1
|
Mahmoudi F, Jalayeri MHT, Montaseri A, MohamedKhosroshahi L, Baradaran B. Microbial natural compounds and secondary metabolites as Immunomodulators: A review. Int J Biol Macromol 2024; 278:134778. [PMID: 39153680 DOI: 10.1016/j.ijbiomac.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Immunomodulatory therapies are beneficial strategies for the improvement of immune system function. Today, due to the increasing prevalence of immune disorders, cancer, and new viral diseases, there is a greater need to introduce immunomodulatory compounds with more efficiency and fewer side effects. Microbial derivatives are fertile and attractive grounds for discovering lots of novel compounds with various medical properties. The discovery of many natural compounds derived from bacterial sources, such as secondary metabolites with promising immunomodulating activities, represents the importance of this topic in drug discovery and emphasizes the necessity for a coherent source of study in this area. Considering this need, in this review, we aim to focus on the current information about the immunomodulatory effects of bacterial secondary metabolites and natural immunomodulators derived from microorganisms.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hadi Tajik Jalayeri
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Leila MohamedKhosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Bano S, Sharif A, Akhtar B, Abdel-Daim MM, Akhtar MF, Ali FL. Mechanistic insights on the possible protective role of polyphenols extracted from Tamarix aphylla aerial parts against sodium arsenite-induced hepatotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16565-16578. [PMID: 36190635 DOI: 10.1007/s11356-022-23324-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Arsenic exposure is associated with the induction of hepatotoxicity. Current study was aimed to investigate the hepato-protective ability of polyphenolic components of Tamarix aphylla (TA) ethanolic extract against sodium arsenite (SA)-induced liver injury of rats. Significantly higher quantities of phenolic (318.7±2.5 mgg-1GAE) and flavonoid (250.69 ±3.3 mgg-1QE) contents were present. Inhibitory concentration (IC50) exhibited an excellent potential for antioxidant (IC50= 25.99 μg/mL) assay. High performance liquid chromatography (HPLC) confirmed the existence of myercetin (10.40ppm), sinapic acid (2.131ppm), kaempferol (0.486ppm), caffeic acid (5.094 ppm). Forty-two rats were divided into 7 groups. Group 1 received normal saline (2 mL/kg/day, orally for 21 days), Group 2 received SA (10mg/kg/day for 21 days), and Group 3 received SA alone for 7 days (10mg/kg) and continues with silymarine for 21 days (25mg/kg orally). Group 4, 5, 6 received SA alone for 7 days and continue with TA extract up to 21 days (125mg/kg, 250mg/kg, and 500mg/kg orally) respectively, and Group 7 received TA extract (500mg/kg) for 21 days. SA was administered to all treated groups for 21 days. Treatment with polyphenolic ethanolic extract of TA restored the hepatic indices and oxidative markers in a dose-dependent manner. The upregulation in tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2 upon SA treatment suggesting inflammation was normalized by the treatment of rats. Above mentioned biochemical findings were supported well with histopathological screening. Present findings suggest that TA polyphenolic ethanolic extract could mitigate the oxidative stress and inflammation induced by SA in liver tissue.
Collapse
Affiliation(s)
- Shaher Bano
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan.
