1
|
Poirier N, Ménétrier F, Moreno J, Boichot V, Heydel JM, Didierjean C, Canivenc-Lavier MC, Canon F, Neiers F, Schwartz M. Rattus norvegicus Glutathione Transferase Omega 1 Localization in Oral Tissues and Interactions with Food Phytochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5887-5897. [PMID: 38441878 DOI: 10.1021/acs.jafc.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glutathione transferases are xenobiotic-metabolizing enzymes with both glutathione-conjugation and ligandin roles. GSTs are present in chemosensory tissues and fluids of the nasal/oral cavities where they protect tissues from exogenous compounds, including food molecules. In the present study, we explored the presence of the omega-class glutathione transferase (GSTO1) in the rat oral cavity. Using immunohistochemistry, GSTO1 expression was found in taste bud cells of the tongue epithelium and buccal cells of the oral epithelium. Buccal and lingual extracts exhibited thiol-transferase activity (4.9 ± 0.1 and 1.8 ± 0.1 μM/s/mg, respectively). A slight reduction from 4.9 ± 0.1 to 4.2 ± 0.1 μM/s/mg (p < 0.05; Student's t test) was observed in the buccal extract with 100 μM GSTO1-IN-1, a specific inhibitor of GSTO1. RnGSTO1 exhibited the usual activities of omega GSTs, i.e., thiol-transferase (catalytic efficiency of 8.9 × 104 M-1·s-1), and phenacyl-glutathione reductase (catalytic efficiency of 8.9 × 105 M-1·s-1) activities, similar to human GSTO1. RnGSTO1 interacts with food phytochemicals, including bitter compounds such as luteolin (Ki = 3.3 ± 1.9 μM). Crystal structure analysis suggests that luteolin most probably binds to RnGSTO1 ligandin site. Our results suggest that GSTO1 could interact with food phytochemicals in the oral cavity.
Collapse
Affiliation(s)
- Nicolas Poirier
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Franck Ménétrier
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Jade Moreno
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Valentin Boichot
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Jean-Marie Heydel
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | | | | | - Francis Canon
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Fabrice Neiers
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Mathieu Schwartz
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| |
Collapse
|
2
|
Bocedi A, Gambardella G, Cattani G, Notari S, Ricci G. Erythrocyte glutathione transferase. A sensitive Up-Down biomarker of environmental and industrial pollution. Arch Biochem Biophys 2023; 750:109786. [PMID: 37839788 DOI: 10.1016/j.abb.2023.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Erythrocyte glutathione transferase is a well-known biomarker of environmental pollution. Examination of the extensive scientific literature discovers an atypical and very interesting property of this enzyme which may reveal a chronic exposition to many contaminants but in some cases even an acute and short-term dangerous contamination. This review also underlines the peculiar molecular and kinetic properties of this enzyme which makes it unique in the panorama of enzymes used as biomarker for environmental contamination.
Collapse
Affiliation(s)
- Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Giorgia Gambardella
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Giada Cattani
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Sara Notari
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
3
|
Schwartz M, Boichot V, Fraichard S, Muradova M, Senet P, Nicolai A, Lirussi F, Bas M, Canon F, Heydel JM, Neiers F. Role of Insect and Mammal Glutathione Transferases in Chemoperception. Biomolecules 2023; 13:biom13020322. [PMID: 36830691 PMCID: PMC9953322 DOI: 10.3390/biom13020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glutathione transferases (GSTs) are ubiquitous key enzymes with different activities as transferases or isomerases. As key detoxifying enzymes, GSTs are expressed in the chemosensory organs. They fulfill an essential protective role because the chemosensory organs are located in the main entry paths of exogenous compounds within the body. In addition to this protective function, they modulate the perception process by metabolizing exogenous molecules, including tastants and odorants. Chemosensory detection involves the interaction of chemosensory molecules with receptors. GST contributes to signal termination by metabolizing these molecules. By reducing the concentration of chemosensory molecules before receptor binding, GST modulates receptor activation and, therefore, the perception of these molecules. The balance of chemoperception by GSTs has been shown in insects as well as in mammals, although their chemosensory systems are not evolutionarily connected. This review will provide knowledge supporting the involvement of GSTs in chemoperception, describing their localization in these systems as well as their enzymatic capacity toward odorants, sapid molecules, and pheromones in insects and mammals. Their different roles in chemosensory organs will be discussed in light of the evolutionary advantage of the coupling of the detoxification system and chemosensory system through GSTs.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Valentin Boichot
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Stéphane Fraichard
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Mariam Muradova
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Frederic Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Mathilde Bas
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Francis Canon
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Marie Heydel
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanims (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
4
|
Schwartz M, Brignot H, Feron G, Hummel T, Zhu Y, von Koskull D, Heydel JM, Lirussi F, Canon F, Neiers F. Role of human salivary enzymes in bitter taste perception. Food Chem 2022; 386:132798. [PMID: 35344726 DOI: 10.1016/j.foodchem.2022.132798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
