1
|
Rahman MM, Wang J, Wang G, Su Z, Li Y, Chen Y, Meng J, Yao Y, Wang L, Wilkens S, Tan J, Luo J, Zhang T, Zhu C, Cho SH, Wang L, Lee LP, Wan Y. Chimeric nanobody-decorated liposomes by self-assembly. NATURE NANOTECHNOLOGY 2024; 19:818-824. [PMID: 38374413 DOI: 10.1038/s41565-024-01620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Liposomes as drug vehicles have advantages, such as payload protection, tunable carrying capacity and improved biodistribution. However, due to the dysfunction of targeting moieties and payload loss during preparation, immunoliposomes have yet to be favoured in commercial manufacturing. Here we report a chemical modification-free biophysical approach for producing immunoliposomes in one step through the self-assembly of a chimeric nanobody (cNB) into liposome bilayers. cNB consists of a nanobody against human epidermal growth factor receptor 2 (HER2), a flexible peptide linker and a hydrophobic single transmembrane domain. We determined that 64% of therapeutic compounds can be encapsulated into 100-nm liposomes, and up to 2,500 cNBs can be anchored on liposomal membranes without steric hindrance under facile conditions. Subsequently, we demonstrate that drug-loaded immunoliposomes increase cytotoxicity on HER2-overexpressing cancer cell lines by 10- to 20-fold, inhibit the growth of xenograft tumours by 3.4-fold and improve survival by more than twofold.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Jing Wang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, China
| | - Guosheng Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhipeng Su
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Yizeng Li
- Biophysics and Mathematical Biology Lab, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Jinguo Meng
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Yao Yao
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Lefei Wang
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY, USA
| | - Jifu Tan
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, IL, USA
| | - Juntao Luo
- Department of Pharmacology, Upstate Medical University, Syracuse, NY, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Johnson City, NY, USA
| | - Chuandong Zhu
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sung Hyun Cho
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Lixue Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Luke P Lee
- Harvard Medical School, Harvard University; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
2
|
Mardani-Jouneghani R, Irani S, Habibi-Anbouhi M, Behdani M. Development and Characterization of a Novel Single-Chain Antibody Against B-Cell Activating Factor. Mol Biotechnol 2023; 65:1968-1978. [PMID: 36906729 DOI: 10.1007/s12033-023-00700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/14/2023] [Indexed: 03/13/2023]
Abstract
As a member of the tumor necrosis factor (TNF) superfamily, the B-cell activating factor (BAFF) plays a crucial role in B-cell survival and differentiation. Overexpression of this protein has been closely linked to autoimmune disorders and some B-cell malignancies. Using monoclonal antibodies (mAbs) against the BAFF soluble domain appears to be a complementary treatment for some of these diseases. This study aimed to produce and develop a specific Nanobody (Nb), a variable camelid antibody domain, against the soluble domain of BAFF protein. After camel immunization with recombinant protein and preparing cDNA from total RNAs separated from camel lymphocytes, an Nb library was developed. Individual colonies capable of binding selectively to rBAFF were obtained by periplasmic-ELISA, sequenced, and expressed in a bacterial expression system. The specificity and affinity of selected Nb were determined and its target identification and functionality were evaluated using flow cytometry.
Collapse
Affiliation(s)
- Rasoul Mardani-Jouneghani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, 1316543551, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mahdi Behdani
- Biotechnology Research Centre, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, 1316543551, Iran.
- Zoonoses Research Centre, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
3
|
Han WY, Wang J, Zhao J, Zheng YM, Chai XQ, Gao C, Cai JB, Ke AW, Fan J, Gao PT, Sun HX. WDR4/TRIM28 is a novel molecular target linked to lenvatinib resistance that helps retain the stem characteristics in hepatocellular carcinomas. Cancer Lett 2023:216259. [PMID: 37279851 DOI: 10.1016/j.canlet.2023.216259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with few effective treatment options. Lenvatinib is the first-line therapy for HCC but has only limited clinical benefit. Here, we explored the role and mechanism of the WD repeat domain 4 (WDR4) in lenvatinib resistance to improve clinical benefit. We found that lenvatinib-resistant HCC tissues/cells exhibited increased the N7-methylguanosine (m7G) modification and WDR4 expression. By a gain/loss of function experiment, we showed that WDR4 promoted HCC lenvatinib resistance and tumor progress both in vitro and in vivo. By proteomics analysis and RNA immunoprecipitation PCR, we found that tripartite motif protein 28 (trim28) was an important WDR4 target gene. WDR4 promoted TRIM28 expression, further affected target genes expression, and thus increased cell-acquired stemness and lenvatinib resistance. Clinical tissue data showed that TRIM28 expression was correlated with WDR4 levels, and the expression of both was positively correlated with poor prognosis. Our study provides new insight into the role of WDR4, suggesting a potential therapeutic target to enhance the lenvatinib sensitivity of HCC.
