1
|
Dai L, Mei B, Zhu M, Zhou H, Shao Y, Peng L. Heterogeneity of OAS family expression in tuberculosis and the impact of different sample selection: a comprehensive analysis. Diagn Microbiol Infect Dis 2025; 111:116692. [PMID: 39864306 DOI: 10.1016/j.diagmicrobio.2025.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
The 2'-5' oligoadenylate synthetase (OAS)family, comprising OAS1, OAS2, OAS3, and OASL, has been shown to participate in the host immune response against Mycobacterium tuberculosis (Mtb). However, their expression profiles in tuberculosis (TB) remain inconsistent. In two TB-related datasets, the OAS family exhibits contrasting expression trends. To further investigate, we examined the expression of the OAS family in whole blood, peripheral blood mononuclear cells (PBMC), and pleural fluid mononuclear cells (PFMC) as study samples, focusing on pulmonary tuberculosis (PTB) and tuberculous pleuritis (TPE). The results revealed differing expression patterns of the OAS family in the two diseases. In PFMC samples from TPE patients, the OAS family showed overall upregulation. Additionally, matched samples from nine TPE patients indicated overlapping expression of the OAS family in both PBMC and PFMC samples.
Collapse
Affiliation(s)
- Lingshan Dai
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Bin Mei
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Mingzhi Zhu
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Hongjuan Zhou
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Yanqin Shao
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China
| | - Lijun Peng
- Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Parodis I, Lindblom J, Barturen G, Ortega-Castro R, Cervera R, Pers JO, Genre F, Hiepe F, Gerosa M, Kovács L, De Langhe E, Piantoni S, Stummvoll G, Vasconcelos C, Vigone B, Witte T, Alarcón-Riquelme ME, Beretta L. Molecular characterisation of lupus low disease activity state (LLDAS) and DORIS remission by whole-blood transcriptome-based pathways in a pan-European systemic lupus erythematosus cohort. Ann Rheum Dis 2024; 83:889-900. [PMID: 38373843 PMCID: PMC11187369 DOI: 10.1136/ard-2023-224795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES To unveil biological milieus underlying low disease activity (LDA) and remission versus active systemic lupus erythematosus (SLE). METHODS We determined differentially expressed pathways (DEPs) in SLE patients from the PRECISESADS project (NTC02890121) stratified into patients fulfilling and not fulfilling the criteria of (1) Lupus LDA State (LLDAS), (2) Definitions of Remission in SLE remission, and (3) LLDAS exclusive of remission. RESULTS We analysed data from 321 patients; 40.8% were in LLDAS, and 17.4% in DORIS remission. After exclusion of patients in remission, 28.3% were in LLDAS. Overall, 604 pathways differed significantly in LLDAS versus non-LLDAS patients with an false-discovery rate-corrected p (q)<0.05 and a robust effect size (dr)≥0.36. Accordingly, 288 pathways differed significantly between DORIS remitters and non-remitters (q<0.05 and dr≥0.36). DEPs yielded distinct molecular clusters characterised by differential serological, musculoskeletal, and renal activity. Analysis of partially overlapping samples showed no DEPs between LLDAS and DORIS remission. Drug repurposing potentiality for treating SLE was unveiled, as were important pathways underlying active SLE whose modulation could aid attainment of LLDAS/remission, including toll-like receptor (TLR) cascades, Bruton tyrosine kinase (BTK) activity, the cytotoxic T lymphocyte antigen 4 (CTLA-4)-related inhibitory signalling, and the nucleotide-binding oligomerization domain leucine-rich repeat-containing protein 3 (NLRP3) inflammasome pathway. CONCLUSIONS We demonstrated for the first time molecular signalling pathways distinguishing LLDAS/remission from active SLE. LLDAS/remission was associated with reversal of biological processes related to SLE pathogenesis and specific clinical manifestations. DEP clustering by remission better grouped patients compared with LLDAS, substantiating remission as the ultimate treatment goal in SLE; however, the lack of substantial pathway differentiation between the two states justifies LLDAS as an acceptable goal from a biological perspective.
Collapse
Affiliation(s)
- Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Jacques-Olivier Pers
- Centre Hospitalier Universitaire de Brest, Hopital de la Cavale Blanche, Brest, France
| | - Fernanda Genre
- Research Group on Genetic Epidemiology and Atherosclerosis in Systemic Diseases and in Metabolic Bone Diseases of the Musculoskeletal System, IDIVAL, Santander, Spain
| | - Falk Hiepe
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Ellen De Langhe
- Katholieke Universiteit Leuven and Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Silvia Piantoni
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, Azienda Socio Sanitaria Territoriale Spedali Civili and University of Brescia, Brescia, Italy
| | | | | | - Barbara Vigone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada / Andalusian Regional Government, Granada, Spain, Medical Genomics, Granada, Spain
- Department of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Beretta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Singh P, Shah DA, Jouni M, Cejas RB, Crossman DK, Magdy T, Qiu S, Wang X, Zhou L, Sharafeldin N, Hageman L, McKenna DE, Armenian SH, Balis FM, Hawkins DS, Keller FG, Hudson MM, Neglia JP, Ritchey AK, Ginsberg JP, Landier W, Bhatia R, Burridge PW, Bhatia S. Altered Peripheral Blood Gene Expression in Childhood Cancer Survivors With Anthracycline-Induced Cardiomyopathy - A COG-ALTE03N1 Report. J Am Heart Assoc 2023; 12:e029954. [PMID: 37750583 PMCID: PMC10727235 DOI: 10.1161/jaha.123.029954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023]
Abstract
Background Anthracycline-induced cardiomyopathy is a leading cause of premature death in childhood cancer survivors, presenting a need to understand the underlying pathogenesis. We sought to examine differential blood-based mRNA expression profiles in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Methods and Results We designed a matched case-control study (Children's Oncology Group-ALTE03N1) with mRNA sequencing on total RNA from peripheral blood in 40 anthracycline-exposed survivors with cardiomyopathy (cases) and 64 matched survivors without (controls). DESeq2 identified differentially expressed genes. Ingenuity Pathway Analyses (IPA) and Gene Set Enrichment Analyses determined the potential roles of altered genes in biological pathways. Functional validation was performed by gene knockout in human-induced pluripotent stem cell-derived cardiomyocytes using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) technology. Median age at primary cancer diagnosis for cases and controls was 8.2 and 9.7 years, respectively. Thirty-six differentially expressed genes with fold change ≥±2 were identified; 35 were upregulated. IPA identified "hepatic fibrosis" and "iron homeostasis" pathways to be significantly modulated by differentially expressed genes, including toxicology functions of myocardial infarction, cardiac damage, and cardiac dilation. Leading edge analysis from Gene Set Enrichment Analyses identified lactate dehydrogenase A (LDHA) and cluster of differentiation 36 (CD36) genes to be significantly upregulated in cases. Interleukin 1 receptor type 1, 2 (IL1R1, IL1R2), and matrix metalloproteinase 8, 9 (MMP8, MMP9) appeared in multiple canonical pathways. LDHA-knockout human-induced pluripotent stem cell-derived cardiomyocytes showed increased sensitivity to doxorubicin. Conclusions We identified differential mRNA expression profiles in peripheral blood of anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Upregulation of LDHA and CD36 genes suggests metabolic perturbations in a failing heart. Dysregulation of proinflammatory cytokine receptors IL1R1 and IL1R2 and matrix metalloproteinases, MMP8 and MMP9 indicates structural remodeling that accompanies the clinical manifestation of symptomatic cardiotoxicity.