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | | |
Collapse
|
3
|
Urumbil SK, Anilkumar MN. Anti-inflammatory activity of endophytic bacterial isolates from Emilia sonchifolia (Linn.) DC. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114517. [PMID: 34389445 DOI: 10.1016/j.jep.2021.114517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the traditional medicine system, plants have been utilized as a rich source of anti-microbial, anti-inflammatory, anti-cancer, anti-viral and anti-oxidant compounds. The biological properties of plant-based drugs depend on their interaction with endophytes which persist as an important provider of bioactive secondary metabolites. Bacterial endophytes secrete anti-inflammatory molecules whose activity can be the base for the anti-inflammatory property of the plant. AIM OF THE STUDY During the screening of endophytes from Emilia sonchifolia, we isolated six different bacteria whose potential as the sources of anti-inflamamtory compounds have been aimed at in this study. MATERIALS AND METHODS Anti-inflammatory activity of the ethyl acetate extract of endophytes was studied by both in vitro and in vivo analyses. In vitro study was done using protein denaturation, COX, LOX, iNOS, myeloperoxidase and nitric oxide assays and in vivo analysis was carried out by carrageenan-induced and formalin-induced paw oedema tests. The expression level of anti-inflammatory genes such as COX-2 and NfKb was confirmed by real time PCR. RESULTS We confirmed anti-inflammatory activity of the ethyl acetate extract of bacterial endophytes of E sonchifolia by both in vitro and in vivo experiments. Carrageenan- and formalin-induced inflammations in mice were effectively reduced by the administration of the bacterial extract. Among the isolates, strain ES1effectively reduced inflammation. Gene expression studies confirmed reduction in the expression of COX-2 and NfKb genes in the presence of ES1 extract. CONCLUSION The present investigation demonstrated the anti-inflammatory property of the isolated bacterial endophyte ES1 (Bacillus subtilis strain-MG 692780) and thus justifies the possible role of endophytes in contributing anti-inflammatory property to E sonchifolia which is ethno-botanically important as a source of anti-inflammatory drug.
Collapse
Affiliation(s)
| | - Madhavan Nair Anilkumar
- Cell Culture Lab, Department of Botany, Union Christian College, Aluva, Ernakulam, Pin-683 102, Kerala, India.
| |
Collapse
|
4
|
Lai KH, Chen PJ, Chen CC, Yang SH, El-Shazly M, Chang YC, Wu YH, Wu YH, Wang YH, Hsieh HL, Hwang TL. Lophatherum gracile Brongn. attenuates neutrophilic inflammation through inhibition of JNK and calcium. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113224. [PMID: 32800928 DOI: 10.1016/j.jep.2020.113224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/05/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lophatherum gracile Brongn. (L. gracile) has been long used in traditional herbal medicine to clinically clear heat, disinhibit dampness, and treat inflammation. However, the effect of L. gracile on the activation of human neutrophils remains unclear. AIM OF THE STUDY The aim of current study is to investigate the anti-inflammatory properties of L. gracile extract (LGE) in N-formyl-methionyl-leucyl-phenylalanine (fMLF)-induced activation of human neutrophils. MATERIALS AND METHODS Superoxide anion generation and elastase release were estimated by spectrophotometry. A series of signaling pathways including mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt), as well as calcium mobilization were studied by Western blot analysis and spectrofluorometry. RESULTS Our experimental results indicated that the nontoxic dosage of LGE does-dependently inhibited the fMLF-induced superoxide anion (O2•-) generation, elastase release, CD11b expression, adhesion, and chemotactic migration in human neutrophils. LGE selectively inhibited the fMLF-induced phosphorylation of JNK but not p38, ERK, or Akt in human neutrophils. LGE also decreased the intracellular Ca2+ levels ([Ca2+]i) in fMLF-activated human neutrophils. However, a specific JNK inhibitor inhibited the fMLF-induced O2•- generation and CD11b expression, but it had no effect on [Ca2+]i in human neutrophils. CONCLUSIONS LGE exhibited anti-inflammatory activities in fMLF-activated human neutrophils. The pharmacological mechanisms of LGE-repressed neutrophilic inflammation were through two independent pathways, JNK signaling and calcium mobilization. Our results suggested that LGE holds the potential to be developed as an anti-inflammatory botanical medicine.
Collapse
Affiliation(s)
- Kuei-Hung Lai
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan.
| | - Chih-Chuan Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| | - Sien-Hung Yang
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11432, Egypt.