Collapse
Affiliation(s)
- Wei-Yu Han
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yi-Min Zheng
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Qiang Chai
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia-Bin Cai
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Ping-Ting Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China; Endoscopy Center and Endoscopy Research Institute, Fudan University, Shanghai, China.
| | - Hai-Xiang Sun
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Hosseininejad-Chafi M, Kianmehr Z, Pooshang-Bagheri K, Kazemi-Lomedasht F, Behdani M. Development of a Functional Nanobody Targeting Programmed Cell Death Protein-1 as Immune Checkpoint Inhibitor. Curr Pharm Des 2023; 29:2336-2344. [PMID: 37859326 DOI: 10.2174/0113816128258475230920054122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) is a membrane receptor that is expressed on the surface of various immune cells, such as T cells, B cells, monocytes, natural killer T cells, and dendritic cells. In cancer, the interaction between PD-1 and its ligand PD-L1 suppresses the activation and function of T lymphocytes, leading to the impairment and apoptosis of tumor-specific T cells. This mechanism allows cancer cells to evade the immune response and promotes tumor progression. METHODS Recombinant PD-1 protein was produced and used to immunize a camel. A nanobody library was generated from the camel's peripheral blood lymphocytes and screened for PD-1 binding. A specific nanobody (3PD9) was selected and characterized by affinity measurement, western blotting, and flow cytometry analysis. The ability of the selected nanobody to block the inhibitory signal of PD-1 in peripheral blood mononuclear cells (PBMCs) was evaluated by measuring the level of interleukin-2 (IL-2). RESULTS The selected nanobody showed high specificity and affinity for human PD-1. Western blot and flow cytometry analysis confirmed that 3PD9 could recognize and bind to human PD-1 on the cell surface. It was demonstrated that the level of IL-2 was significantly increased in PBMCs treated with 3PD9 compared to the control group, indicating that the nanobody could enhance the T cell response by disrupting the PD-1/PD-L1 interaction. CONCLUSION The results suggested that the anti-PD-1 nanobody could be a promising candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Department of Biochemistry, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Kianmehr
- Department of Biochemistry, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Kamran Pooshang-Bagheri
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| |
Collapse
|
5
|
Nanobodies targeting ABCC3 for immunotargeted applications in glioblastoma. Sci Rep 2022; 12:22581. [PMID: 36585418 PMCID: PMC9803684 DOI: 10.1038/s41598-022-27161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The cancer "omics" reveal many clinically relevant alterations that are transforming the molecular characterization of glioblastomas. However, many of these findings are not yet translated into clinical practice due, in part, to the lack of non-invasive biomarkers and the limitations imposed by the blood-brain barrier. Nanobodies, camelid single-domain antibody fragments, emerge as a promising tool for immunotargeted applications for diagnosing and treating glioblastomas. Performing agnostic bioinformatic analysis from glioblastoma patient datasets, we identified ATP Binding Cassette subfamily C member 3 (ABCC3) as a suitable target for immunotargeted applications. The expression of ABCC3 is associated with poor survival and impaired response to temozolomide. Importantly, high expression of ABCC3 is restricted to glioblastoma, with negligible levels in healthy brain tissue, and further correlates with tumor grade and stemness markers. We identified three immunogenic epitopes of ABCC3 which were used to isolate nanobodies from a glioblastoma-specific phage-display nanobody library. Two nanobodies targeting ABCC3 (NbA42 and NbA213) were further characterized and demonstrated in vivo selective recognition of ABCC3 in glioblastoma xenograft mouse models upon systemic administration. We designate NbA42 and NbA213 as new candidates to implement immunotargeted applications guiding a more personalized and precise diagnosis, monitoring, and treatment of glioblastoma patients.