Collapse
Affiliation(s)
- Purnima Singh
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
- Department of PediatricsUniversity of Alabama at BirminghamBirminghamAL
| | | | - Mariam Jouni
- Department of PharmacologyNorthwestern UniversityChicagoIL
| | | | - David K. Crossman
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAL
| | - Tarek Magdy
- Department of PharmacologyNorthwestern UniversityChicagoIL
- Louisiana State University Health ShreveportShreveportLA
| | - Shaowei Qiu
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Division of Hematology and OncologyUniversity of Alabama at BirminghamBirminghamAL
| | - Xuexia Wang
- Department of BiostatisticsFlorida International UniversityMiamiFL
| | - Liting Zhou
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
| | - Noha Sharafeldin
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
| | - Lindsey Hageman
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
| | | | | | - Frank M. Balis
- Department of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
| | | | - Frank G. Keller
- Department of Pediatrics, Children’s Healthcare of AtlantaEmory UniversityAtlantaGA
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer ControlSt. Jude Children’s Research HospitalMemphisTN
| | | | - A Kim Ritchey
- Department of PediatricsUPMC Children’s Hospital of PittsburghPAPittsburgh
| | - Jill P. Ginsberg
- Department of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Wendy Landier
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
- Department of PediatricsUniversity of Alabama at BirminghamBirminghamAL
| | - Ravi Bhatia
- Division of Hematology and OncologyUniversity of Alabama at BirminghamBirminghamAL
| | | | - Smita Bhatia
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
- Department of PediatricsUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
4
|
Deng MC. An exercise immune fitness test to unravel mechanisms of Post-Acute Sequelae of COVID-19. Expert Rev Clin Immunol 2023; 19:693-697. [PMID: 37190994 PMCID: PMC10330575 DOI: 10.1080/1744666x.2023.2214364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Mario C. Deng
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, UCLA Medical Center, Los Angeles, California, United States
| |
Collapse
|
5
|
Justin Margret J, Jain SK. Overview of gene expression techniques with an emphasis on vitamin D related studies. Curr Med Res Opin 2023; 39:205-217. [PMID: 36537177 DOI: 10.1080/03007995.2022.2159148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Each cell controls when and how its genes must be expressed for proper function. Every function in a cell is driven by signaling molecules through various regulatory cascades. Different cells in a multicellular organism may express very different sets of genes, even though they contain the same DNA. The set of genes expressed in a cell determines the set of proteins and functional RNAs it contains, giving it its unique properties. Malfunction in gene expression harms the cell and can lead to the development of various disease conditions. The use of rapid high-throughput gene expression profiling unravels the complexity of human disease at various levels. Peripheral blood mononuclear cells (PBMC) have been used frequently to understand gene expression homeostasis in various disease conditions. However, more studies are required to validate whether PBMC gene expression patterns accurately reflect the expression of other cells or tissues. Vitamin D, which is responsible for a multitude of health consequences, is also an immune modulatory hormone with major biological activities in the innate and adaptive immune systems. Vitamin D exerts its diverse biological effects in target tissues by regulating gene expression and its deficiency, is recognized as a public health problem worldwide. Understanding the genetic factors that affect vitamin D has the potential benefit that it will make it easier to identify individuals who require supplementation. Different technological advances in gene expression can be used to identify and assess the severity of disease and aid in the development of novel therapeutic interventions. This review focuses on different gene expression approaches and various clinical studies of vitamin D to investigate the role of gene expression in identifying the molecular signature of the disease.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| |
Collapse
|
6
|
Gene Expression Profile in Different Age Groups and Its Association with Cognitive Function in Healthy Malay Adults in Malaysia. Cells 2021; 10:cells10071611. [PMID: 34199148 PMCID: PMC8304476 DOI: 10.3390/cells10071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
Collapse
|
7
|
Deng MC. The evolution of patient-specific precision biomarkers to guide personalized heart-transplant care. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:51-63. [PMID: 33768160 DOI: 10.1080/23808993.2021.1840273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introduction In parallel to the clinical maturation of heart transplantation over the last 50 years, rejection testing has been revolutionized within the systems biology paradigm triggered by the Human Genome Project. Areas Covered We have co-developed the first FDA-cleared diagnostic and prognostic leukocyte gene expression profiling biomarker test in transplantation medicine that gained international evidence-based medicine guideline acceptance to rule out moderate/severe acute cellular cardiac allograft rejection without invasive endomyocardial biopsies. This work prompted molecular re-classification of intragraft biology, culminating in the identification of a pattern of intragraft myocyte injury, in addition to acute cellular rejection and antibody-mediated rejection. This insight stimulated research into non-invasive detection of myocardial allograft injury. The addition of a donor-organ specific myocardial injury marker based on donor-derived cell-free DNA further strengthens the non-invasive monitoring concept, combining the clinical use of two complementary non-invasive blood-based measures, host immune activity-related risk of acute rejection as well as cardiac allograft injury. Expert Opinion This novel complementary non-invasive heart transplant monitoring strategy based on leukocyte gene expression profiling and donor-derived cell-free DNA that incorporates longitudinal variability measures provides an exciting novel algorithm of heart transplant allograft monitoring. This algorithm's clinical utility will need to be tested in an appropriately designed randomized clinical trial which is in preparation.