The molecules that elicit taste sensation are perceived by interacting with the taste receptors located in the taste buds. Enzymes involved in the detoxification processes are found in saliva as well as in type II cells, where taste receptors, including bitter taste receptors, are located. These enzymes are known to interact with a large panel of molecules. To explore a possible link between these enzymes and bitter taste perception, we demonstrate that salivary glutathione transferases (GSTA1 and GSTP1) can metabolize bitter molecules. To support these abilities, we solve three X-ray structures of these enzymes in complexes with isothiocyanates. Salivary GSTA1 and GSTP1 are expressed in a large panel of subjects. Additionally, GSTA1 levels in the saliva of people suffering from taste disorders are significantly lower than those in the saliva of the control group.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Hélène Brignot
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Gilles Feron
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Yunmeng Zhu
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Dorothee von Koskull
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Jean-Marie Heydel
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Frédéric Lirussi
- PACE, Plateau d'Analyses Chromatographiques et Elémentaires, Department of Pharmacology-Toxicology & Metabolomics, University hospital of Besançon (CHU), 2 Boulevard Fleming, 25030, BESANCON, France; INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté, Dijon, France
| | - Francis Canon
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France
| | - Fabrice Neiers
- Université de Bourgogne-Franche Comté, CNRS, INRAE, Centre des Sciences du Goût et de l'Alimentation (CSGA), Dijon, France.
| |
Collapse
|
5
|
Schwartz M, Neiers F, Charles JP, Heydel JM, Muñoz-González C, Feron G, Canon F. Oral enzymatic detoxification system: Insights obtained from proteome analysis to understand its potential impact on aroma metabolization. Compr Rev Food Sci Food Saf 2021; 20:5516-5547. [PMID: 34653315 DOI: 10.1111/1541-4337.12857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
The oral cavity is an entry path into the body, enabling the intake of nutrients but also leading to the ingestion of harmful substances. Thus, saliva and oral tissues contain enzyme systems that enable the early neutralization of xenobiotics as soon as they enter the body. Based on recently published oral proteomic data from several research groups, this review identifies and compiles the primary detoxification enzymes (also known as xenobiotic-metabolizing enzymes) present in saliva and the oral epithelium. The functions and the metabolic activity of these enzymes are presented. Then, the activity of these enzymes in saliva, which is an extracellular fluid, is discussed with regard to the salivary parameters. The next part of the review presents research evidencing oral metabolization of aroma compounds and the putative involved enzymes. The last part discusses the potential role of these enzymatic reactions on the perception of aroma compounds in light of recent pieces of evidence of in vivo oral metabolization of aroma compounds affecting their release in mouth and their perception. Thus, this review highlights different enzymes appearing as relevant to explain aroma metabolism in the oral cavity. It also points out that further works are needed to unravel the effect of the oral enzymatic detoxification system on the perception of food flavor in the context of the consumption of complex food matrices, while considering the impact of food oral processing. Thus, it constitutes a basis to explore these biochemical mechanisms and their impact on flavor perception.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Philippe Charles
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Carolina Muñoz-González
- Instituto de investigación en Ciencias de la Alimentación (CIAL), (CSIC-UAM), C/ Nicolás Cabrera, Madrid, Spain
| | - Gilles Feron
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
6
|
Schwartz M, Neiers F, Feron G, Canon F. The Relationship Between Salivary Redox, Diet, and Food Flavor Perception. Front Nutr 2021; 7:612735. [PMID: 33585536 PMCID: PMC7876224 DOI: 10.3389/fnut.2020.612735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
The mouth is the gateway for entrance of food and microorganisms into the organism. The oral cavity is bathed by saliva, which is thus the first fluid that food and microorganisms will face after their entrance. As a result, saliva plays different functions, including lubrication, predigestion, protection, detoxification, and even transport of taste compounds to chemoreceptors located in the taste buds. To ensure its function of protection, saliva contains reactive harmful compounds such as reactive oxygen species that are controlled and neutralized by the antioxidant activity of saliva. Several antioxidant molecules control the production of molecules such as reactive oxygen compounds, neutralize them and/or repair the damage they have caused. Therefore, a balance between reactive oxidant species and antioxidant compounds exists. At the same time, food can also contain antioxidant compounds, which can participate in the equilibrium of this balance. Numerous studies have investigated the effects of different food components on the antioxidant capacity of saliva that correspond to the ability of saliva to neutralize reactive oxygen species. Contradictory results have sometimes been obtained. Moreover, some antioxidant compounds are also cofactors of enzymatic reactions that affect flavor compounds. Recent studies have considered the salivary antioxidant capacity to explain the release of flavor compounds ex vivo or in vivo. This article aims to review the effect of food on the antioxidant capacity of saliva and the impact of salivary antioxidant capacity on flavor perception after a brief presentation of the different molecules involved.