Collapse
|
6
|
The Cytotoxic Effects of Cannabidiol and Cannabigerol on Glioblastoma Stem Cells May Mostly Involve GPR55 and TRPV1 Signalling. Cancers (Basel) 2022; 14:cancers14235918. [PMID: 36497400 PMCID: PMC9738061 DOI: 10.3390/cancers14235918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers, comprising 60-70% of all gliomas. The large G-protein-coupled receptor family includes cannabinoid receptors CB1, CB2, GPR55, and non-specific ion receptor protein transporters TRPs. First, we found up-regulated CNR1, GPR55, and TRPV1 expression in glioma patient-derived tissue samples and cell lines compared with non-malignant brain samples. CNR1 and GPR55 did not correlate with glioma grade, whereas TRPV1 negatively correlated with grade and positively correlated with longer overall survival. This suggests a tumour-suppressor role of TRPV1. With respect to markers of GBM stem cells, preferred targets of therapy, TRPV1 and GPR55, but not CNR1, strongly correlated with different sets of stemness gene markers: NOTCH, OLIG2, CD9, TRIM28, and TUFM and CD15, SOX2, OCT4, and ID1, respectively. This is in line with the higher expression of TRPV1 and GPR55 genes in GSCs compared with differentiated GBM cells. Second, in a panel of patient-derived GSCs, we found that CBG and CBD exhibited the highest cytotoxicity at a molar ratio of 3:1. We suggest that this mixture should be tested in experimental animals and clinical studies, in which currently used Δ9-tetrahydrocannabinol (THC) is replaced with efficient and non-psychoactive CBG in adjuvant standard-of-care therapy.
Collapse
|
7
|
Kim YS, Potashnikova DM, Gisina AM, Kholodenko IV, Kopylov AT, Tikhonova OV, Kurbatov LK, Saidova AA, Tvorogova AV, Kholodenko RV, Belousov PV, Vorobjev IA, Zgoda VG, Yarygin KN, Lupatov AY. TRIM28 Is a Novel Regulator of CD133 Expression Associated with Cancer Stem Cell Phenotype. Int J Mol Sci 2022; 23:9874. [PMID: 36077272 PMCID: PMC9456468 DOI: 10.3390/ijms23179874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines. Despite a substantial difference in the proliferative activities of cell populations with different levels of CD133 expression, transcriptomic and proteomic profiling revealed only minor distinctions between them. Nonetheless, a further in silico assessment of the differentially expressed transcripts and proteins revealed 16 proteins that could be involved in the regulation of CD133 expression; these were assigned ranks reflecting the apparent extent of their involvement. Among them, the TRIM28 transcription factor had the highest rank. The prominent role of TRIM28 in CD133 expression modulation was confirmed experimentally in the Caco2 cell line clones: the knockout, though not the knockdown, of the TRIM28 gene downregulated CD133. These results for the first time highlight an important role of the TRIM28 transcription factor in the regulation of CD133-associated cancer cell heterogeneity.
Collapse
Affiliation(s)
- Yan S. Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Daria M. Potashnikova
- Cell Biology and Histology Department, School of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alisa M. Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina V. Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Arthur T. Kopylov
- Laboratory of Systems Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Olga V. Tikhonova
- Laboratory of Systems Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Leonid K. Kurbatov
- Transcriptome Analysis Group, Analytical Branch Department, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Aleena A. Saidova
- Cell Biology and Histology Department, School of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Transcription Factors, V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Tvorogova
- Laboratory of Cell Motility, A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, M.M. Shemyakin–Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Pavel V. Belousov
- Endocrinology Research Centre, 117292 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan A. Vorobjev
- Laboratory of Cell Motility, A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Laboratory of Biophotonics and Imaging, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Victor G. Zgoda
- Laboratory of Systems Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Alexey Yu. Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
8
|
Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021; 14:cancers14010074. [PMID: 35008238 PMCID: PMC8750680 DOI: 10.3390/cancers14010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroimaging has transformed the way brain tumors are diagnosed and treated. Although different non-invasive modalities provide very helpful information, in some situations, they present a limited value. By merging the specificity of antibodies with the resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry”, like a “virtual biopsy”. This review provides and focuses on immuno-PET applications and future perspectives of this promising imaging approach for glioblastoma. Abstract Neuroimaging has transformed neuro-oncology and the way that glioblastoma is diagnosed and treated. Magnetic Resonance Imaging (MRI) is the most widely used non-invasive technique in the primary diagnosis of glioblastoma. Although MRI provides very powerful anatomical information, it has proven to be of limited value for diagnosing glioblastomas in some situations. The final diagnosis requires a brain biopsy that may not depict the high intratumoral heterogeneity present in this tumor type. The revolution in “cancer-omics” is transforming the molecular classification of gliomas. However, many of the clinically relevant alterations revealed by these studies have not yet been integrated into the clinical management of patients, in part due to the lack of non-invasive biomarker-based imaging tools. An innovative option for biomarker identification in vivo is termed “immunotargeted imaging”. By merging the high target specificity of antibodies with the high spatial resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry” in patients. This review provides the state of the art of immuno-PET applications and future perspectives on this imaging approach for glioblastoma.