Collapse
Affiliation(s)
- Mario C Deng
- Advanced Heart Failure/Mechanical Support/Heart Transplant, David Geffen School of Medicine at UCLA, Ronald Reagan UCLA Medical Center, 100 Medical Plaza Drive, Suite 630, Los Angeles, CA 90095
| |
Collapse
|
8
|
Miller PG, Sperling AS, Gibson CJ, Pozdnyakova O, Wong WJ, Manos MP, Buchbinder EI, Hodi FS, Ebert BL, Davids MS. A deep molecular response of splenic marginal zone lymphoma to front-line checkpoint blockade. Haematologica 2021; 106:651-654. [PMID: 33054119 PMCID: PMC7849751 DOI: 10.3324/haematol.2020.258426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Peter G Miller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Adam S Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | | | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Waihay J Wong
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115
| | - Michael P Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | | | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215; Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215.
| |
Collapse
|
9
|
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OWL, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang FX, Zhang WY, Zhang Z. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 2020; 11:12888-12917. [PMID: 34123239 PMCID: PMC8163330 DOI: 10.1039/d0sc04082g] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure-activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.
Collapse
Affiliation(s)
- Elizabeth J Anthony
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Elizabeth M Bolitho
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Jane M Donnelly
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Edward C Lant
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Frederik Lermyte
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Russell J Needham
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Marta Palau
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Huayun Shi
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Fang-Xin Wang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Wen-Ying Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Zijin Zhang
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
10
|
The aging transplant population and immunobiology: any therapeutic implication? Curr Opin Organ Transplant 2020; 25:255-260. [PMID: 32374576 PMCID: PMC9366898 DOI: 10.1097/mot.0000000000000760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to describe the latest investigations into the immunobiology of aging and the potential impact on outcomes after mechanical circulatory support implantation and heart transplantation. This information is relevant given the growing numbers of older patients with heart failure undergoing evaluation for mechanical circulatory support device (MCSD) or heart transplantation. RECENT FINDINGS A host of aging-associated aspects of immune dysfunction have been described in the general population including T-cell senescence, exhaustion, and terminal dedifferentiation, as well as impaired function of innate immune cells. Another important consequence of T-cell senescence is inflammation, which is known to have a strong relationship with both heart failure and frailty in older patients. Recent data on the association between T-cell and monocyte phenotypes as well as evaluation of gene expression and adverse outcomes after MCSD suggests the potential value of immunologic assessment of MCSD and heart transplant candidates and recipients. Measurement of physical frailty represents another avenue for patient evaluation that may complement immunologic assessment. Determination of immune dysfunction and frailty prior to transplantation may have implications for choice of induction and dosing of maintenance immunosuppression. SUMMARY As the age of transplant and MCSD candidates and recipients continues to increase, it is important for providers to recognize the potential impact of aging-associated immune dysfunction and how it may influence candidate selection, postintervention monitoring, and adjustment of immunosuppression.
Collapse
|
11
|
Beretta L, Barturen G, Vigone B, Bellocchi C, Hunzelmann N, De Langhe E, Cervera R, Gerosa M, Kovács L, Ortega Castro R, Almeida I, Cornec D, Chizzolini C, Pers JO, Makowska Z, Lesche R, Kerick M, Alarcón-Riquelme ME, Martin J. Genome-wide whole blood transcriptome profiling in a large European cohort of systemic sclerosis patients. Ann Rheum Dis 2020; 79:1218-1226. [PMID: 32561607 PMCID: PMC7456554 DOI: 10.1136/annrheumdis-2020-217116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023]
Abstract
Objectives The analysis of annotated transcripts from genome-wide expression studies may help to understand the pathogenesis of complex diseases, such as systemic sclerosis (SSc). We performed a whole blood (WB) transcriptome analysis on RNA collected in the context of the European PRECISESADS project, aiming at characterising the pathways that differentiate SSc from controls and that are reproducible in geographically diverse populations. Methods Samples from 162 patients and 252 controls were collected in RNA stabilisers. Cases and controls were divided into a discovery (n=79+163; Southern Europe) and validation cohort (n=83+89; Central-Western Europe). RNA sequencing was performed by an Illumina assay. Functional annotations of Reactome pathways were performed with the Functional Analysis of Individual Microarray Expression (FAIME) algorithm. In parallel, immunophenotyping of 28 circulating cell populations was performed. We tested the presence of differentially expressed genes/pathways and the correlation between absolute cell counts and RNA transcripts/FAIME scores in regression models. Results significant in both populations were considered as replicated. Results Overall, 15 224 genes and 1277 functional pathways were available; of these, 99 and 225 were significant in both sets. Among replicated pathways, we found a deregulation in type-I interferon, Toll-like receptor cascade, tumour suppressor p53 protein function, platelet degranulation and activation. RNA transcripts or FAIME scores were jointly correlated with cell subtypes with strong geographical differences; neutrophils were the major determinant of gene expression in SSc-WB samples. Conclusions We discovered a set of differentially expressed genes/pathways validated in two independent sets of patients with SSc, highlighting a number of deregulated processes that have relevance for the pathogenesis of autoimmunity and SSc.
