concentrations of CFX (from 0 to 50 µmol L−1) to 0.5 g of adsorbent. The materials with a pH higher than 9 (mussel shell and wood ash) were those that presented the highest adsorption percentages, from 71.2% (23.1 µmol kg−1) to 98.6% (928.0 µmol kg−1). For the rest of the adsorbents, the adsorption was also around 100% when the lowest concentrations of CFX were added, but the percentage dropped sharply when the highest dose of the antibiotic was incorporated. Adsorption data fitted well to the Langmuir and Freundlich models, with R2 greater than 0.9. Regarding desorption, the materials that presented the lowest values when the highest concentration of CFX was added were wood ash (0%) and mussel shell (2.1%), while pine bark and eucalyptus leaves presented the highest desorption (26.6% and 28.6%, respectively). Therefore, wood ash and mussel shell could be considered adsorbents with a high potential to be used in problems of environmental contamination by CFX.
Collapse
|
11
|
Rashid A, Mazhar SH, Zeng Q, Kiki C, Yu CP, Sun Q. Simultaneous analysis of multiclass antibiotic residues in complex environmental matrices by liquid chromatography with tandem quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122103. [PMID: 32305705 DOI: 10.1016/j.jchromb.2020.122103] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023]
Abstract
A simultaneous extraction and cleanup method was optimized and validated for the determination of 40 antibiotics from cephalosporin, fluoroquinolone, lincosamide, macrolide, nitroimidazole, quinolone, sulfonamide and tetracycline groups in sediments by liquid chromatography with tandem quadrupole mass spectrometry (LC-MS/MS). The method involved hydration of freeze-dried sediment sample (2.0 g) with 2.5 ml of 0.1 M Na-EDTA McIlvaine buffer and extraction with 5 ml of MeOH and MeCN (1:3 v/v) followed by dispersive solid phase extraction by using 100 mg mix of C18 and PSA (1:2 w/w) and 50 mg MgSO4 prior to LC-MS/MS analysis. The method was validated for 10, 20, 50 and 100 µg/kg spiking levels by using blank sediment sample obtained from a drinking water reservoir according to the guidelines of European Commission Decision (2002) 2002/657/EC. The method produced clean extracts with generally low matrix effect during LC-MS/MS analysis. The mean recoveries ranged between 24-162%, 48-151%, 51-159%, and 50-149% for 10, 20, 50 and 100 µg/kg spiking levels, respectively, with acceptable precision. The analytical method was sensitive enough to achieve 0.01-34.3 µg/kg and 0.03-115 µg/kg limits of detection and quantitation, respectively. The scope of the method was demonstrated by analyzing complex solid environmental matrices (chicken manure, swine manure, poultry feed and soil) spiked at 10, 20, 50 and 100 µg/kg levels. The method was also applied for the antibiotic analysis in samples with incurred residues. Different matrices in the order of the magnitude as sediments < poultry feed < swine manure < soil < chicken manure were detected with the residues of fluoroquinolone, macrolide, sulfonamide and tetracycline antibiotics.
Collapse
Affiliation(s)
- Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Nuclear Institute for Food and Agriculture (PAEC), Tarnab, Peshawar 25000, Pakistan.
