1
|
Yu Y, Zhang S, Duan C, Crouch C, Suo J, Tang X, Liu X, Liu J, Bruton B, Tarpey I, Suo X. Developing efficient strategies for localizing the enhanced yellow fluorescent protein subcellularly in transgenic Eimeria parasites. Sci Rep 2024; 14:4851. [PMID: 38418588 PMCID: PMC10902363 DOI: 10.1038/s41598-024-55569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/25/2024] [Indexed: 03/01/2024] Open
Abstract
Eimeria species serve as promising eukaryotic vaccine vectors. And that the location of heterologous antigens in the subcellular components of genetically modified Eimeria may determine the magnitude and type of immune responses. Therefore, our study aimed to target a heterologous fluorescent protein to the cell surface or microneme, two locations where are more effective in inducing protective immunity, of Eimeria tenella and E. acervulina sporozoites. We used an enhanced yellow fluorescent protein (EYFP) as a tagging biomarker, fusing variously with some localization or whole sequences of compartmental proteins for targeting. After acquiring stable transgenic Eimeria populations, we observed EYFP expressing in expected locations with certain strategies. That is, EYFP successfully localized to the surface when it was fused between signal peptides and mature products of surface antigen 1 (SAG1). Furthermore, EYFP was efficiently targeted to the apical end, an optimal location for secretory organelle known as the microneme, when fused to the C terminus of microneme protein 2. Unexpectedly, EYFP exhibited dominantly in the apical end with only weak expression on the surface of the transgenic sporozoites when the parasites were transfected with plasmid with EYFP fused between signal peptides and mature products of E. tenella SAG 13. These strategies worked in both E. tenella and E. acervulina, laying a solid foundation for studying E. tenella and E. acervulina-based live vaccines that can be further tailored to the inclusion of cargo immunogens from other pathogens.
Collapse
Affiliation(s)
- Ying Yu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chunhui Duan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Colin Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Beth Bruton
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Ian Tarpey
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Yu Y, Tang X, Duan C, Suo J, Crouch C, Zhang S, Liu X, Liu J, Bruton B, Tarpey I, Suo X. Microneme-located VP2 in Eimeria acervulina elicits effective protective immunity against infectious bursal disease virus. Infect Immun 2024; 92:e0045623. [PMID: 38179959 PMCID: PMC10863409 DOI: 10.1128/iai.00456-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Using transgenic Eimeria spp. to deliver exogenous antigens is a viable option for developing multivalent live vaccines. Previous research revealed that the location of antigen expression in recombinant Eimeria dictates the magnitude and type of immune responses. In this study, we constructed genetically modified Eimeria acervulina that expressed VP2 protein, a protective antigen from infectious bursal disease virus (IBDV), on the surface or in the microneme of sporozoites. After vaccination, VP2-specific antibody was readily detected in specific pathogen-free chickens receiving transgenic E. acervulina parasites expressing VP2 in microneme, but animals vaccinated with which expressing VP2 on surface failed to produce detectable antibody after two times immunizations. Moreover, the bursal lesion of microneme-located VP2 transgenic E. acervulina immunized chickens was less severe compared with un-immunized animals after IBDV challenge infection. Therefore, genetically modified E. acervulina that express IBDV-derived VP2 in micronemes are effective in inducing specific antibody responses against VP2, while parasites that have VP2 expression on cell surface are not suitable. Thus, the use of Eimeria parasites as vaccine vectors needs to consider the proper targeting of exogenous immunogens. Our results have implications for the design of other vector vaccines.
Collapse
Affiliation(s)
- Ying Yu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Bejing, China
| | - Chunhui Duan
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Colin Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, United Kingdom
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Beth Bruton
- MSD Animal Health, Walton Manor, Milton Keynes, United Kingdom
| | - Ian Tarpey
- MSD Animal Health, Walton Manor, Milton Keynes, United Kingdom
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing, China
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Liu Q, Liu X, Zhao X, Zhu XQ, Suo X. Live attenuated anticoccidial vaccines for chickens. Trends Parasitol 2023; 39:1087-1099. [PMID: 37770352 DOI: 10.1016/j.pt.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/30/2023]
Abstract
Chicken coccidiosis, caused by infection with single or multiple Eimeria species, results in significant economic losses to the global poultry industry. Over the past decades, considerable efforts have been made to generate attenuated Eimeria strains, and the use of live attenuated anticoccidial vaccines for disease prevention has achieved tremendous success. In this review, we evaluate the advantages and limitations of the methods of attenuation as well as attenuated Eimeria strains in a historical perspective. Also, we summarize the recent exciting research advances in transient/stable transfection systems and clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing developed for Eimeria parasites, and discuss trends and challenges of developing live attenuated anticoccidial vaccines based on transgenesis and genome editing.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, PR China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China.
