1
|
Nocentini A, Di Porzio A, Bonardi A, Bazzicalupi C, Petreni A, Biver T, Bua S, Marzano S, Amato J, Pagano B, Iaccarino N, De Tito S, Amente S, Supuran CT, Randazzo A, Gratteri P. Development of a multi-targeted chemotherapeutic approach based on G-quadruplex stabilisation and carbonic anhydrase inhibition. J Enzyme Inhib Med Chem 2024; 39:2366236. [PMID: 38905127 PMCID: PMC11195807 DOI: 10.1080/14756366.2024.2366236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/02/2024] [Indexed: 06/23/2024] Open
Abstract
A novel class of compounds designed to hit two anti-tumour targets, G-quadruplex structures and human carbonic anhydrases (hCAs) IX and XII is proposed. The induction/stabilisation of G-quadruplex structures by small molecules has emerged as an anticancer strategy, disrupting telomere maintenance and reducing oncogene expression. hCAs IX and XII are well-established anti-tumour targets, upregulated in many hypoxic tumours and contributing to metastasis. The ligands reported feature a berberine G-quadruplex stabiliser scaffold connected to a moiety inhibiting hCAs IX and XII. In vitro experiments showed that our compounds selectively stabilise G-quadruplex structures and inhibit hCAs IX and XII. The crystal structure of a telomeric G-quadruplex in complex with one of these ligands was obtained, shedding light on the ligand/target interaction mode. The most promising ligands showed significant cytotoxicity against CA IX-positive HeLa cancer cells in hypoxia, and the ability to stabilise G-quadruplexes within tumour cells.
Collapse
Affiliation(s)
- Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Carla Bazzicalupi
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Andrea Petreni
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Bua
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Oner E, Al-Khafaji K, Mezher MH, Demirhan I, Suhail Wadi J, Belge Kurutas E, Yalin S, Choowongkomon K. Investigation of berberine and its derivatives in Sars Cov-2 main protease structure by molecular docking, PROTOX-II and ADMET methods: in machine learning and in silico study. J Biomol Struct Dyn 2023; 41:9366-9381. [PMID: 36369803 DOI: 10.1080/07391102.2022.2142848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022]
Abstract
Bioactive compounds found in plants also have pharmacological antiviral effects. Berberine (BBR), an alkaloid found naturally in plants, is one of the phytochemicals with a wide range of biological activities, including antiviral, anticancer, anti-inflammatory and anti-inflammatory. In this study, we firstly aimed to predict pIC50 values for selcted compounds and then extract the binding patterns of berberine and its derivatives in the Sars Cov-2 Master Protease structure via employing molecular docking approache. Our results showed that berberine and its derivatives have good binding affinities towared Sars Cov2 main protease protein. Based on docking results the pharamaccokinetic studies for berberine, berberrubine, demethylen-berberine, jatrorrhizin, and thalifendine, were conducted and showed a good pharamacokinetic properties as an oral drugs. For deep inspection, we utiilized molecular dynmaics simulation to examine the Sars Cov2 main protease-ligand stabilities. The molecular dynamics simulation and PCA investigations revealed that thalifendine have a strong willing to act as good bindinder to SARS-CoV-2 protease. Further, the network based pharamacology showed that these drugs mediate different pathways such as human T-cell leukemia virus 1 infection, viral carcinogenesis, human immunodeficiency virus 1 infection, kaposi sarcoma-associated herpesvirus infection and epstein-Barr virus infection.The findings of this study have an important recomendation for thalifendine for more in vivo and in vitro studies to work.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Erkan Oner