| | - Sohaib H Mazhar
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiaoting Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
12
|
Li MM, Ray P, Knowlton KF, Pruden A, Xia K, Teets C, Du P. Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136310. [PMID: 32050366 DOI: 10.1016/j.scitotenv.2019.136310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Quantifying the fate of antibiotics and antibiotic resistance genes (ARGs) in response to physicochemical factors during storage of manure slurries will aid in efforts to reduce the spread of resistance when manure is land-applied. The objectives of this study were to determine the effects of temperature (10, 35, and 55 °C) and initial pH (5, 7, 9, and 12) on the removal of pirlimycin and prevalence of ARGs during storage of dairy manure slurries. We collected and homogenized feces and urine from five lactating dairy cows treated with pirlimycin and prepared slurries by mixing manure and sterile water. Aliquots (200 mL) of slurry were transferred and incubated in 400 mL glass beakers under different temperatures (10, 35, and 55 °C) or initial pH (5, 7, 9, and 12). Pirlimycin concentration and abundances of 16S rRNA, mefA, tet(W), and cfxA as indicators of total bacteria and ARGs corresponding to macrolide, tetracycline, and β-lactam resistance, respectively, were analyzed during manure incubation. The thermophilic environment (55 °C) increased the deconjugation and removal of pirlimycin, while the acidic shock at pH 5 increased deconjugation but inhibited removal of pirlimycin, suggesting that the chemical stability of pirlimycin could be affected by temperature and pH. The thermophilic environment decreased mefA relative abundance on day 7 and 28 (P = 0.02 and 0.04), which indicates that the bacteria that encoded mefA gene were not thermotolerant. Although mefA relative abundance was greater at the pH 9 shock than the rest of pH treatments on day 7 (P = 0.04), no significant pH effect was observed on day 28. The tet(W) abundance under initial pH 12 shock was less than other pH shocks on day 28 (P = 0.01), while no temperature effect was observed on day 28. There was no significant temperature and initial pH effect on cfxA abundance at any time point during incubation, implying that the bacteria that carrying cfxA gene are relatively insensitive to these environmental factors. Overall, directly raising temperature and pH can facilitate pirlimycin removal and decrease mefA and tet(W) relative abundances during storage of manure slurries.
Collapse
Affiliation(s)
- Meng M Li
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, USA.
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, UK
| | | | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Christy Teets
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, USA
| | - Pang Du
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
13
|
Li MM, Ray P, Teets C, Pruden A, Xia K, Knowlton KF. Short communication: Increasing temperature and pH can facilitate reductions of cephapirin and antibiotic resistance genes in dairy manure slurries. J Dairy Sci 2020; 103:2877-2882. [DOI: 10.3168/jds.2019-17453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/19/2019] [Indexed: 11/19/2022]
|
14
|
Oliver JP, Gooch CA, Lansing S, Schueler J, Hurst JJ, Sassoubre L, Crossette EM, Aga DS. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J Dairy Sci 2020; 103:1051-1071. [DOI: 10.3168/jds.2019-16778] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
|
15
|
Chen C, Pankow CA, Oh M, Heath LS, Zhang L, Du P, Xia K, Pruden A. Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments. ENVIRONMENT INTERNATIONAL 2019; 128:233-243. [PMID: 31059918 DOI: 10.1016/j.envint.2019.04.043] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 05/12/2023]
Abstract
Manure-derived amendments are commonly applied to soil, raising questions about whether antibiotic use in livestock could influence the soil resistome (collective antibiotic resistance genes (ARGs)) and ultimately contribute to the spread of antibiotic resistance to humans during food production. Here, we examined the metagenomes of soils amended with raw or composted manure generated from dairy cows administered pirlimycin and cephapirin (antibiotic) or no antibiotics (control) relative to unamended soils. Initial amendment (Day 1) with manure or compost significantly increased the diversity (richness) of ARGs in soils (p < 0.01) and resulted in distinct abundances of individual ARG types. Notably, initial amendment with antibiotic-manure significantly increased the total ARG relative abundances (per 16S rRNA gene) in the soils (2.21 × unamended soils, p < 0.001). After incubating 120 days, to simulate a wait period before crop harvest, 282 ARGs reduced 4.33-fold (median) up to 307-fold while 210 ARGs increased 2.89-fold (median) up to 76-fold in the antibiotic-manure-amended soils, resulting in reduced total ARG relative abundances equivalent to those of the unamended soils. We further assembled the metagenomic data and calculated resistome risk scores, which was recently defined as a relative index comparing co-occurrence of sequences corresponding to ARGs, mobile genetic elements, and putative pathogens on the same scaffold. Initial amendment of manure significantly increased the soil resistome risk scores, especially when generated by cows administered antibiotics, while composting reduced the effects and resulted in soil resistomes more similar to the background. The risk scores of manure-amended soils reduced to levels comparable to the unamended soils after 120 days. Overall, this study provides an integrated, high-resolution examination of the effects of prior antibiotic use, composting, and a 120-day wait period on soil resistomes following manure-derived amendment, demonstrating that all three management practices have measurable effects and should be taken into consideration in the development of policy and practice for mitigating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Chaoqi Chen