| |
Collapse
|
4
|
Zaheer T, Abbas RZ, Imran M, Abbas A, Butt A, Aslam S, Ahmad J. Vaccines against chicken coccidiosis with particular reference to previous decade: progress, challenges, and opportunities. Parasitol Res 2022; 121:2749-2763. [PMID: 35925452 PMCID: PMC9362588 DOI: 10.1007/s00436-022-07612-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Chicken coccidiosis is an economically significant disease of commercial chicken industry accounting for losses of more than £10.4 billion (according to 2016 prices). Additionally, the costs incurred in prophylaxis and therapeutics against chicken coccidiosis in developing countries (for instance Pakistan according to 2018 prices) reached US $45,000.00 while production losses for various categories of chicken ranges 104.74 to US $2,750,779.00. The infection has been reported from all types of commercial chickens (broiler, layer, breeder) having a range of reported prevalence of 7-90%. The concern of resistance towards major anticoccidials has provided a way forward to vaccine research and development. For prophylaxis of chicken coccidiosis, live virulent, attenuated, ionophore tolerant strains and recombinant vaccines have been extensively trialed and commercialized. Eimeria antigens and novel vaccine adjuvants have elicited the protective efficacy against coccidial challenge. The cost of production and achieving robust immune responses in birds are major challenges for commercial vaccine production. In the future, research should be focused on the development of multivalent anticoccidial vaccines for commercial poultry. Efforts should also be made on the discovery of novel antigens for incorporation into vaccine designs which might be more effective against multiple Eimeria species. This review presents a recap to the overall progress against chicken Eimeria with particular reference to previous decade. The article presents critical analysis of potential areas for future research in chicken Eimeria vaccine development.
Collapse
Affiliation(s)
- Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Asghar Abbas
- Faculty of Veterinary Science, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ali Butt
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sarfraz Aslam
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| | - Jameel Ahmad
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Establishment of Recombinant Eimeria acervulina Expressing Multi-Copies M2e Derived from Avian Influenza Virus H9N2. Vaccines (Basel) 2021; 9:vaccines9070791. [PMID: 34358207 PMCID: PMC8310259 DOI: 10.3390/vaccines9070791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
The potential of Eimeria parasites as live vaccine vectors has been reported with successful genetic manipulation on several species like E. tenella, E. mitis and E. necatrix. Among seven Eimeria species infecting chickens, E. acervulina is a highly prevalent, moderately pathogenic species. Thus, it is valuable for the study of transfection and for use as a potential as vaccine vector. In this study, a plasmid containing expression cassette with enhanced yellow fluorescent protein (EYFP), red fluorescent protein (RFP) and 12 copies of extracellular domain of H9N2 avian influenza virus M2 (M2e) protein was used for the transfection. Nucleofected sporozoites were inoculated into birds through wing vein. Recombinant E. acervulina oocysts with 0.1% EYFP+ and RFP+ populations were collected from the feces of the inoculated birds. The fluorescent rate of transgenic parasites reached over 95% after nine successive propagations with a pyrimethamine selection in vivo and fluorescent-activated cell sorting (FACS) of progeny oocysts. The expression of M2e in the transgenic parasites (EaM2e) was confirmed by Western blot and its cytoplasm localization in sporozoites was displayed by an indirect immunofluorescent assay (IFA). Meanwhile, we found that the fecundity of EaM2e was equivalent to that of wild type E. acervulina (EaWT). Taken together, the stable transfection of E. acervulina was successfully established. Future studies will focus on whether transgenic E. acervulina can serve as a live vaccine vector.