Collapse
Affiliation(s)
| | | | | | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Dijon, France
| |
Collapse
|
7
|
Schwartz M, Neiers F, Feron G, Canon F. Activités oxydo-réductrices dans la salive : modulation par l’alimentation et importance pour la perception sensorielle des aliments. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2020. [DOI: 10.1016/j.cnd.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Glutathione Transferase P1-1 an Enzyme Useful in Biomedicine and as Biomarker in Clinical Practice and in Environmental Pollution. Nutrients 2019; 11:nu11081741. [PMID: 31357662 PMCID: PMC6723968 DOI: 10.3390/nu11081741] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
Glutathione transferase P1-1 (GSTP1-1) is expressed in some human tissues and is abundant in mammalian erythrocytes (here termed e-GST). This enzyme is able to detoxify the cell from endogenous and exogenous toxic compounds by using glutathione (GSH) or by acting as a ligandin. This review collects studies that propose GSTP1-1 as a useful biomarker in different fields of application. The most relevant studies are focused on GSTP1-1 as a biosensor to detect blood toxicity in patients affected by kidney diseases. In fact, this detoxifying enzyme is over-expressed in erythrocytes when unusual amounts of toxins are present in the body. Here we review articles concerning the level of GST in chronic kidney disease patients, in maintenance hemodialysis patients and to assess dialysis adequacy. GST is also over-expressed in autoimmune disease like scleroderma, and in kidney transplant patients and it may be used to check the efficiency of transplanted kidneys. The involvement of GSTP in the oxidative stress and in other human pathologies like cancer, liver and neurodegenerative diseases, and psychiatric disorders is also reported. Promising applications of e-GST discussed in the present review are its use for monitoring human subjects living in polluted areas and mammals for veterinary purpose.
Collapse
|
9
|
Yu J, Yu Y, Li Q, Chen M, Shen H, Zhang R, Song M, Hu W. Comprehensive analysis of miRNA profiles reveals the role of Schistosoma japonicum miRNAs at different developmental stages. Vet Res 2019; 50:23. [PMID: 30947738 PMCID: PMC6449929 DOI: 10.1186/s13567-019-0642-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis is an important zoonotic disease affecting up to 40 kinds of animals and 250 million people. It has been reported that the miRNAs play a role in the metabolism, differentiation, development and reproduction in many organisms. However, the roles of miRNAs regulating the development, maturation and production in schistosome in both females and males remains unclear. Here we present the dynamic transcriptome analysis of all 79 known Schistosoma japonicum miRNAs from pairing to production, including 14 days post-infection (dpi), 16, 18, 20, 22, 24, 26, 28 dpi female and male, by small RNA sequencing. The miRNA expression profiles showed time-related characteristics in male and female from paring to production, which could be clustered into three patterns, characterized by pairing stage highly expressed (cluster 1), maturating stage highly expressed (cluster 2), and egg producing stage highly expressed (cluster 3). The enrichment of miRNA cluster targeted genes in female and male were distinctly different. Network analysis of miRNAs and their target regulation showed that cluster 1 had 15 miRNAs involved in the regulation of interaction, communication, immune response in female–male and parasite–host. The other 11 miRNAs were involved in gender differentiation and the meiotic cell cycle process. In cluster 2, 11 miRNAs were involved in development and sexual maturation. In cluster 3, 45 miRNAs possibly regulate metabolism and synthesis of the substance for egg production. Analysis of the miRNA regulation network would contribute to understanding the molecular mechanism in S. japonicum development and egg production.
Collapse
Affiliation(s)
- Jie Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qing Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Muxin Chen
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, China
| | - Haimo Shen
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, China
| | - RuiXiang Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. .,Heilongjiang Key Laboratory for Zoonosis, Harbin, 150030, China.
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, China.
| |
Collapse
|
10
|
Canon F, Neiers F, Guichard E. Saliva and Flavor Perception: Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7873-7879. [PMID: 29962207 DOI: 10.1021/acs.jafc.8b01998] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reports the main trends and perspectives related to the current understanding of the relationships between saliva and flavor perception. Saliva is a key factor in flavor perception and controls the transport of flavor molecules to their receptors, their adsorption onto the mouth surfaces (i.e., oral mucosa), their metabolism by enzymatic modification, and the friction force in the oral cavity. The proteins in free saliva or in the mucosal pellicle contribute to flavor perception by interacting with or metabolizing flavor compounds. Most of these reactions were observed when using fresh whole saliva; however, they were absent or less frequently observed when using artificial saliva or depleted/frozen whole saliva. There is a need to better understand the role of protein aggregates in flavor perception. Within humans, there is great interindividual variation in salivary composition, which has been related to differences in flavor perception. However, the relative role of salivary proteins and the microbiota should be deeply investigated together with the impact of their composition on individual perception during life. Finally, future results must also consider cross-modal interactions at the brain level.