Collapse
|
9
|
Al-Baradie RS. Nanobodies as versatile tools: A focus on targeted tumor therapy, tumor imaging and diagnostics. Hum Antibodies 2021; 28:259-272. [PMID: 32831197 DOI: 10.3233/hab-200425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies and vaccines have widely been studied for the immunotherapy of cancer, though their large size appears to limit their functionality in solid tumors, in large part due to unique properties of tumor microenvironment. Smaller formats of antibodies have been developed to throw such restrictions. These small format antibodies include antigen binding fragments, single-chain variable fragments, single variable domain of camelid antibody (so-called nanobody (Nb) or VHH). Since their serendipitous discovery, nanobodies have been studies at length in the fields of research, diagnostics and therapy. These antigen binding fragments, originating from camelid heavy-chain antibodies, possess unusual hallmarks in terms of (small) size, stability, solubility and specificity, hence allowing cost-effective production and sometimes out performing monoclonal antibodies. In addition, these small camelid heavy-chain antibodies are highly adaptable tools for cancer research as they enable specific modulation of targets, enzymatic and non-enzymatic proteins alike. Molecular imaging studies benefit from the rapid, homogeneous tumor accumulation of nanobodies and their fast blood clearance, permitting previously unattainable fast tumor visualization. Moreover, they are endowed with considerable therapeutic potential as inhibitors of receptor-ligand pairs and deliverers of drugs or drug-loaded nanoparticles towards tumors. In this review, we shed light on the current status of nanobodies in diagnosis and imaging of tumor and exploiting nanobodies revert immunosuppressive events, modulation of immune checkpoints, and as deliverers of drugs for targeted tumor therapy.
Collapse
|
10
|
Porčnik A, Novak M, Breznik B, Majc B, Hrastar B, Šamec N, Zottel A, Jovčevska I, Vittori M, Rotter A, Komel R, Lah Turnšek T. TRIM28 Selective Nanobody Reduces Glioblastoma Stem Cell Invasion. Molecules 2021; 26:molecules26175141. [PMID: 34500575 PMCID: PMC8434287 DOI: 10.3390/molecules26175141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GB), is the most common and aggressive malignant primary brain tumour in adults. Intra- and inter-tumour heterogeneity, infiltrative GB cell invasion and presence of therapy-resistant GB stem cells (GSCs) represent major obstacles to favourable prognosis and poor therapy response. Identifying the biomarkers of the most aggressive tumour cells and their more efficient targeting strategies are; therefore, crucial. Recently, transcription factor TRIM28 has been identified as a GB biomarker and, in this study, we have shown high expression of TRIM28 in GB and in low grade gliomas as well as higher expression in GSCs vs. differentiated GB cells, although in both cases not significant. We demonstrated significant in vitro inhibition of GB cells and GSCs invasiveness and spread in zebrafish brains in vivo by anti-TRIM28 selective nanobody NB237. TRIM28 was also enriched in GB (tumour) core and associated with the expression of stem cell genes, but was not prognostic for overall survival. However, based on the above results, we conclude that TRIM28 nanobody NB237 offers a new opportunity as a GB therapeutic tool.
Collapse
Affiliation(s)
- Andrej Porčnik
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Barbara Hrastar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
| | - Alja Zottel
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
| | - Miloš Vittori
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
- Correspondence: (R.K.); (T.L.T.)
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (R.K.); (T.L.T.)