Collapse
|
6
|
Aitfella Lahlou R, Bounechada M, Mohammedi A, Silva LR, Alves G. Dietary use of Rosmarinus officinalis and Thymus vulgaris as anticoccidial alternatives in poultry. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Fatoba AJ, Adeleke MA. Transgenic Eimeria parasite: A potential control strategy for chicken coccidiosis. Acta Trop 2020; 205:105417. [PMID: 32105666 DOI: 10.1016/j.actatropica.2020.105417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Poultry industry has been very instrumental in curtailing malnutrition and poverty and as such contributing to economic growth. However, production loss in poultry industry due to parasitic disease such as coccidiosis has become a global challenge. Chicken coccidiosis is an enteric disease that is associated with morbidity and mortality. The control of this parasite through anticoccidial live vaccines and drugs has been very successful though with some limitations such as the cost of production of live vaccines, and drugs resistance which is a public health concern. The discovery of Eimeria vaccine antigens such as Apical membrane antigens (AMA)-1 and Immune mapped protein (IMP)-1 have introduced the use of recombinant vaccines as alternative control measures against chicken coccidiosis. Although some protections have been reported among recombinant vaccines, improving their protective efficacy has triggered the search for a novel and efficient delivery vehicle. Transgenic Eimeria, which is constructed either through stable or transient transfection is currently being explored as novel delivery vehicle of Eimeria vaccine antigens. Due to partial protections reported in chickens vaccinated with transgenic Eimeria lines expressing different Eimeria antigens, improving protective efficacy becomes imperative. Recent trends in the design of transgenic Eimeria for potential application in the control of chicken coccidiosis are summarized in this review. We conclude that, with improved protective efficacy using multiple vaccine antigens, transgenic Eimeria parasite could fill the gap in the control of chicken coccidiosis as an efficient anticoccidial vaccine.
Collapse
|
8
|
Towards Innovative Design and Application of Recombinant Eimeria as a Vaccine Vector. Infect Immun 2020; 88:IAI.00861-19. [PMID: 32094255 DOI: 10.1128/iai.00861-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Efficient delivery of antigenic cargo to trigger protective immune responses is critical to the success of vaccination. Genetically engineered microorganisms, including virus, bacteria, and protozoa, can be modified to carry and deliver heterologous antigens to the host immune system. The biological vectors can induce a broad range of immune responses and enhance heterologous antigen-specific immunological outcomes. The protozoan genus Eimeria is widespread in domestic animals, causing serious coccidiosis. Eimeria parasites with strong immunogenicity are potent coccidiosis vaccine candidates and offer a valuable model of live vaccines against infectious diseases in animals. Eimeria parasites can also function as a vaccine vector. Herein, we review recent advances in design and application of recombinant Eimeria as a vaccine vector, which has been a topic of ongoing research in our laboratory. By recapitulating the establishment of an Eimeria transfection platform and its application, it will help lay the foundation for the future development of effective parasite-based vaccine delivery vectors and beyond.
Collapse
|
9
|
Tang X, Suo J, Liang L, Duan C, Hu D, Gu X, Yu Y, Liu X, Cui S, Suo X. Genetic modification of the protozoan Eimeria tenella using the CRISPR/Cas9 system. Vet Res 2020; 51:41. [PMID: 32160917 PMCID: PMC7065449 DOI: 10.1186/s13567-020-00766-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/03/2020] [Indexed: 11/10/2022] Open
Abstract
Eimeria tenella has emerged as valuable model organism for studying the biology and immunology of protozoan parasites with the establishment of the reverse genetic manipulation platform. In this report, we described the application of CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (endonuclease) system for efficient genetic editing in E. tenella, and showed that the CRISPR/Cas9 system mediates site-specific double-strand DNA breaks with a single guide RNA. Using this system, we successfully tagged the endogenous microneme protein 2 (EtMic2) by inserting the red fluorescent protein into the C-terminal of EtMic2. Our results extended the utility of the CRISPR/Cas9-mediated genetic modification system to E. tenella, and opened a new avenue for targeted investigation of gene functions in apicomplexan parasites.
Collapse
Affiliation(s)
- Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingxia Suo
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lin Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunhui Duan
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Dandan Hu
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaolong Gu
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yonglan Yu
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shangjin Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Beijing Scientific Observation and Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, 100193, China.