| | - Yu-Chia Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| | - Yi-Hsiu Wu
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan; Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| |
Collapse
|
5
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
6
|
Wang Y, Kong X, Wang M, Li J, Chen W, Jiang D. Luteolin Partially Inhibits LFA-1 Expression in Neutrophils Through the ERK Pathway. Inflammation 2019; 42:365-374. [PMID: 30255285 DOI: 10.1007/s10753-018-0900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Luteolin inhibits the adhesion of neutrophils to microvascular endothelial cells and plays an important anti-inflammatory role, owing to its mechanism of suppressing the expression of lymphocyte function-associated antigen-1 (LFA-1) in the neutrophils. Our study deals with the different signaling pathways participating in LFA-1 expression in neutrophils along with the regulation of luteolin in order to elucidate new anti-inflammatory targets of luteolin, thus providing a basis for clinical applications. In our study, neutrophils were separated using density gradient centrifugation and the cAMP levels were determined using ELISA. Additionally, phosphorylation levels of p38 mitogen-activated protein kinase (MAPK), extracellular regulated protein kinase (ERK), phosphatidylinositol-3-kinase (PI3K), and Janus kinase (JAK) were also detected by Western blotting. LFA-1 expression was estimated using flow cytometry. The results showed that inhibiting agents used against p38 MAPK, ERK, PI3K, and JAK could significantly inhibit LFA-1 expression on neutrophils (p < 0.05, p < 0.01). Luteolin also induced a noteworthy elevation of cAMP in neutrophil supernatants (p < 0.01). It could also significantly inhibit ERK phosphorylation (p < 0.05, p < 0.01), and had no obvious effect on p38 MAPK phosphorylation in neutrophils (p > 0.05). However, phosphorylation of PI3K and JAK was not detected in neutrophils. To conclude, the p38 MAPK, ERK, PI3K, and JAK pathways are involved in the regulation of LFA-1 expression in neutrophils, and luteolin partially inhibits LFA-1 expression by increasing cAMP levels and suppressing ERK phosphorylation.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Xueli Kong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Mengjie Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Jia Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Wu Chen
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Daixun Jiang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China.
| |
Collapse
|
7
|
Ma F, Chang X, Wang G, Zhou H, Ma Z, Lin H, Fan H. Streptococcus Suis Serotype 2 Stimulates Neutrophil Extracellular Traps Formation via Activation of p38 MAPK and ERK1/2. Front Immunol 2018; 9:2854. [PMID: 30581435 PMCID: PMC6292872 DOI: 10.3389/fimmu.2018.02854] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 is a major pathogen of swine streptococcicosis, which result in serious economic loss worldwide. SS2 is an important zoonosis causing meningitis and even death in humans. Neutrophil extracellular traps (NETs) constitute a significant bactericidal strategy of innate immune. The battle between SS2 and NETs may account for the pathogenicity of SS2. However, the molecular mechanism underlying release of SS2-induced NETs remains unclear. In this study, SS2 was found to induce NETs within 2–4 h, and was dependent on reactive oxygen species (ROS) from NADPH oxidase. Moreover, SS2 could activate neutrophil p38 MAPK and ERK1/2. Blockage of p38 MAPK or ERK1/2 activation decreased SS2-induced NETs formation by 65 and 85%, respectively. In addition, NADPH oxidase derived ROS inhibition negatively affected phosphorylation of p38 MAPK and ERK1/2 in SS2 induced neutrophils. Both TLR2 and TLR4 were significantly up-regulated by SS2 infection in blood cells in vivo and neutrophils in vitro, which indicates these two receptors are involved in SS2 recognition. Blocking TLR4 signaling could further inhibit the activation of ERK1/2, but not p38 MAPK; however, TLR4 signaling inhibition reduced NETs formation induced by SS2. In conclusion, SS2 could be recognized by TLR2 and/or TLR4, initiating NETs formation signaling pathways in a NADPH oxidase derived ROS dependent manner. ROS will activate p38 MAPK and ERK1/2, which ultimately induces NETs formation.