Collapse
Affiliation(s)
- Lorenzo Beretta
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Guillermo Barturen
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS GRANADA, Granada, Spain
| | - Barbara Vigone
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Chiara Bellocchi
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Nicolas Hunzelmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Uniklinik Köln, Köln, Germany
| | - Ellen De Langhe
- Division of Rheumatology, University Hospitals Leuven and Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Gerosa
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - László Kovács
- Department of Rheumatology and Immunology, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Rafaela Ortega Castro
- Servicio de Reumatologia, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica IMIBIC, Córdoba, Spain
| | - Isabel Almeida
- Serviço de Imunologia EX-CICAP, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, Labex IGO, Brest, France
- Rheumatology Department, Cavale Blanche Hospital, Brest, France
| | - Carlo Chizzolini
- Immunology & Allergy, University Hospital and School of Medicine (HCUGE), Geneva, Switzerland
| | - Jacques-Olivier Pers
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, Labex IGO, Brest, France
| | | | | | - Martin Kerick
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Granada, Spain
| | - Marta Eugenia Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, PTS GRANADA, Granada, Spain
| | - Javier Martin
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Granada, Spain
| |
Collapse
|
12
|
Gautam A, Donohue D, Hoke A, Miller SA, Srinivasan S, Sowe B, Detwiler L, Lynch J, Levangie M, Hammamieh R, Jett M. Investigating gene expression profiles of whole blood and peripheral blood mononuclear cells using multiple collection and processing methods. PLoS One 2019; 14:e0225137. [PMID: 31809517 PMCID: PMC6897427 DOI: 10.1371/journal.pone.0225137] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
Gene expression profiling using blood samples is a valuable tool for biomarker discovery in clinical studies. Different whole blood RNA collection and processing methods are highly variable and might confound comparisons of results across studies. The main aim of the current study is to compare how blood storage, extraction methodologies, and the blood components themselves may influence gene expression profiling. Whole blood and peripheral blood mononuclear cell (PBMC) samples were collected in triplicate from five healthy donors. Whole blood was collected in RNAgard® and PAXgene® Blood RNA Tubes, as well as in collection tubes with anticoagulants such as dipotassium ethylenediaminetetraacetic acid (K2EDTA) and Acid Citrate Dextrose Solution A (ACD-A). PBMCs were separated using sodium citrate Cell Preparation Tubes (CPT™), FICOLL™, magnetic separation, and the LeukoLOCK™ methods. After blood collection, the LeukoLOCK™, K2EDTA and ACD-A blood tubes were shipped overnight using cold conditions and samples from the rest of the collection were immediately frozen with or without pre-processing. The RNA was isolated from whole blood and PBMCs using a total of 10 different experimental conditions employing several widely utilized RNA isolation methods. The RNA quality was assessed by RNA Integrity Number (RIN), which showed that all PBMC procedures had the highest RIN values when blood was stabilized in TRIzol® Reagent before RNA extraction. Initial data analysis showed that human blood stored and shipped at 4°C overnight performed equally well when checked for quality using RNA integrity number when compared to frozen stabilized blood. Comparisons within and across donor/method replicates showed signal-to-noise patterns which were not captured by RIN value alone. Pathway analysis using the top 1000 false discovery rate (FDR) corrected differentially expressed genes (DEGs) showed frozen vs. cold shipping conditions greatly impacted gene expression patterns in whole blood. However, the top 1000 FDR corrected DEGs from PBMCs preserved after frozen vs. cold shipping conditions (LeukoLOCK™ preserved in RNAlater®) revealed no significantly affected pathways. Our results provide novel insight into how RNA isolation, various storage, handling, and processing methodologies can influence RNA quality and apparent gene expression using blood samples. Careful consideration is necessary to avoid bias resulting from downstream processing. Better characterization of the effects of collection method idiosyncrasies will facilitate further research in understanding the effect of gene expression variability in human sample types.
Collapse
Affiliation(s)
- Aarti Gautam
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Duncan Donohue
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Allison Hoke
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- Oak Ridge Institute for Science and Education, Fort Detrick, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Stacy Ann Miller
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- Oak Ridge Institute for Science and Education, Fort Detrick, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Seshamalini Srinivasan
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Bintu Sowe
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- Oak Ridge Institute for Science and Education, Fort Detrick, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Leanne Detwiler
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Jesse Lynch
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- Oak Ridge Institute for Science and Education, Fort Detrick, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Michael Levangie
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Marti Jett
- US Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| |
Collapse
|
13
|
He D, Yang CX, Sahin B, Singh A, Shannon CP, Oliveria JP, Gauvreau GM, Tebbutt SJ. Whole blood vs PBMC: compartmental differences in gene expression profiling exemplified in asthma. Allergy Asthma Clin Immunol 2019; 15:67. [PMID: 31832069 PMCID: PMC6873413 DOI: 10.1186/s13223-019-0382-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background Blood has proven to be a useful resource for molecular analysis in numerous biomedical studies, with peripheral blood mononuclear cells (PBMCs) and whole blood being the major specimen types. However, comparative analyses between these two major compartments (PBMCs and whole blood) are few and far between. In this study, we compared gene expression profiles of PBMCs and whole blood samples obtained from research subjects with or without mild allergic asthma. Methods Whole blood (PAXgene) and PBMC samples were obtained from 5 mild allergic asthmatics and 5 healthy controls. RNA from both sample types was measured for expression of 730 immune-related genes using the NanoString nCounter platform. Results We identified 64 uniquely expressed transcripts in whole blood that reflected a variety of innate, humoral, and adaptive immune processes, and 13 uniquely expressed transcripts in PBMCs which were representative of T-cell and monocyte-mediated processes. Furthermore, analysis of mild allergic asthmatics versus non-asthmatics revealed 47 differentially expressed transcripts in whole blood compared to 1 differentially expressed transcript in PBMCs (FDR < 0.25). Finally, through simultaneous measurement of PBMC proteins on the nCounter assay, we identified CD28 and OX40 (TNFRSF4), both of which are critical co-stimulatory molecules during T-cell activation, as significantly upregulated in asthmatics. Conclusions Whole blood RNA preserved in PAXgene tubes is excellent for producing gene expression data with minimal variability and good sensitivity, suggesting its utility in multi-centre studies requiring measurement of blood gene expression.