| | - Xun Suo
- Key Laboratory of Zoonosis of Ministry of Agriculture & National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Hu D, Tang X, Ben Mamoun C, Wang C, Wang S, Gu X, Duan C, Zhang S, Suo J, Deng M, Yu Y, Suo X, Liu X. Efficient Single-Gene and Gene Family Editing in the Apicomplexan Parasite Eimeria tenella Using CRISPR-Cas9. Front Bioeng Biotechnol 2020; 8:128. [PMID: 32158750 PMCID: PMC7052334 DOI: 10.3389/fbioe.2020.00128] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/10/2020] [Indexed: 12/26/2022] Open
Abstract
Eimeria species are pathogenic protozoa with a wide range of hosts and the cause of poultry coccidiosis, which results in huge economic losses to the poultry industry. These parasites encode a genome of ∼8000 genes that control a highly coordinated life cycle of asexual replication and sexual differentiation, transmission, and virulence. However, the function and physiological importance of the large majority of these genes remain unknown mostly due to the lack of tools for systematic analysis of gene functions. Here, we report the first application of CRISPR-Cas9 gene editing technology in Eimeria tenella for analysis of gene function at a single gene level as well as for systematic functional analysis of an entire gene family. Using a transgenic line constitutively expressing Cas9, we demonstrated successful and efficient loss of function through non-homologous end joining as well as guided homologous recombination. Application of this approach to the study of the localization of EtGRA9 revealed that the gene encodes a secreted protein whose cellular distribution varied during the life cycle. Systematic disruption of the ApiAp2 transcription factor gene family using this approach revealed that 23 of the 33 factors expressed by this parasite are essential for development and survival in the host. Our data thus establish CRISPR-Cas9 as a powerful technology for gene editing in Eimeria and will set the stage for systematic functional analysis of its genome to understand its biology and pathogenesis, and will make it possible to identify and validate new targets for coccidiosis therapy.
Collapse
Affiliation(s)
- Dandan Hu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinming Tang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Choukri Ben Mamoun
- Department of Internal Medicine and Microbial Pathogenesis, School of Medicine, Yale University, New Haven, CT, United States
| | - Chaoyue Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Si Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaolong Gu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunhui Duan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sixin Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinxia Suo
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Miner Deng
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yonglan Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Tedla MG, Every AL, Scheerlinck JPY. Investigating immune responses to parasites using transgenesis. Parasit Vectors 2019; 12:303. [PMID: 31202271 PMCID: PMC6570953 DOI: 10.1186/s13071-019-3550-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022] Open
Abstract
Parasites comprise diverse and complex organisms, which substantially impact human and animal health. Most parasites have complex life-cycles, and by virtue of co-evolution have developed multifaceted, often life-cycle stage-specific relationships with the immune system of their hosts. The complexity in the biology of many parasites often limits our knowledge of parasite-specific immune responses, to in vitro studies only. The relatively recent development of methods to stably manipulate the genetic make-up of many parasites has allowed a better understanding of host-parasite interactions, particularly in vivo. In this regard, the use of transgenic parasites can facilitate the study of immunomodulatory mechanisms under in vivo conditions. Therefore, in this review, we specifically highlighted the current developments in the use of transgenic parasites to unravel the host's immune response to different life-cycle stages of some key parasite species such as Leishmania, Schistosoma, Toxoplasma, Plasmodium and Trypanosome and to some degree, the use of transgenic nematode parasites is also briefly discussed.
Collapse
Affiliation(s)
- Mebrahtu G. Tedla
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Alison L. Every
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
- Present Address: College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086 Australia
| | - Jean-Pierre Y. Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
12
|
Pastor-Fernández I, Pegg E, Macdonald SE, Tomley FM, Blake DP, Marugán-Hernández V. Laboratory Growth and Genetic Manipulation of Eimeria tenella. ACTA ACUST UNITED AC 2019; 53:e81. [PMID: 30811108 DOI: 10.1002/cpmc.81] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Eimeria is a genus of apicomplexan parasites that contains a large number of species, most of which are absolutely host-specific. Seven species have been recognized to infect chickens. Infection of susceptible chickens results in an intestinal disease called coccidiosis, characterized by mucoid or hemorrhagic enteritis, which is associated with impaired feed conversion or mortality in severe cases. Intensive farming practices have increased the significance of coccidiosis since parasite transmission is favored by high-density housing of large numbers of susceptible chickens. Routine chemoprophylaxis and/or vaccination with live parasite vaccines provides effective control of Eimeria, although the emergence of drug resistance and the relative cost and production capacity of current vaccine lines can prove limiting. As pressure to reduce drug use in livestock production intensifies, novel vaccination strategies are needed. Development of effective protocols supporting genetic complementation of Eimeria species has until recently been hampered by their inability to replicate efficiently in vitro. Now, the availability of such protocols has raised the prospect of generating transgenic parasite lines that function as vaccine vectors to express and deliver heterologous antigens. For example, this technology has the potential to streamline the production of live anticoccidial vaccines through the generation of parasite lines that co-express immunoprotective antigens derived from multiple Eimeria species. In this paper we describe detailed protocols for genetic manipulation, laboratory growth, and in vivo propagation of Eimeria tenella parasites, which will encourage future work from other researchers to expand biological understanding of Eimeria through reverse genetics. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Iván Pastor-Fernández