Collapse
Affiliation(s)
- Francis Canon
- UMR Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA) , Université Bourgogne Franche-Comté , 21000 Dijon , France
| | - Fabrice Neiers
- UMR Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA) , Université Bourgogne Franche-Comté , 21000 Dijon , France
| | - Elisabeth Guichard
- UMR Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA) , Université Bourgogne Franche-Comté , 21000 Dijon , France
| |
Collapse
|
11
|
Bocedi A, Fabrini R, Lai O, Alfieri L, Roncoroni C, Noce A, Pedersen JZ, Ricci G. Erythrocyte glutathione transferase: a general probe for chemical contaminations in mammals. Cell Death Discov 2016; 2:16029. [PMID: 27551520 PMCID: PMC4979413 DOI: 10.1038/cddiscovery.2016.29] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 11/09/2022] Open
Abstract
Glutathione transferases (GSTs) are enzymes devoted to the protection of cells against many different toxins. In erythrocytes, the isoenzyme (e-GST) mainly present is GSTP1-1, which is overexpressed in humans in case of increased blood toxicity, as it occurs in nephrophatic patients or in healthy subjects living in polluted areas. The present study explores the possibility that e-GST may be used as an innovative and highly sensitive biomarker of blood toxicity also for other mammals. All distinct e-GSTs from humans, Bos taurus (cow), Sus scrofa (pig), Capra hircus (goat), Equus caballus (horse), Equus asinus (donkey) and Ovis aries (sheep), show very similar amino acid sequences, identical kinetics and stability properties. Reference values for e-GST in all these mammals reared in controlled farms span from 3.5±0.2 U/gHb in the pig to 17.0±0.9 U/gHb in goat; such activity levels can easily be determined with high precision using only a few microliters of whole blood and a simple spectrophotometric assay. Possibly disturbing factors have been examined to avoid artifact determinations. This study provides the basis for future screening studies to verify if animals have been exposed to toxicologic insults. Preliminary data on cows reared in polluted areas show increased expression of e-GST, which parallels the results found for humans.
Collapse
Affiliation(s)
- A Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma 'Tor Vergata' , Rome, Italy
| | - R Fabrini
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma 'Tor Vergata' , Rome, Italy
| | - O Lai
- Direzione Operativa Produzioni Zootecniche, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri' , Rome, Italy
| | - L Alfieri
- Direzione Operativa Produzioni Zootecniche, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri' , Rome, Italy
| | - C Roncoroni
- Direzione Operativa Produzioni Zootecniche, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana 'M. Aleandri' , Rome, Italy
| | - A Noce
- Unità di Nefrologia e Ipertensione, Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma 'Tor Vergata' , Rome, Italy
| | - J Z Pedersen
- Dipartimento di Biologia, Università degli Studi di Roma 'Tor Vergata' , Rome, Italy
| | - G Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma 'Tor Vergata' , Rome, Italy
| |
Collapse
|
12
|
Abstract
The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metalation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to allow the discrimination of network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joshua D Chandler
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Chandler JD, Day BJ. Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health. Free Radic Res 2015; 49:695-710. [PMID: 25564094 DOI: 10.3109/10715762.2014.1003372] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Thiocyanate (SCN(-)) is a ubiquitous molecule in mammalian biology, reaching up to mM concentrations in extracellular fluids. Two- electron oxidation of SCN(-) by H2O2 produces hypothiocyanous acid (HOSCN), a potent anti-microbial species. This reaction is catalyzed by chordate peroxidases (e.g., myeloperoxidase and lactoperoxidase), occurring in human secretory mucosa, including the oral cavity, airway, and alimentary tract, and regulates resident and transient flora as part of innate immunity. Increasing SCN(-) levels limits the concentrations of a family of 2-electron oxidants (H2O2, hypohalous acids, and haloamines) in favor of HOSCN formation, altering the oxidative impact on host tissue by substitution of repairable thiol and selenol oxidations instead of biomolecule degradation. This fine-tuning of inflammatory oxidation paradoxically associates with maintained host defense and decreased host injury during infections, due in part to phylogenetic differences in the thioredoxin reductase system between mammals and their pathogens. These differences could be exploited by pharmacologic use of SCN(-). Recent preclinical studies have identified anti-microbial and anti-inflammatory effects of SCN(-) in pulmonary and cardiovascular animal models, with implications for treatment of infectious lung disease and atherogenesis. Further research is merited to expand on these findings and identify other diseases where SCN(-) may be of use. High oral bioavailability and an increased knowledge of the biochemical effects of SCN(-) on a subset of pro-inflammatory reactions suggest clinical utility.
Collapse
|