Collapse
Affiliation(s)
- Daniel He
- 1Centre for Heart Lung Innovation, University of British Columbia, Room 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada.,2Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC V6Z2K5 Canada
| | - Chen Xi Yang
- 1Centre for Heart Lung Innovation, University of British Columbia, Room 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada.,2Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC V6Z2K5 Canada
| | - Basak Sahin
- 1Centre for Heart Lung Innovation, University of British Columbia, Room 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada
| | - Amrit Singh
- 1Centre for Heart Lung Innovation, University of British Columbia, Room 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada.,2Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC V6Z2K5 Canada
| | - Casey P Shannon
- 2Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC V6Z2K5 Canada
| | - John-Paul Oliveria
- 3Department of Medicine, McMaster University, Hamilton, ON L8N3Z5 Canada.,4Department of Pathology, Stanford University, Palo Alto, CA 94043 USA
| | - Gail M Gauvreau
- 3Department of Medicine, McMaster University, Hamilton, ON L8N3Z5 Canada
| | - Scott J Tebbutt
- 1Centre for Heart Lung Innovation, University of British Columbia, Room 166, 1081 Burrard Street, Vancouver, BC V6Z1Y6 Canada.,2Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC V6Z2K5 Canada.,5Department of Medicine (Division of Respiratory Medicine), University of British Columbia, Vancouver, BC V6Z1Y6 Canada
| |
Collapse
|
14
|
Donohue DE, Gautam A, Miller SA, Srinivasan S, Abu-Amara D, Campbell R, Marmar CR, Hammamieh R, Jett M. Gene expression profiling of whole blood: A comparative assessment of RNA-stabilizing collection methods. PLoS One 2019; 14:e0223065. [PMID: 31600258 PMCID: PMC6786555 DOI: 10.1371/journal.pone.0223065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/12/2019] [Indexed: 11/18/2022] Open
Abstract
Peripheral Blood gene expression is widely used in the discovery of biomarkers and development of therapeutics. Recently, a spate of commercial blood collection and preservation systems have been introduced with proprietary variations that may differentially impact the transcriptomic profiles. Comparative analysis of these collection platforms will help optimize protocols to detect, identify, and reproducibly validate true biological variance among subjects. In the current study, we tested two recently introduced whole blood collection methods, RNAgard® and PAXgene® RNA, in addition to the traditional method of peripheral blood mononuclear cells (PBMCs) separated from whole blood and preserved in Trizol reagent. Study results revealed striking differences in the transcriptomic profiles from the three different methods that imply ex vivo changes in gene expression occurred during the blood collection, preservation, and mRNA extraction processes. When comparing the ability of the three preservation methods to accurately capture individuals’ expression differences, RNAgard® outperformed PAXgene® RNA, and both showed better individual separation of transcriptomic profiles than PBMCs. Hence, our study recommends using a single blood collection platform, and strongly cautions against combining methods during the course of a defined study.
Collapse
Affiliation(s)
- Duncan E. Donohue
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Fort Detrick, MD, United States of America
| | - Aarti Gautam
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Stacy-Ann Miller
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Fort Detrick, MD, United States of America
| | - Seshamalini Srinivasan
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- The Geneva Foundation, Fort Detrick, MD, United States of America
| | - Duna Abu-Amara
- Steven and Alexandra Cohen Veterans Center for the Study of Posttraumatic Stress and Traumatic Brain Injury, Department of Psychiatry, NYU School of Medicine, New York, NY, United States of America
| | - Ross Campbell
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- Advanced Biomedical Computing Center, Frederick, MD, United States of America
| | - Charles R. Marmar
- Steven and Alexandra Cohen Veterans Center for the Study of Posttraumatic Stress and Traumatic Brain Injury, Department of Psychiatry, NYU School of Medicine, New York, NY, United States of America
| | - Rasha Hammamieh
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
| | - Marti Jett
- Integrative Systems Biology Program, U.S. Army Center for Environmental Health Research, Fort Detrick, MD, United States of America
- * E-mail:
| |
Collapse
|
15
|
Matualatupauw JC, O'Grada C, Hughes MF, Roche HM, Afman LA, Bouwman J. Integrated Analys of High-Fat Challenge-Induced Changes in Blood Cell Whole-Genome Gene Expression. Mol Nutr Food Res 2019; 63:e1900101. [PMID: 31565847 PMCID: PMC6856827 DOI: 10.1002/mnfr.201900101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/23/2019] [Indexed: 12/11/2022]
Abstract
SCOPE Several studies have examined the whole-genome gene expression response in blood cells to high-fat challenges with differing results. The study aims to identify consistently up- or downregulated genes and pathways in response to a high-fat challenge using several integration methods. METHODS AND RESULTS Three studies measuring the gene expression response to a high-fat challenge in white blood cells are evaluated for common trends using several integration methods. Overlap in differentially expressed genes between separate studies is examined, p-values of each separate study are combined, and data are analyzed as one merged dataset. Differentially expressed genes and pathways are compared between these methods. Selecting genes differentially expressed in the three separate studies result in 67 differentially expressed genes, primarily involved in circadian pathways. Using the Fishers p-value method and a merged dataset analysis, changes in 1097 and 1182 genes, respectively, are observed. The upregulated genes upon a high-fat challenge are related to inflammation, whereas downregulated genes are related to unfolded protein response, protein processing, cholesterol biosynthesis, and translation. CONCLUSION A general gene expression response to a high-fat challenge is identified. Compared to separate analyses, integrated analysis provides added value for the discovery of a consistent gene expression response.