- Departmant of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Khattab Al-Khafaji
- Department of Biochemistry, Faculty of Science, Kastsart University, Bangkok, Thailand
- College of Dentistry, The University of Mashreq, Baghdad, Iraq
| | - Mezher H Mezher
- Department of Computer Technique Engineering, Islamic university, Babel, Iraq
| | - Ilter Demirhan
- Department of Electronic-Automation, Vocational School of Health Sciences, HarranUniversity, Sanlıurfa, Turkey
| | | | - Ergul Belge Kurutas
- Department of Biochemistry, Faculty of Medicine, Sutcu Imam University, Kahramanmaras, Turkey
| | - Serap Yalin
- Departmant of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | |
Collapse
|
3
|
Nawrot R, Warowicka A, Rudzki PJ, Musidlak O, Dolata KM, Musijowski J, Stolarczyk EU, Goździcka-Józefiak A. Combined Protein and Alkaloid Research of Chelidonium majus Latex Reveals CmMLP1 Accompanied by Alkaloids with Cytotoxic Potential to Human Cervical Carcinoma Cells. Int J Mol Sci 2021; 22:ijms222111838. [PMID: 34769268 PMCID: PMC8584587 DOI: 10.3390/ijms222111838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Chelidonium majus L. is a latex-bearing plant used in traditional folk medicine to treat human papillomavirus (HPV)-caused warts, papillae, and condylomas. Its latex and extracts are rich in many low-molecular compounds and proteins, but there is little or no information on their potential interaction. We describe the isolation and identification of a novel major latex protein (CmMLP1) composed of 147 amino acids and present a model of its structure containing a conserved hydrophobic cavity with high affinity to berberine, 8-hydroxycheleritrine, and dihydroberberine. CmMLP1 and the accompanying three alkaloids were present in the eluted chromatographic fractions of latex. They decreased in vitro viability of human cervical cancer cells (HPV-negative and HPV-positive). We combined, for the first time, research on macromolecular and low-molecular-weight compounds of latex-bearing plants in contrast to other studies that investigated proteins and alkaloids separately. The observed interaction between latex protein and alkaloids may influence our knowledge on plant defense. The proposed toolbox may help in further understanding of plant disease resistance and in pharmacological research.
Collapse
Affiliation(s)
- Robert Nawrot
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.M.); (K.M.D.); (A.G.-J.)
- Correspondence: ; Tel.: +48-61-829-5931
| | - Alicja Warowicka
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Piotr Józef Rudzki
- Łukasiewicz Research Network—Pharmaceutical Research Institute, Rydygiera Street 8, 01-793 Warsaw, Poland; (P.J.R.); (J.M.); (E.U.S.)
| | - Oskar Musidlak
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.M.); (K.M.D.); (A.G.-J.)
| | - Katarzyna Magdalena Dolata
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.M.); (K.M.D.); (A.G.-J.)
| | - Jacek Musijowski
- Łukasiewicz Research Network—Pharmaceutical Research Institute, Rydygiera Street 8, 01-793 Warsaw, Poland; (P.J.R.); (J.M.); (E.U.S.)
| | - Elżbieta Urszula Stolarczyk
- Łukasiewicz Research Network—Pharmaceutical Research Institute, Rydygiera Street 8, 01-793 Warsaw, Poland; (P.J.R.); (J.M.); (E.U.S.)
| | - Anna Goździcka-Józefiak
- Molecular Virology Research Unit, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (O.M.); (K.M.D.); (A.G.-J.)