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Elaine Pegg
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Sarah E Macdonald
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Virginia Marugán-Hernández
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| |
Collapse
|
13
|
Xin C, Li J, Gong P, Wu B, Zhang N, Yang J, Cai X, Zhang X. Viral RNA-based transfection and expression of enhanced green fluorescent protein in the parasitic protozoan Eimeria stiedae. Acta Biochim Biophys Sin (Shanghai) 2019; 51:216-218. [PMID: 30566566 DOI: 10.1093/abbs/gmy155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Caiyan Xin
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bin Wu
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ju Yang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuepeng Cai
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
14
|
Duan C, Hu D, Tang X, Suo J, Wang S, Zhang S, Tao G, Li C, Wang C, Gu X, Tang X, Huang G, Xiang B, Wu S, Mamoun CB, Suo X, Liu X. Stable transfection of Eimeria necatrix through nucleofection of second generation merozoites. Mol Biochem Parasitol 2019; 228:1-5. [PMID: 30658178 DOI: 10.1016/j.molbiopara.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/16/2018] [Accepted: 01/10/2019] [Indexed: 11/19/2022]
Abstract
Eimeria spp., the causative agents of coccidiosis, are the most common protozoan pathogens of chickens. Infection with these parasites can result in poor development or death of animals leading to a devastating economic impact on poultry production. The establishment of transfection protocols for genetic manipulation of Eimeria species and stable expression of genes would help advance the biology of these parasites as well as establish these organisms as novel vaccine delivery vehicles. Here, we report the selection of the first stable transgenic E. necatrix population, EnHA1, consitutively expressing the EYFP reporter following transfection of the 2nd generation merozoites with a linear DNA fragment harboring the EYFP reporter gene, the HA1 gene from the avian influenza virus H9N2 and the TgDHFR-TS selectable marker, which confers resistance to pyrimethamine. Transfected merozoites were inoculated into chickens via the cloacal route, and feces from 18 h to 72 h post inoculation were collected and subjected to subsequent serial passages, FACS sorting and pyrimethamine selection. A gradual increase in the number of EYFP-expressing sporulated oocysts was noticed with more than 90% EYFP + oocysts obtained after five passages. Immunofluorescence assay confirmed successful expression of the HA1 antigen in the EnHA1 population. The ability to genetically manipulate E. necatrix merozoites and express heterologous genes in this parasite will pave the way for possible use of this organism as a vaccine-delivery vehicle.
Collapse
Affiliation(s)
- Chunhui Duan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Dandan Hu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Si Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sixin Zhang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chao Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chaoyue Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaolong Gu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guangping Huang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Biqi Xiang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shaoqiang Wu
- Chinese Academy of Inspection and Quarantine, Yizhuang, Beijing, China
| | - Choukri Ben Mamoun
- Department of Medicine / Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China; National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Tao G, Shi T, Tang X, Duszynski DW, Wang Y, Li C, Suo J, Tian X, Liu X, Suo X. Transgenic Eimeria magna Pérard, 1925 Displays Similar Parasitological Properties to the Wild-type Strain and Induces an Exogenous Protein-Specific Immune Response in Rabbits ( Oryctolagus cuniculus L.). Front Immunol 2017; 8:2. [PMID: 28167939 PMCID: PMC5253372 DOI: 10.3389/fimmu.2017.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022] Open
Abstract
Rabbit coccidiosis causes great economic losses to world rabbitries. Little work has been done considering genetic manipulation on the etiological agents, rabbit Eimeria spp. In this study, we constructed a transgenic line of Eimeria magna (EmagER) expressing enhanced yellow fluorescent protein (EYFP) and red fluorescent protein (RFP) using regulatory sequences of Eimeria tenella and Toxoplasma gondii. We observed the life cycle of EmagER and confirmed that the transgenic parasites express exogenous proteins targeted to different cellular compartments throughout the entire life cycle. EYFP was expressed mainly in the nucleus and RFP both in the nucleus and cytoplasm. Then, coccidia-free, laboratory-reared 40-day-old rabbits were primarily infected with either EmagER or wild-type strain oocysts and challenged with the wild-type strain. EmagER showed similar reproductivity and immunogenicity to the wild-type strain. Finally, we examined the foreign protein-specific immune response elicited by EmagER. Rabbits were immunized with either transgenic or wild-type oocysts. Immune response against parasite-soluble antigen, EYFP and RFP in spleen, and mesenteric lymph nodes were detected by quantitative real-time PCR. The relative expression level of IFN-γ, IL-2, and TNF-α were higher in EmagER-immunized rabbits than wild-type parasites-immunized rabbits after stimulation with EYFP and RFP. Our study confirmed that a specific immune response was induced by the exogenous protein expressed by EmagER and favored future studies on application of transgenic rabbit coccidia as recombinant vaccine vectors.