| |
Collapse
|
11
|
Hu Y, Wu S, Wang Y, Lin J, Sun Y, Zhang C, Gu J, Yang F, Lv H, Ji X, Zhang Y, Muyldermans S, Wang S. Unbiased Immunization Strategy Yielding Specific Nanobodies against Macadamia Allergen of Vicilin-like Protein for Immunoassay Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5178-5188. [PMID: 33882666 DOI: 10.1021/acs.jafc.1c00390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Macadamia nut contains important food allergens that potentially cause allergic reactions with severe adverse effects in infants and adults. Reliable and accurate detection of macadamia is critical to avoid allergic reactions. However, knowledge on macadamia allergen is scarce and a reliable detection method has not been reported, yet. In this study, an unbiased immunization and selection strategy was employed to select nanobodies (Nbs) recognizing specifically macadamia allergen, as well as to establish a detection method to unveil a macadamia protein contamination. An alpaca was immunized with a crude protein extract of macadamia followed by construction of a Nb library from its lymphocytes. The panning and screening of this immune Nb repertoire resulted in the selection of six target-specific Nbs. Nb-mediated immuno-capturing combined with mass spectrometry allowed us to identify the target as the macadamia vicilin-like antimicrobial peptides 2-3 (MiAMP2), a novel food allergenic protein abbreviated as Mac i 1. Later on, an immunoassay of a heterologous sandwich ELISA method based on the selected Nb-pairs was established, providing a linear response in the range of 0.442-2,800 μg/mL and with a limit of detection of 27.1 ng/mL. The dedicated immunoassay has been verified by detecting the antigen spiked in food samples. Our study provided evidence for the successful application of the unprejudiced strategy to retrieve Nbs against a priori undefined macadamia allergen. These target-specific Nbs were used to design a highly reliable and effective immunoassay.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Ying Sun
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuan Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaxin Gu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Feier Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Abstract
Unique, functional, homodimeric heavy chain-only antibodies, devoid of light chains, are circulating in the blood of Camelidae. These antibodies recognize their cognate antigen via one single domain, known as VHH or Nanobody. This serendipitous discovery made three decades ago has stimulated a growing number of researchers to generate highly specific Nanobodies against a myriad of targets. The small size, strict monomeric state, robustness, and easy tailoring of these Nanobodies have inspired many groups to design innovative Nanobody-based multi-domain constructs to explore novel applications. As such, Nanobodies have been employed as an exquisite research tool in structural, cell, and developmental biology. Furthermore, Nanobodies have demonstrated their benefit for more sensitive diagnostic tests. Finally, several Nanobody-based constructs have been designed to develop new therapeutic products.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; .,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, People's Republic of China
| |
Collapse
|
13
|
Zottel A, Jovčevska I, Šamec N, Mlakar J, Šribar J, Križaj I, Skoblar Vidmar M, Komel R. Anti-vimentin, anti-TUFM, anti-NAP1L1 and anti-DPYSL2 nanobodies display cytotoxic effect and reduce glioblastoma cell migration. Ther Adv Med Oncol 2020; 12:1758835920915302. [PMID: 32426045 PMCID: PMC7222267 DOI: 10.1177/1758835920915302] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/04/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Glioblastoma is a particularly common and very aggressive primary brain tumour. One of the main causes of therapy failure is the presence of glioblastoma stem cells that are resistant to chemotherapy and radiotherapy, and that have the potential to form new tumours. This study focuses on validation of eight novel antigens, TRIM28, nucleolin, vimentin, nucleosome assembly protein 1-like 1 (NAP1L1), mitochondrial translation elongation factor (EF-TU) (TUFM), dihydropyrimidinase-related protein 2 (DPYSL2), collapsin response mediator protein 1 (CRMP1) and Aly/REF export factor (ALYREF), as putative glioblastoma targets, using nanobodies. Methods: Expression of these eight antigens was analysed at the cellular level by qPCR, ELISA and immunocytochemistry, and in tissues by immunohistochemistry. The cytotoxic effects of the nanobodies were determined using AlamarBlue and water-soluble tetrazolium tests. Annexin V/propidium iodide tests were used to determine apoptotsis/necrosis of the cells in the presence of the nanobodies. Cell migration assays were performed to determine the effects of the nanobodies on cell migration. Results: NAP1L1 and CRMP1 were significantly overexpressed in glioblastoma stem cells in comparison with astrocytes and glioblastoma cell lines at the mRNA and protein levels. Vimentin, DPYSL2 and ALYREF were overexpressed in glioblastoma cell lines only at the protein level. The functional part of the study examined the cytotoxic effects of the nanobodies on glioblastoma cell lines. Four of the nanobodies were selected in terms of their specificity towards glioblastoma cells and protein overexpression: anti-vimentin (Nb79), anti-NAP1L1 (Nb179), anti-TUFM (Nb225) and anti-DPYSL2 (Nb314). In further experiments to optimise the nanobody treatment schemes, to increase their effects, and to determine their impact on migration of glioblastoma cells, the anti-TUFM nanobody showed large cytotoxic effects on glioblastoma stem cells, while the anti-vimentin, anti-NAP1L1 and anti-DPYSL2 nanobodies were indicated as agents to target mature glioblastoma cells. The anti-vimentin nanobody also had significant effects on migration of mature glioblastoma cells. Conclusion: Nb79 (anti-vimentin), Nb179 (anti-NAP1L1), Nb225 (anti-TUFM) and Nb314 (anti-DPYSL2) nanobodies are indicated for further examination for cell targeting. The anti-TUFM nanobody, Nb225, is particularly potent for inhibition of cell growth after long-term exposure of glioblastoma stem cells, with minor effects seen for astrocytes. The anti-vimentin nanobody represents an agent for inhibition of cell migration.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