Collapse
Affiliation(s)
- Juri C. Matualatupauw
- Division of Human NutritionWageningen University6700 EVWageningenThe Netherlands
- Microbiology and Systems BiologyTNO3700 AJZeistThe Netherlands
| | - Colm O'Grada
- Nutrigenomics Research GroupUCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublin 4D04 N2E5Ireland
| | - Maria F. Hughes
- Nutrigenomics Research GroupUCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublin 4D04 N2E5Ireland
| | - Helen M. Roche
- Nutrigenomics Research GroupUCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublin 4D04 N2E5Ireland
| | - Lydia A. Afman
- Division of Human NutritionWageningen University6700 EVWageningenThe Netherlands
| | - Jildau Bouwman
- Microbiology and Systems BiologyTNO3700 AJZeistThe Netherlands
| |
Collapse
|
16
|
Mantere O, Trontti K, García-González J, Balcells I, Saarnio S, Mäntylä T, Lindgren M, Kieseppä T, Raij T, Honkanen JK, Vaarala O, Hovatta I, Suvisaari J. Immunomodulatory effects of antipsychotic treatment on gene expression in first-episode psychosis. J Psychiatr Res 2019; 109:18-26. [PMID: 30463035 DOI: 10.1016/j.jpsychires.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Abstract
Previous studies suggest immunological alterations in patients with first-episode psychosis (FEP). Some studies show that antipsychotic compounds may cause immunomodulatory effects. To evaluate the immunological changes and the possible immunomodulatory effects in FEP, we recruited patients with FEP (n = 67) and matched controls (n = 38), aged 18-40 years, from the catchment area of the Helsinki University Hospital and the City of Helsinki, Finland. Fasting peripheral blood samples were collected between 8 and 10 a.m. in 10 ml PAXgene tubes. We applied the NanoString nCounter in-solution hybridization technology to determine gene expression levels of 147 candidate genes reflecting activation of the immune system. Cases had higher gene expression levels of BDKRB1 and SPP1/osteopontin compared with controls. Of the individual medications used as monotherapy, risperidone was associated with a statistically significant upregulation of 11 immune system genes, including cytokines and cytokine receptors (SPP1, IL1R1, IL1R2), pattern recognition molecules (TLR1, TLR2 and TLR6, dectin-1/CLEC7A), molecules involved in apoptosis (FAS), and some other molecules with functions in immune activation (BDKRB1, IGF1R, CR1). In conclusion, risperidone possessed strong immunomodulatory properties affecting mainly innate immune response in FEP patients, whereas the observed effects of quetiapine and olanzapine were only marginal. Our results further emphasize the importance of understanding the immunomodulatory mechanisms of antipsychotic treatment, especially in terms of specific compounds, doses and duration of medication in patients with severe mental illness. Future studies should evaluate the response pre- and post-treatment, and the possible role of this inflammatory activation for the progression of psychiatric and metabolic symptoms.
Collapse
Affiliation(s)
- Outi Mantere
- Department of Psychiatry, McGill University, Montréal, QC, Canada; Bipolar Disorders Clinic, Douglas Mental Health University Institute, 6875, LaSalle Boulevard Montreal, Quebec, H4H 1R3, Montréal, QC, Canada.
| | - Kalevi Trontti
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Judit García-González
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Ingrid Balcells
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Suvi Saarnio
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Teemu Mäntylä
- Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, P.O. Box 12200, FI-00076, Aalto University School of Science, Finland; Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Maija Lindgren
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, Helsinki University and Helsinki University Hospital, P.O. Box 590, FI-00029 HUS, Finland
| | - Tuukka Raij
- Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, P.O. Box 12200, FI-00076, Aalto University School of Science, Finland; Department of Psychiatry, Helsinki University and Helsinki University Hospital, P.O. Box 590, FI-00029 HUS, Finland
| | - Jarno K Honkanen
- Clinicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Outi Vaarala
- Clinicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
17
|
Chakraborty B, Mondal P, Gajendra P, Mitra M, Das C, Sengupta S. Deciphering genetic regulation of CD14 by SP1 through characterization of peripheral blood mononuclear transcriptome of P. faiciparum and P. vivax infected malaria patients. EBioMedicine 2018; 37:442-452. [PMID: 30337251 PMCID: PMC6286629 DOI: 10.1016/j.ebiom.2018.09.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Plasmodium falciparum and Plasmodium vivax are two major parasites responsible for malaria which remains a threat to almost 50% of world's population despite decade-long eradication program. One possible reason behind this conundrum is that the bases of clinical variability in malaria caused by either species are complex and poorly understood. METHODS Whole-genome transcriptome was analyzed to identify the active and predominant pathways in the PBMC of P. falciparum and P. vivax infected malaria patients. Deregulated genes were identified and annotated using R Bioconductor and DAVID/KEGG respectively. Genetic and functional regulation of CD14, a prioritized candidate, were established by quantitative RT-PCR, genotyping using RFLP and resequencing, mapping of transcription factor binding using CONSITE and TFBIND, dual luciferase assay, western blot analysis, RNAi- mediated gene knockdown and chromatin-immunoprecipation. FINDINGS The study highlighted that deregulation of host immune and inflammatory genes particularly CD14 as a key event in P. falciparum malaria. An abundance of allele-C of rs5744454, located in CD14 promoter, in severe malaria motivated us to establish an allele-specific regulation of CD14 by SP1. An enhancement of SP1 and CD14 expression was observed in artemisinin treated human monocyte cell line. INTERPRETATION Our data not only reinstates that CD14 of TLR pathway plays a predominant role in P. falciparum malaria, it establishes a functional basis for genetic association of rs5744454 with P. falciparum severe malaria by demonstrating a cis-regulatory role of this promoter polymorphism. Moreover, the study points towards a novel pharmacogenetic aspect of artemisinin-based anti-malarial therapy. FUND: DST-SERB, Govt. of India, SR/SO/HS-0056/2013.
Collapse
Affiliation(s)
- Bijurica Chakraborty
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Pragya Gajendra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Mitashree Mitra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
18
|
Singh KP, Miaskowski C, Dhruva AA, Flowers E, Kober KM. Mechanisms and Measurement of Changes in Gene Expression. Biol Res Nurs 2018; 20:369-382. [PMID: 29706088 PMCID: PMC6346310 DOI: 10.1177/1099800418772161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research on gene expression (GE) provides insights into the physiology of a cell or group of cells at a given point in time. Studies of changes in GE can be used to identify patients at higher risk for various medical conditions, a higher symptom burden, and/or the adverse consequences associated with various treatments. The aims of this article are as follows: (1) to describe the different types of RNA transcripts, (2) to describe the processes involved in GE (i.e., RNA transcription, epigenetics, and posttranscriptional modifications), (3) to describe common sources of variation in GE, (4) to describe the most common methods used to measure GE, and (5) to discuss factors to consider when choosing tissue for a GE study. This article begins with an overview of the mechanisms involved in GE. Then, the factors that can influence the findings from GE experiments (e.g., tissue specificity, host age, host gender, and time of sample collection) are described and potential solutions are presented. This article concludes with a discussion of how the types of tissue used in GE studies can affect study findings. Given that the costs associated with the measurement of changes in GE are decreasing and the methods to analyze GE data are becoming easier to use, nurse scientists need to understand the basic principles that underlie any GE study.