Collapse
Affiliation(s)
- Fang Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaojing Chang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangyu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agriculture University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Yang SC, Chen PJ, Chang SH, Weng YT, Chang FR, Chang KY, Chen CY, Kao TI, Hwang TL. Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity. Biochem Pharmacol 2018; 154:384-396. [PMID: 29883707 DOI: 10.1016/j.bcp.2018.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 11/30/2022]
Abstract
Neutrophils play a significant role in inflammatory tissue injury. Activated neutrophils produce reactive oxygen species (ROS), release proteases, and form neutrophil extracellular traps (NETs), significantly affecting the pathogenesis of inflammatory arthritis. We examined the therapeutic effects of luteolin, a flavone found in many plants, in neutrophilic inflammation and on acute inflammatory arthritis. Luteolin significantly inhibited superoxide anion generation, ROS production, and NET formation in human neutrophils. The increase in elastase release, CD11b expression, and chemotaxis was also inhibited by luteolin. Luteolin significantly suppressed phosphorylation of extracellular signal-regulated kinase (Erk) and mitogen-activated protein kinase kinase-1 (MEK-1), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Analysis of the molecular mechanism further revealed that luteolin acts as a Raf-1 inhibitor. In mice with complete Freund's adjuvant-induced arthritis, luteolin ameliorated neutrophil infiltration as well as the thickness of paw edema and ROS production. In conclusion, in addition to its known ROS scavenging effect, this study is the first to provide evidence that luteolin diminishes human neutrophil inflammatory responses by inhibiting Raf1-MEK-1-Erk. Our results focused on the importance of neutrophil activation in inflammatory tissue injury and offer opportunities for the development of luteolin's therapeutic potential to attenuate neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan; Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Po-Jen Chen
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Cosmetic Science, Providence University, Taichung 433, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Yu-Ting Weng
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuang-Yi Chang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Ting-I Kao
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan.
| |
Collapse
|
9
|
Yang SC, Chang SH, Hsieh PW, Huang YT, Ho CM, Tsai YF, Hwang TL. Dipeptide HCH6-1 inhibits neutrophil activation and protects against acute lung injury by blocking FPR1. Free Radic Biol Med 2017; 106:254-269. [PMID: 28232203 DOI: 10.1016/j.freeradbiomed.2017.02.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Formyl peptide receptor 1 (FPR1) is an emerging therapeutic target for the discovery of drugs to treat neutrophilic inflammatory diseases. However, development of FPR1 antagonists for clinical use is still inadequate. The purpose of this study was to identify a synthetic dipeptide N-(N-benzoyl-L-tryptophanyl)-D-phenylanlanine methyl ester (HCH6-1) as a FPR1 inhibitor and to investigate its protective effects against acute lung injury (ALI). HCH6-1 inhibited superoxide anion generation, elastase release, and chemotaxis in human neutrophils specifically activated by formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF), an FPR1 agonist. HCH6-1 produced right shifts in the concentration-response curves of fMLF, suggesting that HCH6-1 was a competitive antagonist of FPR1. Indeed, HCH6-1 bound to FPR1 in human neutrophils and neutrophil-like THP-1 as well as hFPR1-transfected HEK293 cells. Also, the FPR1 downstream signaling pathways were competitively inhibited by HCH6-1. Furthermore, HCH6-1 prevented pulmonary neutrophil infiltration and edema along with alveolar damage in LPS-induced ALI in mice. Our findings suggest that HCH6-1, a FPR1 antagonist, may have potential as a new therapeutic agent for treating FPR1-involved inflammatory lung diseases.