Collapse
Affiliation(s)
- Geru Tao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tuanyuan Shi
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | - Yunzhou Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chao Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiuling Tian
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Marugan-Hernandez V, Cockle C, Macdonald S, Pegg E, Crouch C, Blake DP, Tomley FM. Viral proteins expressed in the protozoan parasite Eimeria tenella are detected by the chicken immune system. Parasit Vectors 2016; 9:463. [PMID: 27553200 PMCID: PMC4994267 DOI: 10.1186/s13071-016-1756-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background Eimeria species are parasitic protozoa that cause coccidiosis, an intestinal disease commonly characterised by malabsorption, diarrhoea and haemorrhage that is particularly important in chickens. Vaccination against chicken coccidiosis is effective using wild-type or attenuated live parasite lines. The development of protocols to express foreign proteins in Eimeria species has opened up the possibility of using Eimeria live vaccines to deliver heterologous antigens and function as multivalent vaccine vectors that could protect chickens against a range of pathogens. Results In this study, genetic complementation was used to express immunoprotective virus antigens in Eimeria tenella. Infectious bursal disease virus (IBDV) causes Gumboro, an immunosuppressive disease that affects productivity and can interfere with the efficacy of poultry vaccination programmes. Infectious laryngotracheitis virus (ILTV) causes a highly transmissible respiratory disease for which strong cellular immunity and antibody responses are required for effective vaccination. Genes encoding the VP2 protein from a very virulent strain of IBDV (vvVP2) and glycoprotein I from ILTV (gI) were cloned downstream of 5’Et-Actin or 5’Et-TIF promoter regions in plasmids that also contained a mCitrine fluorescent reporter cassette under control of the 5’Et-MIC1 promoter. The plasmids were introduced by nucleofection into E. tenella sporozoites, which were then used to infect chickens. Progeny oocysts were sorted by FACS and passaged several times in vivo until the proportion of fluorescent parasites in each transgenic population reached ~20 % and the number of transgene copies per parasite genome decreased to < 10. All populations were found to transcribe and express the transgene and induced the generation of low titre, transgene-specific antibodies when used to immunise chickens. Conclusions E. tenella can express antigens of other poultry pathogens that are successfully recognised by the chicken immune system. Nonetheless, further work has to be done in order to improve the levels of expression for its future use as a multivalent vaccine vector. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1756-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Charlotte Cockle
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Sarah Macdonald
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Elaine Pegg
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Colin Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Damer P Blake
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - Fiona M Tomley
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| |
Collapse
|
17
|
Tang X, Liu X, Tao G, Qin M, Yin G, Suo J, Suo X. "Self-cleaving" 2A peptide from porcine teschovirus-1 mediates cleavage of dual fluorescent proteins in transgenic Eimeria tenella. Vet Res 2016; 47:68. [PMID: 27352927 PMCID: PMC4924277 DOI: 10.1186/s13567-016-0351-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/08/2016] [Indexed: 01/13/2023] Open
Abstract
The "self-cleaving" 2A sequence of picornavirus, which mediates ribosome-skipping events, enables the generation of two or more separate peptide products from one mRNA containing one or more "self-cleaving" 2A sequences. In this study, we introduced a single 2A sequence of porcine teschovirus-1 (P2A) linked to two fluorescent protein genes, the enhanced yellow fluorescent protein (EYFP) gene and the red fluorescent protein (RFP) gene, in a single cassette into transgenic Eimeria tenella (EtER). As expected, we obtained two separated protein molecules rather than a fused protein, although the two molecules were translated from the same mRNA carrying a single "self-cleaving" 2A sequence. Importantly, RFP led by a secretion signal was secreted into parasitophorous vacuoles, while EYFP localized mainly to the nucleus of EtER. Our results demonstrate that the "self-cleaving" 2A sequence actively mediated cleavage of polyproteins in the apicomplexan parasite E. tenella.