| |
Collapse
|
4
|
Floriano BF, Carvalho T, Lopes TZ, Takahashi LAU, Rahal P, Tedesco AC, Calmon MF. Effect of berberine nanoemulsion Photodynamic therapy on cervical carcinoma cell line. Photodiagnosis Photodyn Ther 2021; 33:102174. [PMID: 33401021 DOI: 10.1016/j.pdpdt.2020.102174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022]
Abstract
Cervical carcinoma is the most common gynecological cancer among young and adult women. There has been increasing interest in natural sources for cervical carcinoma treatment, especially for active compounds from plant extracts as antineoplastic agents. Berberine is an example of one these promising natural products. It is a natural isoquinoline alkaloid and comes from plants, such as Berbis, Coptis, and Hydrastis. It is widely used in Chinese medicine and has demonstrated activity against various cancer cell lines. This work aims to analyze the efficiency of berberine-containing nanoemulsions as photosensitizing agents in photodynamic therapy and their interaction with cervical carcinoma cells and immortalized human keratinocyte cell line. Among all groups tested, berberine nanoemulsions combined with photodynamic therapy induced the most statistically significant phototoxicity in the evaluated cell lines. Fluorescence microscopy demonstrated that the compound was present for up to 48 h when berberine nanoemulsions were used. The reactive oxygen species assay showed an increase in reactive oxygen species in the two studied cell lines after treatment of berberine-containing nanoemulsion combined with photodynamic therapy. The autophagy trial showed significant increases in cell death when berberine-containing nanoemulsion treatment was combined with photodynamic therapy when compared to trichostatin A treatment as a positive control. However, caspase-3 activity did not significantly increase in cervical carcinoma cells and immortalized human keratinocyte cell line. The results suggest that nanoemulsions with berberine have potential for use as photosensitizing agents in photodynamic therapy to treat cervical carcinoma.
Collapse
Affiliation(s)
- Barbara Freitas Floriano
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Tamara Carvalho
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Tairine Zara Lopes
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Luandra Aparecida Unten Takahashi
- Department of Chemistry, Center for Nanotechnology and Tissue Engineering, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Paula Rahal
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center for Nanotechnology and Tissue Engineering, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, São Paulo, Brazil
| | - Marília Freitas Calmon
- UNESP, São Paulo State University, IBILCE - Institute of Biosciences, Humanities and Exact Sciences, Department of Biology, Rua Cristóvão Colombo, 2265 - Bairro Jardim Nazareth, CEP 15054-010, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Abstract
Plants are a rich source of new antiviral, pharmacologically active agents. The naturally occurring plant alkaloid berberine (BBR) is one of the phytochemicals with a broad range of biological activity, including anticancer, anti-inflammatory and antiviral activity. BBR targets different steps in the viral life cycle and is thus a good candidate for use in novel antiviral drugs and therapies. It has been shown that BBR reduces virus replication and targets specific interactions between the virus and its host. BBR intercalates into DNA and inhibits DNA synthesis and reverse transcriptase activity. It inhibits replication of herpes simplex virus (HSV), human cytomegalovirus (HCMV), human papillomavirus (HPV), and human immunodeficiency virus (HIV). This isoquinoline alkaloid has the ability to regulate the MEK-ERK, AMPK/mTOR, and NF-κB signaling pathways, which are necessary for viral replication. Furthermore, it has been reported that BBR supports the host immune response, thus leading to viral clearance. In this short review, we focus on the most recent studies on the antiviral properties of berberine and its derivatives, which might be promising agents to be considered in future studies in the fight against the current pandemic SARS-CoV-2, the virus that causes COVID-19.
Collapse
|
6
|
Patel RV, Mistry BM, Syed R, Parekh NM, Shin HS. Sulfonylpiperazines based on a flavone as antioxidant and cytotoxic agents. Arch Pharm (Weinheim) 2019; 352:e1900051. [PMID: 31339585 DOI: 10.1002/ardp.201900051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/02/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Chrysin-based sulfonylpiperazines 7a-k were synthesized and investigated for their in vitro free radical scavenging potential as well as cytotoxic efficacies against selected cancer cell lines. Cytotoxicity of the new compounds toward noncancer cells was confirmed using the SRB assay against Madin-Darby Canine Kidney cells. Reaction of piperazine with different substituted benzenesulfonyl chlorides in triethylamine furnished sulfonylpiperazines (3a-k), which were then allowed to react with 7-(4-bromobutoxy)-5-hydroxy-2-phenyl-4H-chromen-4-one (6) prepared reacting chrysin with 1,4-dibromobutane to give the final derivatives 7a-k. The results concluded that chrysin-sulfonylpiperazines exerted better antioxidant and anticancer efficacies than previously studied chrysin-piperazine precursors. For example, compounds 7h, 7j, and 7k with 4-OCF3 , 4-OCH3 , and 2,4-diOCH3 groups exhibited the best antioxidant potential against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals. Moreover, halogenated analogues (7b, 7c, 7g, and 7h) demonstrated promising anticancer potential against SK-OV3, HeLa, and HT-29 cell lines, whereas those bearing a methoxy functional group (7j and 7k) had beneficial effects against the cell lines A-549 and HT-29. Thus, it can be confirmed from the bioassay results that the overall structural design as well as proper substitution is crucial to deliver the anticipated biological effects. Spectroscopic techniques such as FT-IR, 1 H NMR, 13 C NMR, mass and elemental analysis (CHN) were carried out to confirm the final structures.