14
|
Zottel A, Videtič Paska A, Jovčevska I. Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy. MATERIALS 2019; 12:ma12101588. [PMID: 31096609 PMCID: PMC6567262 DOI: 10.3390/ma12101588] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023]
Abstract
Advances in technology of the past decades led to development of new nanometer scale diagnosis and treatment approaches in cancer medicine leading to establishment of nanooncology. Inorganic and organic nanomaterials have been shown to improve bioimaging techniques and targeted drug delivery systems. Their favorable physico-chemical characteristics, like small sizes, large surface area compared to volume, specific structural characteristics, and possibility to attach different molecules on their surface transform them into excellent transport vehicles able to cross cell and/or tissue barriers, including the blood–brain barrier. The latter is one of the greatest challenges in diagnosis and treatment of brain cancers. Application of nanomaterials can prolong the circulation time of the drugs and contrasting agents in the brain, posing an excellent opportunity for advancing the treatment of the most aggressive form of the brain cancer—glioblastomas. However, possible unwanted side-effects and toxicity issues must be considered before final clinical translation of nanoparticles.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Alja Videtič Paska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Bélanger K, Iqbal U, Tanha J, MacKenzie R, Moreno M, Stanimirovic D. Single-Domain Antibodies as Therapeutic and Imaging Agents for the Treatment of CNS Diseases. Antibodies (Basel) 2019; 8:antib8020027. [PMID: 31544833 PMCID: PMC6640712 DOI: 10.3390/antib8020027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Antibodies have become one of the most successful therapeutics for a number of oncology and inflammatory diseases. So far, central nervous system (CNS) indications have missed out on the antibody revolution, while they remain 'hidden' behind several hard to breach barriers. Among the various antibody modalities, single-domain antibodies (sdAbs) may hold the 'key' to unlocking the access of antibody therapies to CNS diseases. The unique structural features of sdAbs make them the smallest monomeric antibody fragments suitable for molecular targeting. These features are of particular importance when developing antibodies as modular building blocks for engineering CNS-targeting therapeutics and imaging agents. In this review, we first introduce the characteristic properties of sdAbs compared to traditional antibodies. We then present recent advances in the development of sdAbs as potential therapeutics across brain barriers, including their use for the delivery of biologics across the blood-brain and blood-cerebrospinal fluid (CSF) barriers, treatment of neurodegenerative diseases and molecular imaging of brain targets.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Umar Iqbal
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Maria Moreno
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada.
| |
Collapse
|
16
|
Allegra A, Innao V, Gerace D, Vaddinelli D, Allegra AG, Musolino C. Nanobodies and Cancer: Current Status and New Perspectives. Cancer Invest 2018; 36:221-237. [DOI: 10.1080/07357907.2018.1458858] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Demetrio Gerace
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Doriana Vaddinelli
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Dipartimento di Patologia Umana dell'Adulto e dell'Età evolutiva, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Samec N, Jovcevska I, Stojan J, Zottel A, Liovic M, Myers MP, Muyldermans S, Šribar J, Križaj I, Komel R. Glioblastoma-specific anti-TUFM nanobody for in-vitro immunoimaging and cancer stem cell targeting. Oncotarget 2018; 9:17282-17299. [PMID: 29707108 PMCID: PMC5915116 DOI: 10.18632/oncotarget.24629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal form of brain tumor. The prognosis for patients remains poor, despite the combination of new preoperative and intraoperative neuroimaging, radical surgery, and recent advances in radiotherapy and chemotherapy. To improve GBM therapy and patient outcome, sustained drug delivery to glioma cells is needed, while minimizing toxicity to adjacent neurons and glia cells. This might be achieved through an anti-proteomic approach based on nanobodies, the single-domain antigen-binding fragments of heavy-chain antibodies of the camelid adaptive immune system. We report here on the validation and quantification of a nanobody raised against mitochondrial translation elongation factor (TUFM). Differential expression of TUFM was examined in different GBM cell lines and GBM tissue at the protein and mRNA levels, as compared to their expression in neural stem cells and normal brain tissue. We further used in-silico modelling and immunocytochemistry to define the specificity of anti-TUFM nanobody (Nb206) towards GBM stem cells, as compared to GBM cell lines (U251MG and U87MG cells). Due to its specificity and pronounced inhibitory effect on GBM stem cell growth, we propose the use of this anti-TUFM nanobody for GBM in vitro immunoimaging and potentially also cancer stem cell targeting.