Collapse
Affiliation(s)
- Xinming Tang
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xianyong Liu
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193 China
| | - Geru Tao
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Mei Qin
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Guangwen Yin
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Jingxia Suo
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xun Suo
- />State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
- />Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
18
|
Shi T, Tao G, Bao G, Suo J, Hao L, Fu Y, Suo X. Stable Transfection of Eimeria intestinalis and Investigation of Its Life Cycle, Reproduction and Immunogenicity. Front Microbiol 2016; 7:807. [PMID: 27303389 PMCID: PMC4885834 DOI: 10.3389/fmicb.2016.00807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/12/2016] [Indexed: 11/15/2022] Open
Abstract
Rabbit coccidiosis, caused by infection of Eimeria spp. is one of the most severe parasitic diseases in rabbits. Eimeria intestinalis is one of the most immunogenic species in rabbit coccidia. Due to the lack of genomic information and unsuccessful in vitro cultivation, genetic manipulation of rabbit coccidia lagged behind other apicomplexan parasites. Using regulatory sequences from E. tenella, we obtained a transgenic line of E. intestinalis expressing yellow fluorescent protein (YFP). YFP was continuously expressed throughout the whole life cycle. Morphological features of E. intestinalis in different developmental stages were dynamically observed with the transgenic line. Some important features in the endogenous development stages were observed. Trophozoites were found as early as 4 h post inoculation. Two types of schizonts and merozoites were observed in first three of the four schizogonies. Beside jejunum and ileum, gametogony stage and oocysts were also found in the duodenum and vermiform appendix. In addition, the transgenic strain was highly immunogenic but less pathogenic than the wild type. Considering the high immunogenicity of E. intestinalis and amenability to transfection with foreign genes, transgenic E. intestinalis could be a promising oral eukaryotic vaccine vector.
Collapse
Affiliation(s)
- Tuanyuan Shi
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science Hangzhou, China
| | - Geru Tao
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Guolian Bao
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science Hangzhou, China
| | - Jingxia Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Lili Hao
- College of Life Science and Technology, Southwest University for Nationalities Chengdu, China
| | - Yuan Fu
- Department of Animal Parasitology, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Science Hangzhou, China
| | - Xun Suo
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| |
Collapse
|
19
|
Qin M, Tang X, Yin G, Liu X, Suo J, Tao G, Ei-Ashram S, Li Y, Suo X. Chicken IgY Fc expressed by Eimeria mitis enhances the immunogenicity of E. mitis. Parasit Vectors 2016; 9:164. [PMID: 27000834 PMCID: PMC4802925 DOI: 10.1186/s13071-016-1451-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/14/2016] [Indexed: 11/17/2022] Open
Abstract
Background Eimeria species are obligate intracellular apicomplexan parasites, causing great economic losses in the poultry industry. Currently wild-and attenuated- type anticoccidial vaccines are used to control coccidiosis. However, their use in fast growing broilers is limited by vaccination side effects caused by medium and/or low immunogenic Eimeria spp. There is, therefore, a need for a vaccine with high immunogenicity for broilers. Methods The avian yolk sac IgY Fc is the avian counterpart of the mammalian IgG Fc, which enhances immunogenicity of Fc-fusion proteins. Here, we developed a stable transgenic Eimeria mitis expressing IgY Fc (Emi.chFc) and investigated whether the avian IgY Fc fragment enhances the immunogenicity of E. mitis. Two-week-old broilers were immunized with either Emi.chFc or wild type Eimeria and challenged with wild type E. mitis to analyze the protective properties of transgenic Emi.chFc. Results Chickens immunized with Emi.chFc had significantly lower oocyst output, in comparison with PBS, mock control (transgenic E. mitis expressing HA1 from H9N2 avian influenza virus) and wildtype E. mitis immunized groups after challenge, indicating that IgY Fc enhanced the immunogenicity of E. mitis. Conclusions Our findings suggest that IgY Fc-expressing Eimeria may be a better coccidiosis vaccine, and transgenic Eimeria expressing Fc-fused exogenous antigens may be used as a novel vaccine-delivery vehicle against a wide variety of pathogens.
Collapse
Affiliation(s)
- Mei Qin
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Saeed Ei-Ashram
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. .,Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|