Collapse
Affiliation(s)
- Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan; Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yin-Ting Huang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Yung-Fong Tsai
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| |
Collapse
|
10
|
Chang YJ, Lee DU, Nam DY, Cho SM, Hong S, Nam JH, Kim WK. Inhibitory effect of Salvia plebeia leaf extract on ultraviolet-induced photoaging-associated ion channels and enzymes. Exp Ther Med 2017; 13:567-575. [PMID: 28352332 PMCID: PMC5348704 DOI: 10.3892/etm.2017.4025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/19/2016] [Indexed: 12/23/2022] Open
Abstract
In traditional Korean/Asian medicine, Salvia plebeia R.Br. (S. plebeia) leaves are used to treat inflammatory diseases, including dermatitis, cough, asthma and toothache. Recently, S. plebeia leaves have been applied in skin care, as they promote skin lightening and elasticity. Therefore, the present study investigated the anti-aging effects of S. plebeia leaf methanolic extract and its fractions (dichloromethane, ethylacetate and n-butanol). The results of a whole-cell patch clamp analysis indicated that the methanolic extract mediated ultraviolet (UV)-induced photoaging-associated ion channels, transient receptor potential vanilloid 1 (TRPV1) and calcium release-activated calcium channel protein 1 (ORAI1) channel activity in HEK293T cells overexpressing TRPV1 or ORAI1 and STIM1. Electrophysiological analysis revealed that the butanol fraction inhibited capsaicin-induced TRPV1 (84±8% at -60 mV/86±1% at 100 mV at 100 µg/ml) and ORAI1 (87±2% at -120 mV at 100 µg/ml) currents. Furthermore, the dichloromethane and hexane fractions inhibited tyrosinase activity by 32.4±0.69 and 22.6±0.96% at 330 µg/ml, respectively. Furthermore, the ethylacetate and butanol fractions inhibited elastase activity by 65.2±1.30 and 31.7±1.23% at 330 µg/ml, respectively. Tyrosinase and elastase, which are UV-induced photoaging-associated enzymes, regulate skin pigmentation and wrinkle formation, respectively. The results of the present study indicated that S. plebeia leaves may be a novel treatment for UV-induced photoaging.
Collapse
Affiliation(s)
- You-Jin Chang
- Department of Korean Medical Ophthalmology, Otolaryngology and Dermatology, Dongguk University College of Korean Medicine, Goyang 410-773, Republic of Korea
| | - Dong-Ung Lee
- Division of Bioscience, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Da Yeong Nam
- Division of Bioscience, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Sung Min Cho
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang 410-773, Republic of Korea
| | - Seungug Hong
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang 410-773, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 780-714, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 410-773, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 410-773, Republic of Korea; Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang 410-773, Republic of Korea
| |
Collapse
|
11
|
Tsai YF, Yang SC, Hwang TL. Formyl peptide receptor modulators: a patent review and potential applications for inflammatory diseases (2012-2015). Expert Opin Ther Pat 2016; 26:1139-1156. [PMID: 27454150 DOI: 10.1080/13543776.2016.1216546] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The activation of leukocytes and the subsequent immune cascade play an essential role in sterile and infectious inflammation. Dysregulation of these immune responses or excess leukocyte activation can induce tissue damage, organ dysfunction and mortality. Formyl peptide receptors (FPRs) are functionally diverse pattern recognition receptors responsible for recognizing different endogenous damage-associated molecular patterns or exogenous pathogen-associated molecular patterns. FPRs mediate leukocyte activation during inflammation. FPR1 antagonists and FPR2 agonists have demonstrated significant anti-inflammatory effects based on in vitro and in vivo studies. An increasing number of synthesized compounds targeting FPRs, especially potential FPR1 antagonists and FPR2 agonists, have been disclosed in patents. Areas covered: This article summarizes the current pharmacology patents related to FPR family modulators and their therapeutic indications based on a review of patent applications disclosed between 2012 and 2015. Expert opinion: In this review, FPR1 modulators comprise β-1,3-glucan synthase inhibitors containing an FPR ligand moiety, template-fixed peptidomimetics, cyclosporin H, and dipeptide derivatives. FPR2 modulators include phenylurea, bridged spiro[2.4]heptane ester, naphthalene, aminotriazole, polycyclic pyrrolidine-2,5-dione, imidazolidine-2,4-dione, (2-ureidoacetamido)alkyl, amide, oxazolyl-methylether, oxazole, thiazole, and crystalline potassium salt derivatives. These compounds have potential applications for human conditions such as inflammatory lung diseases, ischemia-reperfusion injury, sepsis, inflammatory bowel disease, and wound healing. FPRs are emerging as important targets for treating leukocyte-dominant inflammation.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- a Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,b Graduate Institute of Clinical Medical Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Department of Anesthesiology , Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Shun-Chin Yang
- d Department of Anesthesiology , Taipei Veterans General Hospital and National Yang-Ming University , Taipei , Taiwan.,e Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Tsong-Long Hwang
- a Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Department of Anesthesiology , Chang Gung Memorial Hospital , Taoyuan , Taiwan.,e Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,f Chinese Herbal Medicine Research Team, Healthy Aging Research Centre , Chang Gung University , Taoyuan , Taiwan.,g Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology , Chang Gung University of Science and Technology , Taoyuan , Taiwan
| |
Collapse
|
12
|
Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation. Mar Drugs 2016; 14:md14080141. [PMID: 27472345 PMCID: PMC4999902 DOI: 10.3390/md14080141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets.