Collapse
Affiliation(s)
- Neja Samec
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ivana Jovcevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jure Stojan
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mirjana Liovic
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Michael P Myers
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Bioengineering Sciences Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Zhao W, Pferdehirt L, Segatori L. Quantitatively Predictable Control of Cellular Protein Levels through Proteasomal Degradation. ACS Synth Biol 2018; 7:540-552. [PMID: 29061039 DOI: 10.1021/acssynbio.7b00325] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein function is typically studied and engineered by modulating protein levels within the complex cellular environment. To achieve fast, targeted, and predictable control of cellular protein levels without genetic manipulation of the target, we developed a technology for post-translational depletion based on a bifunctional molecule (NanoDeg) consisting of the antigen-binding fragment from the Camelidae species heavy-chain antibody (nanobody) fused to a degron signal that mediates degradation through the proteasome. We provide proof-of-principle demonstration of targeted degradation using a nanobody against the green fluorescent protein (GFP). Guided by predictive modeling, we show that customizing the NanoDeg rate of synthesis, rate of degradation, and mode of degradation enables quantitative and predictable control over the target's levels. Integrating the GFP-specific NanoDeg within a genetic circuit based on stimulus-dependent GFP output results in enhanced dynamic range and resolution of the output signal. By providing predictable control over cellular proteins' levels, the NanoDeg system could be readily used for a variety of systems-level analyses of cellular protein function.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Lara Pferdehirt
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
19
|
Jovčevska I, Zupanec N, Urlep Ž, Vranič A, Matos B, Stokin CL, Muyldermans S, Myers MP, Buzdin AA, Petrov I, Komel R. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget 2017; 8:44141-44158. [PMID: 28498803 PMCID: PMC5546469 DOI: 10.18632/oncotarget.17390] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme is the most frequent primary malignancy of the central nervous system. Despite remarkable progress towards an understanding of tumor biology, there is no efficient treatment and patient outcome remains poor. Here, we present a unique anti-proteomic approach for selection of nanobodies specific for overexpressed glioblastoma proteins. A phage-displayed nanobody library was enriched in protein extracts from NCH644 and NCH421K glioblastoma cell lines. Differential ELISA screenings revealed seven nanobodies that target the following antigens: the ACTB/NUCL complex, VIM, NAP1L1, TUFM, DPYSL2, CRMP1, and ALYREF. Western blots showed highest protein up-regulation for ALYREF, CRMP1, and VIM. Moreover, bioinformatic analysis with the OncoFinder software against the complete "Cancer Genome Atlas" brain tumor gene expression dataset suggests the involvement of different proteins in the WNT and ATM pathways, and in Aurora B, Sem3A, and E-cadherin signaling. We demonstrate the potential use of NAP1L1, NUCL, CRMP1, ACTB, and VIM for differentiation between glioblastoma and lower grade gliomas, with DPYSL2 as a promising "glioma versus reference" biomarker. A small scale validation study confirmed significant changes in mRNA expression levels of VIM, DPYSL2, ACTB and TRIM28. This work helps to fill the information gap in this field by defining novel differences in biochemical profiles between gliomas and reference samples. Thus, selected genes can be used to distinguish glioblastoma from lower grade gliomas, and from reference samples. These findings should be valuable for glioblastoma patients once they are validated on a larger sample size.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Zupanec
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Vranič
- Department of Neurosurgery, Foundation Rothschild, Paris, France
| | - Boštjan Matos
- Department of Neurosurgery, University Clinical Center, Ljubljana, Slovenia
| | | | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michael P. Myers
- International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Anton A. Buzdin
- First Oncology Research and Advisory Center, Moscow, Russia
- National Research Center ‘Kurchatov Institute’, Center of Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| | - Ivan Petrov
- Center for Biogerontology and Regenerative Medicine, IC Skolkovo, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Radovan Komel
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
20
|
TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neurooncol 2016; 126:19-26. [PMID: 26476730 DOI: 10.1007/s11060-015-1897-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/17/2015] [Indexed: 10/22/2022]
Abstract
Tripartite motif (TRIM) proteins are involved in tumorigenesis. Here, we examined the expression, biological function, and clinical significance of tripartite motif containing 28 (TRIM28) in glioma, a locally aggressive brain tumor. First, TRIM28 expression was significantly higher in glioma (n = 138) than in non-glioma controls (n = 6). TRIM28 expression was positively correlated with tumor malignancy, and associated with poor overall survival (OS) and progression-free survival (PFS). Notably, TRIM28 expression was negatively correlated with p21 expression in patients with glioblastoma multiforme (GBM). A multivariate analysis that included relevant measures indicated that high TRIM28 expression is an independent prognostic factor for poor OS and PFS in GBM patients. In experiments with cultured glioma cells, down-regulating TRIM28 with shRNA increased p21 expression, and induced cell cycle arrest at the G1 phase. In a xenograft model, down-regulating TRIM28 suppressed tumor growth. These results indicate that over-expression of TRIM28 is associated with poor outcome in glioma patients.