Collapse
Affiliation(s)
- Rahul V Patel
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Republic of Korea
| | - Bhupendra M Mistry
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Republic of Korea
| | - Riyaz Syed
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, India
| | - Nikhil M Parekh
- Department of Mathematics Science and Humanities, Shroff S. R. Rotary Institute of Chemical Technology, Valia, Gujarat, India
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Inhibitory Effect of Berberine on Broiler P-glycoprotein Expression and Function: In Situ and In Vitro Studies. Int J Mol Sci 2019; 20:ijms20081966. [PMID: 31013627 PMCID: PMC6515058 DOI: 10.3390/ijms20081966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
Overcoming P-glycoprotein (P-gp) efflux is a strategy to improve the absorption and pharmacokinetics of its substrate drugs. Berberine inhibits P-gp and thereby increases the bioavailability of the P-gp substrate digoxin in rodents. However, the effects of berberine on P-gp in chickens are still unclear. Here, we studied the role of berberine in modulating broilers P-gp expression and function through both in situ and in vitro models. In addition, molecular docking was applied to analyze the interactions of berberine with P-gp as well as with chicken xenobiotic receptor (CXR). The results showed that the mRNA expression levels of chicken P-gp and CXR decreased in the ileum following exposure to berberine. The absorption rate constant of rhodamine 123 increased after berberine treatment, as detected using an in situ single-pass intestinal perfusion model. Efflux ratios of P-gp substrates (tilmicosin, ciprofloxacin, clindamycin, ampicillin, and enrofloxacin) decreased and the apparent permeability coefficients increased after co-incubation with berberine in MDCK-chAbcb1 cell models. Bidirectional assay results showed that berberine could be transported by chicken P-gp with a transport ratio of 4.20, and this was attenuated by verapamil (an inhibitor of P-gp), which resulted in a ratio of 1.13. Molecular docking revealed that berberine could form favorable interactions with the binding pockets of both CXR and P-gp, with docking scores of −7.8 and −9.5 kcal/mol, respectively. These results indicate that berberine is a substrate of chicken P-gp and down-regulates P-gp expression in chicken tissues, thereby increasing the absorption of P-gp substrates. Our findings suggest that berberine increases the bioavailability of other drugs and that drug-drug interactions should be considered when it is co-administered with other P-gp substrates with narrow therapeutic windows.