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Christine A Pankow
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Min Oh
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Pang Du
- Department of Statistics, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
16
|
Guron GKP, Arango-Argoty G, Zhang L, Pruden A, Ponder MA. Effects of Dairy Manure-Based Amendments and Soil Texture on Lettuce- and Radish-Associated Microbiota and Resistomes. mSphere 2019; 4:e00239-19. [PMID: 31068435 PMCID: PMC6506619 DOI: 10.1128/msphere.00239-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/14/2019] [Indexed: 11/20/2022] Open
Abstract
Dairy cattle are routinely treated with antibiotics, and the resulting manure or composted manure is commonly used as a soil amendment for crop production, raising questions regarding the potential for antibiotic resistance to propagate from "farm to fork." The objective of this study was to compare the microbiota and "resistomes" (i.e., carriage of antibiotic resistance genes [ARGs]) associated with lettuce leaf and radish taproot surfaces grown in different soils amended with dairy manure, compost, or chemical fertilizer only (control). Manure was collected from antibiotic-free dairy cattle (DC) or antibiotic-treated dairy cattle (DA), with a portion composted for parallel comparison. Amendments were applied to loamy sand or silty clay loam, and lettuce and radishes were cultivated to maturity in a greenhouse. Metagenomes were profiled via shotgun Illumina sequencing. Radishes carried a distinct ARG composition compared to that of lettuce, with greater relative abundance of total ARGs. Taxonomic species richness was also greater for radishes by 1.5-fold. The resistomes of lettuce grown with DC compost were distinct from those grown with DA compost, DC manure, or fertilizer only. Further, compost applied to loamy sand resulted in twofold-greater relative abundance of total ARGs on lettuce than when applied to silty clay loam. The resistomes of radishes grown with biological amendments were distinct from the corresponding fertilizer controls, but effects of composting or antibiotic use were not measureable. Cultivation in loamy sand resulted in higher species richness for both lettuce and radishes than when grown in silty clay loam by 2.2-fold and 1.2-fold, respectively, when amended with compost.IMPORTANCE A controlled, integrated, and replicated greenhouse study, along with comprehensive metagenomic analysis, revealed that multiple preharvest factors, including antibiotic use during manure collection, composting, biological soil amendment, and soil type, influence vegetable-borne resistomes. Here, radishes, a root vegetable, carried a greater load of ARGs and species richness than lettuce, a leafy vegetable. However, the lettuce resistome was more noticeably influenced by upstream antibiotic use and composting. Network analysis indicated that cooccurring ARGs and mobile genetic elements were almost exclusively associated with conditions receiving raw manure amendments, suggesting that composting could alleviate the mobility of manure-derived resistance traits. Effects of preharvest factors on associated microbiota and resistomes of vegetables eaten raw are worthy of further examination in terms of potential influence on human microbiomes and spread of antibiotic resistance. This research takes a step toward identifying on-farm management practices that can help mitigate the spread of agricultural sources of antibiotic resistance.
Collapse
Affiliation(s)
- Giselle K P Guron
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
17
|
Fogler K, Guron GKP, Wind LL, Keenum IM, Hession WC, Krometis LA, Strawn LK, Pruden A, Ponder MA. Microbiota and Antibiotic Resistome of Lettuce Leaves and Radishes Grown in Soils Receiving Manure-Based Amendments Derived From Antibiotic-Treated Cows. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Sharma P, Kumar D, Mutnuri S. UPLC-MS/MS method validation of ciprofloxacin in human urine: Application to biodegradability study in microbial fuel cell. Biomed Chromatogr 2018; 33:e4392. [PMID: 30239025 DOI: 10.1002/bmc.4392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 11/08/2022]
Abstract
To enable the reliable quantification of ciprofloxacin in human urine, a sensitive and selective assay based on liquid chromatography-tandem mass spectrometry was developed. The chromatographic separation of the ciprofloxacin was carried out on a Zorbex Eclipse C18 column using methanol and ammonium acetate as a mobile phase by the gradient elution method. The developed assay covered a wide range of concentrations (1.56-100 ng/mL) with a lower limit of detection of 0.76 ng/mL. Quantification was performed using the multiple reaction monitoring transitions 331.8/231 for ciprofloxacin and 362/318 for ofloxacin (internal standard). This assay was validated for linearity, accuracy, precision and recovery. The validated method was then applied to the biodegradability of ciprofloxacin (99%) from human urine in the microbial fuel cell.