Collapse
|
21
|
Van Audenhove I, Gettemans J. Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer. EBioMedicine 2016; 8:40-48. [PMID: 27428417 PMCID: PMC4919472 DOI: 10.1016/j.ebiom.2016.04.028] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/29/2022] Open
Abstract
Since their discovery, nanobodies have been used extensively in the fields of research, diagnostics and therapy. These antigen binding fragments, originating from Camelid heavy-chain antibodies, possess unusual hallmarks in terms of (small) size, stability, solubility and specificity, hence allowing cost-effective production and sometimes outperforming monoclonal antibodies. In this review, we evaluate the current status of nanobodies to study, diagnose, visualize or inhibit cancer-specific proteins and processes. Nanobodies are highly adaptable tools for cancer research as they enable specific modulation of targets, enzymatic and non-enzymatic proteins alike. Molecular imaging studies benefit from the rapid, homogeneous tumor accumulation of nanobodies and their fast blood clearance, permitting previously unattainable fast tumor visualization. Moreover, they are endowed with considerable therapeutic potential as inhibitors of receptor-ligand pairs and deliverers of drugs or drug-loaded nanoparticles towards tumors. More in vivo and clinical studies are however eagerly awaited to unleash their full potential.
Collapse
Affiliation(s)
- Isabel Van Audenhove
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| |
Collapse
|
22
|
Gong X, Zhu M, Li G, Lu X, Wan Y. Specific determination of influenza H7N2 virus based on biotinylated single-domain antibody from a phage-displayed library. Anal Biochem 2015; 500:66-72. [PMID: 26450565 DOI: 10.1016/j.ab.2015.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 12/16/2022]
Abstract
The unpredicted spread of avian influenza virus subtype H7N2 in the world is threatening animals and humans. Specific and effective diagnosis and supervision are required to control the influenza. However, the existing detecting methods are laborious, are time-consuming, and require appropriate laboratory facilities. To tackle this problem, we isolated VHH antibodies against the H7N2 avian influenza virus (AIV) and performed an enzyme-linked immunosorbent assay (ELISA) to detect the H7N2 virus. To obtain VHH antibodies with high affinity and specificity, a camel was immunized. A VHH antibody library was constructed in a phage display vector pMECS with diversity of 2.8 × 10(9). Based on phage display technology and periplasmic extraction ELISA, H7N2-specific VHH antibodies were successfully isolated. According to a pairing test, two VHH antibodies (Nb79 and Nb95) with good thermal stability and specificity can recognize different epitopes of H7N2 virus. The capture antibody (Nb79) was biotinylated in vivo, and the detection antibody (Nb95) was coupled with horseradish peroxidase (HRP). Based on biotin-streptavidin interaction, a novel sandwich immune ELISA was performed to detect H7N2. The immunoassay exhibited a linear range from 5 to 100 ng/ml. Given the above, the newly developed VHH antibody-based double sandwich ELISA (DAS-ELISA) offers an attractive alternative to other diagnostic approaches for the specific detection of H7N2 virus.
Collapse
Affiliation(s)
- Xue Gong
- Institute of Life Sciences, Southeast University, Nanjing 210096, People's Republic of China
| | - Min Zhu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Guanghui Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xiaoling Lu
- National Center for International Research Targeting Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China; Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China; Department of Immunology, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yakun Wan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.
| |
Collapse
|