Collapse
|
8
|
Paul M, Hemshekhar M, Kemparaju K, Girish KS. Berberine mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity. Free Radic Biol Med 2019; 130:196-205. [PMID: 30391673 DOI: 10.1016/j.freeradbiomed.2018.10.453] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/20/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is a serious metabolic disorder affecting millions of people worldwide. The high rate of mortality and morbidity during DM is attributed to the increased atherothrombotic events due to platelet activation and apoptosis leading to macro and micro vascular occlusions. The platelet hyper-reactivity and apoptosis during DM is accounted for the accumulated reactive oxygen species (ROS) due to increased aldose reductase (AR) and NADPH oxidase (NOX) activities. Considering aspirin insensitivity in DM patients, new therapies targeting the underlying mechanism is urgently warranted. Berberine, a benzylisoquinoline alkaloids, from Chinese folk medicine has been demonstrated with several anti-diabetic effects. Therefore, we evaluated whether berberine inhibits high glucose potentiated platelet aggregation, apoptosis and further evaluated the mechanism of its action in platelets. Berberine was found to inhibit platelet aggregation, superoxide production via modulating AR, NOX, and glutathione reductase activities in high glucose (HG) treated platelets. Correlated with this, berberine inhibited, calcium release, ERK activation, α- and dense granule release and platelet adhesive properties. In addition, berberine inhibited p38-p53 mediated BAX activation, mitochondrial dysfunction and platelet apoptosis induced by HG. The platelet protective effect of berberine by inhibiting AR and NOX in high glucose-treated platelets suggest that berberine could be developed as a potential therapeutic molecule in the treating pathologies associated with DM.
Collapse
Affiliation(s)
- Manoj Paul
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Mahadevappa Hemshekhar
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Canada R3E3P4
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, India.
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, India; Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, India.
| |
Collapse
|
9
|
Xiao Y, Tian C, Huang T, Han B, Wang M, Ma H, Li Z, Ye X, Li X. 8-Cetylberberine inhibits growth of lung cancer in vitro and in vivo. Life Sci 2017; 192:259-269. [PMID: 29138118 DOI: 10.1016/j.lfs.2017.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Abstract
AIMS This study is aimed at detecting the anti-tumor efficacy of a new berberine (BBR) derivative 8-cetylberberine (HBBR), which has a significant improvement in hydrophobicity and pharmacological effects compared to BBR. MAIN METHODS The human non-small lung cancer cell line A549 and normal human lung epithelial cells (MRC-5) were cultured to observe inhibition in vitro. Cell viability was analyzed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effect of HBBR on cell cycle arrest and apoptosis were assessed by flow cytometry and western blotting. In animal studies, BALB/c nude mice were subcutaneously injected with A549 cells in the armpit and administrated with different dose of HBBR and BBR. The body weight, organ coefficient and tumor inhibitory rate were recorded to evaluate the effect of HBBR in vivo. KEY FINDINGS The data showed that HBBR induced G1-phase cycle arrest by interfering with the expression of Cyclins D1 and Cyclin E1, increased apoptosis by inducing caspase pathway, and probably inhibited the PI3K/Akt pathway in A549 cells. In addition, animal experiments proved that oral administration of HBBR at a dose of 10mg/kg could significantly inhibit tumor growth, which is stronger than the 120mg/kg dose of BBR treatment. SIGNIFICANCE Our results suggest that HBBR showed a significantly higher anti-tumor efficacy than BBR in vitro and in vivo and could be a potential therapy for lung cancers.
Collapse
Affiliation(s)
- Yubo Xiao
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Cheng Tian
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Tao Huang
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bing Han
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Meimei Wang
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hang Ma
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhaoxing Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Xuegang Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Jiang JF, Lei F, Yuan ZY, Wang YG, Wang XP, Yan XJ, Yu X, Xing DM, DU LJ. Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes. Chin J Nat Med 2017; 15:178-191. [PMID: 28411686 DOI: 10.1016/s1875-5364(17)30034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/19/2022]
Abstract
Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments.