Collapse
Affiliation(s)
- Priya Sharma
- BITS Pilani, KK Birla Goa Campus, Applied Environmental Biotechnology Laboratory, Zuarinagar, Goa, India
| | - Devendra Kumar
- BITS Pilani, KK Birla Goa Campus, Central Sophisticated Instrumentation Facility, Zuarinagar, Goa, India
| | - Srikanth Mutnuri
- BITS Pilani, KK Birla Goa Campus, Applied Environmental Biotechnology Laboratory, Zuarinagar, Goa, India
| |
Collapse
|
19
|
Ribeiro AR, Sures B, Schmidt TC. Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1153-1166. [PMID: 30029325 DOI: 10.1016/j.envpol.2018.06.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 05/21/2023]
Abstract
Due to their widespread occurrence in the aquatic environment, human and veterinary cephalosporin antibiotics have been studied as water pollutants. In order to characterize environmental risks of this compound class, this review evaluates relevant data about physicochemical properties, occurrence, ecotoxicity and degradation of cephalosporins. Although application of cephalosporins is rather low compared to other antibiotics and their environmental life-time is believed to be short (i.e. days), the available data is insufficient to draw conclusions on their environmental relevance. Few studies concerning the fate of cephalosporins in soil are available, while hydrolysis and photo-degradation are suggested as the main attenuation processes in the aquatic environment. Cephalosporins have been detected in different aqueous matrices in concentrations ranging from 0.30 ng L-1 to 0.03 mg L-1, with sewage and wastewater being the main matrices with positive findings. For wastewater treatment purposes, several technologies have been tested for the abatement of cephalosporins, including photolysis and adsorption. In most cases, the technology employed led to complete or significant removal (>95%) of parental drugs but few authors reported on cephalosporins' metabolites and transformation products. Furthermore, the present ecotoxicological data are insufficient for comprehensive ecological risk quotient calculations. Considering the total of 53 cephalosporins, effective values (EC, LC, NOAEC, NOAEL, etc.) are only available for around 30% of parental drugs and are very scarce for cyanobacteria, which is considered to be the most sensitive group of organisms to antibiotics. Furthermore, it has been demonstrated that cephalosporins' transformation products can be more toxic and more persistent than the parental drugs. Few investigations considering this possibility are available. Consequently, more effort on ecotoxicological data generation and verification of biological inactivation of cephalosporins-related products is needed. Likewise, the lack of natural depletion rates and knowledge gaps on mixture effects for cephalosporins' degradation and toxicity have to be overcome.
Collapse
Affiliation(s)
- Alyson R Ribeiro
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany.
| | - Bernd Sures
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 4514, Essen, Germany.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany.
| |
Collapse
|
20
|
Wind L, Krometis LA, Hession WC, Chen C, Du P, Jacobs K, Xia K, Pruden A. Fate of Pirlimycin and Antibiotic-Resistant Fecal Coliforms in Field Plots Amended with Dairy Manure or Compost during Vegetable Cultivation. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:436-444. [PMID: 29864178 DOI: 10.2134/jeq2017.12.0491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identification of agricultural practices that mitigate the environmental dissemination of antibiotics is a key need in reducing the prevalence of antibiotic-resistant bacteria of human health concern. Here, we aimed to compare the effects of crop (lettuce [ L.] or radish [ L.]), soil amendment type (inorganic fertilizer, raw dairy manure, composted dairy manure, or no amendment), and prior antibiotic use history (no antibiotics during previous lactation cycles vs. manure mixed from cows administered pirlimycin or cephapirin) of manure-derived amendments on the incidence of culturable antibiotic-resistant fecal coliforms in agricultural soils through a controlled field-plot experiment. Antibiotic-resistant culturable fecal coliforms were recoverable from soils across all treatments immediately after application, although persistence throughout the experiment varied by antibiotic class and time. The magnitude of observed coliform counts differed by soil amendment type. Compost-amended soils had the highest levels of cephalosporin-resistant fecal coliforms, regardless of whether the cows from which the manure was derived were administered antibiotics. Samples from control plots or those treated with inorganic fertilizer trended toward lower counts of resistant coliforms, although these differences were not statistically significant. No statistical differences were observed between soils that grew leafy (lettuce) versus rooted (radish) crops. Only pirlimycin was detectable past amendment application in raw manure-amended soils, dissipating 12 to 25% by Day 28. Consequently, no quantifiable correlations between coliform count and antibiotic magnitude could be identified. This study demonstrates that antibiotic-resistant fecal coliforms can become elevated in soils receiving manure-derived amendments, but that a variety of factors likely contribute to their long-term persistence under typical field conditions.