Collapse
Affiliation(s)
- Komal P. Singh
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, USA
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, USA
| | - Anand A. Dhruva
- School of Medicine, University of California, San Francisco, CA, USA
| | - Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, USA
| | - Kord M. Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Vida C, Martinez de Toda I, Garrido A, Carro E, Molina JA, De la Fuente M. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer's Disease Patients. Relevant Role of Neutrophils in Oxidative Stress. Front Immunol 2018; 8:1974. [PMID: 29375582 PMCID: PMC5768621 DOI: 10.3389/fimmu.2017.01974] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/20/2017] [Indexed: 12/28/2022] Open
Abstract
Since aging is considered the most risk factor for sporadic Alzheimer’s Disease (AD), the age-related impairment of the immune system (immunosenescence), based on a chronic oxidative-inflammatory stress situation, could play a key role in the development and progression of AD. Although AD is accompanied by systemic disturbance, reflecting the damage in the brain, the changes in immune response and redox-state in different types of blood cells in AD patients have been scarcely studied. The aim was to analyze the variations in several immune functions and oxidative-inflammatory stress and damage parameters in both isolated peripheral neutrophils and mononuclear blood cells, as well as in whole blood cells, from patients diagnosed with mild (mAD) and severe AD, and of age-matched controls (elderly healthy subjects) as well as of adult controls. The cognitive decline of all subjects was determined by Mini-Mental State Examination (MMSE) test (mAD stage was established at 20 ≤ MMSE ≤ 23 score; AD stage at <18 MMSE; elderly subjects >27 MMSE). The results showed an impairment of the immune functions of human peripheral blood neutrophils and mononuclear cells of mAD and AD patients in relation to healthy elderly subjects, who showed the typical immunosenescence in comparison with the adult individuals. However, several alterations were only observed in severe AD patients (lower chemotaxis, lipopolysaccharide lymphoproliferation, and interleukin (IL)-10 release; higher basal proliferation, tumor necrosis factor (TNF)-α release, and IL-10/TNF-α ratio), others only in mAD subjects (higher adherence), meanwhile others appeared in both mAD and AD patients (lower phytohemaglutinin lymphoproliferation and higher IL-6 release). This impairment of immune functions could be mediated by: (1) the higher oxidative stress and damage also observed in blood cells from mAD and AD patients and in isolated neutrophils [lower glutathione (GSH) levels, high oxidized glutathione (GSSG)/GSH ratio, and GSSG and malondialdehyde contents], and (2) the higher release of basal pro-inflammatory cytokines (IL-6 and TNF-α) found in AD patients. Because the immune system parameters studied are markers of health and rate of aging, our results supported an accelerated immunosenescence in AD patients. We suggest the assessment of oxidative stress and function parameters in peripheral blood cells as well as in isolated neutrophils and mononuclear cells, respectively, as possible markers of AD progression.
Collapse
Affiliation(s)
- Carmen Vida
- Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain
| | - Irene Martinez de Toda
- Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain
| | - Antonio Garrido
- Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain
| | - Eva Carro
- Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Antonio Molina
- Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mónica De la Fuente
- Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Hospital Universitario12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
20
|
Vucicevic D, Honoris L, Raia F, Deng M. Current indications for transplantation: stratification of severe heart failure and shared decision-making. Ann Cardiothorac Surg 2018; 7:56-66. [PMID: 29492383 DOI: 10.21037/acs.2017.12.01] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heart failure (HF) is a complex clinical syndrome that results from structural or functional cardiovascular disorders causing a mismatch between demand and supply of oxygenated blood and consecutive failure of the body's organs. For those patients with stage D HF, advanced therapies, such as mechanical circulatory support (MCS) or heart transplantation (HTx), are potentially life-saving options. The role of risk stratification of patients with stage D HF in a value-based healthcare framework is to predict which subset might benefit from advanced HF (AdHF) therapies, to improve outcomes related to the individual patient including mortality, morbidity and patient experience as well as to optimize health care delivery system outcomes such as cost-effectiveness. Risk stratification and subsequent outcome prediction as well as therapeutic recommendation-making need to be based on the comparative survival benefit rationale. A robust model needs to (I) have the power to discriminate (i.e., to correctly risk stratify patients); (II) calibrate (i.e., to show agreement between the predicted and observed risk); (III) to be applicable to the general population; and (IV) provide good external validation. The Seattle Heart Failure Model (SHFM) and the Heart Failure Survival Score (HFSS) are two of the most widely utilized scores. However, outcomes for patients with HF are highly variable which make clinical predictions challenging. Despite our clinical expertise and current prediction tools, the best short- and long-term survival for the individual patient, particularly the sickest patient, is not easy to identify because among the most severely ill, elderly and frail patients, most preoperative prediction tools have the tendency to be imprecise in estimating risk. They should be used as a guide in a clinical encounter grounded in a culture of shared decision-making, with the expert healthcare professional team as consultants and the patient as an empowered decision-maker in a trustful safe therapeutic relationship.
Collapse
Affiliation(s)
- Darko Vucicevic
- David Geffen School of Medicine at UCLA, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Lily Honoris
- David Geffen School of Medicine at UCLA, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Federica Raia
- David Geffen School of Medicine at UCLA, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA.,Graduate School of Education & Information Studies (GSEIS), UCLA, Los Angeles, CA, USA
| | - Mario Deng
- David Geffen School of Medicine at UCLA, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
21
|
Circulating Biomarkers in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1067:89-108. [PMID: 29392578 DOI: 10.1007/5584_2017_140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biological markers have served for diagnosis, risk stratification and guided therapy of heart failure (HF). Our knowledge regarding abilities of biomarkers to relate to several pathways of HF pathogenesis and reflect clinical worsening or improvement in the disease is steadily expanding. Although there are numerous clinical guidelines, which clearly diagnosis, prevention and evidence-based treatment of HF, a strategy regarding exclusion of HF, as well as risk stratification of HF, nature evolution of disease is not well established and requires more development. The aim of the chapter is to discuss a role of biomarker-based approaches for more accurate diagnosis, in-depth risk stratification and individual targeting in treatment of patients with HF.