Collapse
|
13
|
Mahmoudi F, Baradaran B, Dehnad A, Shanehbandi D, Mohamed Khosroshahi L, Aghapour M. The immunomodulatory activity of secondary metabolites isolated fromStreptomyces calvuson human peripheral blood mononuclear cells. Br J Biomed Sci 2016; 73:97-103. [DOI: 10.1080/09674845.2016.1188476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Chang YJ, Lee DU, Nam JH, Kim WK. Inhibitory Effect of A
grimonia Pilosa
Leaf Extract on the UV-Induced Photoaging-Related Ion Channel, ORAI1, and the Enzymes Tyrosinase and Elastase. J Food Biochem 2015. [DOI: 10.1111/jfbc.12171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- You-Jin Chang
- Department of Korean Medical Ophthalmology & Otolaryngology & Dermatology; Dongguk University College of Korean Medicine; Ilsan Dong-gu Goyang Gyeonggi-do Korea
| | - Dong-Ung Lee
- Division of Bioscience; Dongguk University; Gyeongju Gyeongsangbuk-do Korea
| | - Joo Hyun Nam
- Department of Physiology; Dongguk University College of Medicine; Gyeongju Gyeongsangbuk-do Korea
- Channelopathy Research Center (CRC); Dongguk University College of Medicine; 32 Dongguk-ro Ilsan Dong-gu Goyang Gyeonggi-do 410-773 Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC); Dongguk University College of Medicine; 32 Dongguk-ro Ilsan Dong-gu Goyang Gyeonggi-do 410-773 Korea
- Department of Internal Medicine Graduate School of Medicine; Dongguk University; 27 Dongguk-ro Ilsan Dong-gu Goyang Gyeonggi-do 410-773 Korea
| |
Collapse
|
15
|
Hwang TL, Aljuffali IA, Hung CF, Chen CH, Fang JY. The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs). Chem Biol Interact 2015; 235:106-14. [PMID: 25920576 DOI: 10.1016/j.cbi.2015.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
Cationic solid lipid nanoparticles (cSLNs) are extensively employed as the nanocarriers for drug/gene targeting to tumors and the brain. Investigation into the possible immune response of cSLNs is still lacking. The aim of this study was to evaluate the impact of cSLNs upon the activation of human polymorphonuclear neutrophil cells (PMNs). The cytotoxicity, pro-inflammatory mediators, Ca(2+) mobilization, mitogen-activated protein kinases (MAPKs), and neutrophil extracellular traps (NETs) as the indicators of PMN stimulation were examined in this work. The cSLNs presented a diameter of 195 nm with a zeta potential of 44 mV. The cSLNs could interact with the cell membrane to produce a direct membrane lysis and the subsequent cytotoxicity according to lactate dehydrogenase (LDH) elevation. The interaction of cSLNs with the membrane also triggered a Ca(2+) influx, followed by the induction of oxidative stress and degranulation. The cationic nanoparticles elevated the levels of superoxide anion and elastase by 24- and 9-fold, respectively. The PMN activation by cSLNs promoted the phosphorylation of p38 and Jun-N-terminal kinases (JNK) but not extracellular signal-regulated kinases (ERK). The imaging of scanning electron microscopy (SEM) and immunofluorescence demonstrated the production of NETs by cSLNs. This phenomenon was not significant for the neutral SLNs (nSLNs), although histones in NETs also increased after treatment of nSLNs. Our results suggest an important role of cSLNs in governing the activation of human neutrophils.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Cell Pharmacology Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, Hsinchuang, New Taipei City, Taiwan, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|