Collapse
Affiliation(s)
- Jing-Fei Jiang
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhi-Yi Yuan
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Gang Wang
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Xin-Pei Wang
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Jin Yan
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuan Yu
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong-Ming Xing
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Li-Jun DU
- MOE (Ministry of Education) Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Pre-clinical toxicity of a combination of berberine and 5-aminosalicylic acid in mice. Food Chem Toxicol 2016; 97:150-158. [DOI: 10.1016/j.fct.2016.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/01/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022]
|
12
|
Zhang L, Miao XJ, Wang X, Pan HH, Li P, Ren H, Jia YR, Lu C, Wang HB, Yuan L, Zhang GL. Antiproliferation of berberine is mediated by epigenetic modification of constitutive androstane receptor (CAR) metabolic pathway in hepatoma cells. Sci Rep 2016; 6:28116. [PMID: 27311637 PMCID: PMC4911599 DOI: 10.1038/srep28116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/26/2016] [Indexed: 01/07/2023] Open
Abstract
Constitutive androstane receptor (CAR) regulates hepatic xenobiotic and energy metabolism, as well as promotes cell growth and hepatocarcinogenesis. Berberine is an ancient multipotent alkaloid drug which derived from Coptis chinensis plants. Here we report that berberine is able to be cellular uptake and accessible to chromatin in human hepatoma HepG2 cells. Berberine induces more apoptosis, cell cycle arrest, but less ROS production in CAR overexpressed mCAR-HepG2 cells. Moreover, berberine inhibits expressions of CAR and its target genes CYP2B6 and CYP3A4. Furthermore, berberine enhances DNA methylation level in whole genome but reduces that in promoter regions CpG sites of CYP2B6 and CYP3A4 genes under the presence of CAR condition. These results indicated that the antiproliferation of berberine might be mediated by the unique epigenetic modifying mechanism of CAR metabolic pathway, suggesting that berberine is a promising candidate in anticancer adjuvant chemotherapy, due to its distinct pharmacological properties in clinic.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xiao-Jie Miao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hai-Hui Pan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Pu Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Hong Ren
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Rui Jia
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191, China
| | - Chuang Lu
- Department of Drug Metabolism &Pharmacokinetics, Biogen, Cambridge, Massachusetts, USA
| | - Hong-Bing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, USA
| | - Lan Yuan
- Medical and Healthy Analytical Center, Peking University, Beijing, 100191, China
| | - Guo-Liang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
13
|
Yuan ZY, Lu X, Lei F, Chai YS, Wang YG, Jiang JF, Feng TS, Wang XP, Yu X, Yan XJ, Xing DM, Du LJ. TATA boxes in gene transcription and poly (A) tails in mRNA stability: New perspective on the effects of berberine. Sci Rep 2015; 5:18326. [PMID: 26671652 PMCID: PMC4680869 DOI: 10.1038/srep18326] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/16/2015] [Indexed: 01/17/2023] Open
Abstract
Berberine (BBR) is a natural compound with variable pharmacological effects and a broad panel of target genes. We investigated berberine’s pharmacological activities from the perspective of its nucleotide-binding ability and discovered that BBR directly regulates gene expression by targeting TATA boxes in transcriptional regulatory regions as well as the poly adenine (poly (A)) tail at the mRNA terminus. BBR inhibits gene transcription by binding the TATA boxes in the transcriptional regulatory region, but it promotes higher levels of expression by targeting the poly (A) tails of mRNAs. The present study demonstrates that TATA boxes and poly (A) tails are the first and second primary targets by which BBR regulates gene expression. The final outcome of gene regulation by BBR depends on the structure of the individual gene. This is the first study to reveal that TATA boxes and poly (A) tails are direct targets for BBR in its regulation of gene expression. Our findings provide a novel explanation for the complex activities of a small molecule compound in a biological system and a novel horizon for small molecule-compound pharmacological studies.
Collapse
Affiliation(s)
- Zhi-Yi Yuan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xi Lu
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu-Shuang Chai
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu-Gang Wang
- MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | - Jing-Fei Jiang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tian-Shi Feng
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xin-Pei Wang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuan Yu
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiao-Jin Yan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dong-Ming Xing
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Li-Jun Du
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Xanthomegnin detection does not discriminate between Trichophyton rubrum and T. mentagrophytes complexes. J Microbiol Methods 2015; 111:122-6. [DOI: 10.1016/j.mimet.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
|