Collapse
|
21
|
Wepking C, Avera B, Badgley B, Barrett JE, Franklin J, Knowlton KF, Ray PP, Smitherman C, Strickland MS. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities. Proc Biol Sci 2018; 284:rspb.2016.2233. [PMID: 28356447 DOI: 10.1098/rspb.2016.2233] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 01/08/2023] Open
Abstract
Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the β-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function.
Collapse
Affiliation(s)
- Carl Wepking
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bethany Avera
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80521, USA
| | - Brian Badgley
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - John E Barrett
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Josh Franklin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.,Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Partha P Ray
- Animal, Dairy and Food Chain Sciences, School of Agriculture, Policy and Development, University of Reading, Early Gate, Reading RG6 6AR, UK
| | - Crystal Smitherman
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
22
|
Sawicki T, Juśkiewicz J, Wiczkowski W. Using the SPE and Micro-HPLC-MS/MS Method for the Analysis of Betalains in Rat Plasma after Red Beet Administration. Molecules 2017; 22:molecules22122137. [PMID: 29207522 PMCID: PMC6149673 DOI: 10.3390/molecules22122137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to develop a simple and reproducible method for the qualitative and quantitative analysis of betalains in plasma samples, based on Solid Phase Extraction (SPE) and micro-high performance liquid chromatography coupled with mass spectrometry (micro-HPLC-MS/MS). The eight betalain compounds detected and quantified were characterized in the fortified rat blood plasma samples. The developed method showed a good coefficient of determination (R2 = 0.999), good recovery, precision, and appropriate limits of detection (LOD) and quantification (LOQ) for these compounds. Application of this method for the treatment of rat plasma samples collected after the betalain preparation administration, for the first time, revealed the presence of native betalains and their metabolites in plasma samples. Moreover, among them, betanin (2.14 ± 0.06 µmol/L) and isobetanin (3.28 ± 0.04 µmol/L) were found at the highest concentration. The results indicated that the combination of an SPE method with a micro-HPLC-MS/MS analysis may be successfully applied for the determination of betalains in the blood plasma.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
23
|
Ray P, Chen C, Knowlton KF, Pruden A, Xia K. Fate and Effect of Antibiotics in Beef and Dairy Manure during Static and Turned Composting. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:45-54. [PMID: 28177414 DOI: 10.2134/jeq2016.07.0269] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Manure composting has general benefits for production of soil amendment, but the effects of composting on antibiotic persistence and effects of antibiotics on the composting process are not well-characterized, especially for antibiotics commonly used in dairy cattle. This study provides a comprehensive, head-to-head, replicated comparison of the effect of static and turned composting on typical antibiotics used in beef and dairy cattle in their actual excreted form and corresponding influence on composting efficacy. Manure from steers (with or without chlortetracycline, sulfamethazine, and tylosin feeding) and dairy cows (with or without pirlimycin and cephapirin administration) were composted at small scale (wet mass: 20-22 kg) in triplicate under static and turned conditions adapted to represent US Food and Drug Administration guidelines. Thermophilic temperature (>55°C) was attained and maintained for 3 d in all composts, with no measureable effect of compost method on the pattern, rate, or extent of disappearance of the antibiotics examined, except tylosin. Disappearance of all antibiotics, except pirlimycin, followed bi-phasic first-order kinetics. However, individual antibiotics displayed different fate patterns in response to the treatments. Reduction in concentration of chlortetracycline (71-84%) and tetracycline (66-72%) was substantial, while near-complete removal of sulfamethazine (97-98%) and pirlimycin (100%) was achieved. Tylosin removal during composting was relatively poor. Both static and turned composting were generally effective for reducing most beef and dairy antibiotic residuals excreted in manure, with no apparent negative impact of antibiotics on the composting process, but with some antibiotics apparently more recalcitrant than others.
Collapse
|