Collapse
|
22
|
Bondar G, Togashi R, Cadeiras M, Schaenman J, Cheng RK, Masukawa L, Hai J, Bao TM, Chu D, Chang E, Bakir M, Kupiec-Weglinski S, Groysberg V, Grogan T, Meltzer J, Kwon M, Rossetti M, Elashoff D, Reed E, Ping PP, Deng MC. Association between preoperative peripheral blood mononuclear cell gene expression profiles, early postoperative organ function recovery potential and long-term survival in advanced heart failure patients undergoing mechanical circulatory support. PLoS One 2017; 12:e0189420. [PMID: 29236770 PMCID: PMC5728510 DOI: 10.1371/journal.pone.0189420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/25/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Multiorgan dysfunction syndrome contributes to adverse outcomes in advanced heart failure (AdHF) patients after mechanical circulatory support (MCS) implantation and is associated with aberrant leukocyte activity. We tested the hypothesis that preoperative peripheral blood mononuclear cell (PBMC) gene expression profiles (GEP) can predict early postoperative improvement or non-improvement in patients undergoing MCS implantation. We believe this information may be useful in developing prognostic biomarkers. METHODS & DESIGN We conducted a study with 29 patients undergoing MCS-surgery in a tertiary academic medical center from 2012 to 2014. PBMC samples were collected one day before surgery (day -1). Clinical data was collected on day -1 and day 8 postoperatively. Patients were classified by Sequential Organ Failure Assessment score and Model of End-stage Liver Disease Except INR score (measured eight days after surgery): Group I = improving (both scores improved from day -1 to day 8, n = 17) and Group II = not improving (either one or both scores did not improve from day -1 to day 8, n = 12). RNA-sequencing was performed on purified mRNA and analyzed using Next Generation Sequencing Strand. Differentially expressed genes (DEGs) were identified by Mann-Whitney test with Benjamini-Hochberg correction. Preoperative DEGs were used to construct a support vector machine algorithm to predict Group I vs. Group II membership. RESULTS Out of 28 MCS-surgery patients alive 8 days postoperatively, one-year survival was 88% in Group I and 27% in Group II. We identified 28 preoperative DEGs between Group I and II, with an average 93% prediction accuracy. Out of 105 DEGs identified preoperatively between year 1 survivors and non-survivors, 12 genes overlapped with the 28 predictive genes. CONCLUSIONS In AdHF patients following MCS implantation, preoperative PBMC-GEP predicts early changes in organ function scores and correlates with long-term outcomes. Therefore, gene expression lends itself to outcome prediction and warrants further studies in larger longitudinal cohorts.
Collapse
Affiliation(s)
- Galyna Bondar
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Ryan Togashi
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Martin Cadeiras
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Joanna Schaenman
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Richard K. Cheng
- University of Washington Medical Center, Seattle, Washington, United States of America
| | - Lindsay Masukawa
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Josephine Hai
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Tra-Mi Bao
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Desai Chu
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Eleanor Chang
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Maral Bakir
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | | | - Victoria Groysberg
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Tristan Grogan
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Joseph Meltzer
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Murray Kwon
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Maura Rossetti
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - David Elashoff
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Elaine Reed
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Pei Pei Ping
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
| | - Mario C. Deng
- David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Wisniewski N, Bondar G, Rau C, Chittoor J, Chang E, Esmaeili A, Cadeiras M, Deng M. Integrative model of leukocyte genomics and organ dysfunction in heart failure patients requiring mechanical circulatory support: a prospective observational study. BMC Med Genomics 2017; 10:52. [PMID: 28851355 PMCID: PMC5576384 DOI: 10.1186/s12920-017-0288-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/16/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The implantation of mechanical circulatory support devices in heart failure patients is associated with a systemic inflammatory response, potentially leading to death from multiple organ dysfunction syndrome. Previous studies point to the involvement of many mechanisms, but an integrative hypothesis does not yet exist. Using time-dependent whole-genome mRNA expression in circulating leukocytes, we constructed a systems-model to improve mechanistic understanding and prediction of adverse outcomes. METHODS We sampled peripheral blood mononuclear cells from 22 consecutive patients undergoing mechanical circulatory support device (MCS) surgery, at 5 timepoints: day -1 preoperative, and postoperative days 1, 3, 5, and 8. Clinical phenotyping was performed using 12 clinical parameters, 2 organ dysfunction scoring systems, and survival outcomes. We constructed a strictly phenotype-driven time-dependent non-supervised systems-representation using weighted gene co-expression network analysis, and annotated eigengenes using gene ontology, pathway, and transcription factor binding site enrichment analyses. Genes and eigengenes were mapped to the clinical phenotype using a linear mixed-effect model, with Cox models also fit at each timepoint to survival outcomes. RESULTS We inferred a 19-module network, in which most module eigengenes correlated with at least one aspect of the clinical phenotype. We observed a response of advanced heart failure patients to surgery orchestrated into stages: first, activation of the innate immune response, followed by anti-inflammation, and finally reparative processes such as mitosis, coagulation, and apoptosis. Eigengenes related to red blood cell production and extracellular matrix degradation became predictors of survival late in the timecourse corresponding to multiorgan dysfunction and disseminated intravascular coagulation. CONCLUSIONS Our model provides an integrative representation of leukocyte biology during the systemic inflammatory response following MCS device implantation. It demonstrates consistency with previous hypotheses, identifying a number of known mechanisms. At the same time, it suggests novel hypotheses about time-specific targets.
Collapse
Affiliation(s)
- Nicholas Wisniewski
- Department of Medicine, Division of Cardiology, University of California Los Angeles, 100 UCLA Medical Plaza, Suite 630, Los Angeles, California, 90095, USA. .,Department of Integrative Biology and Physiology, University of California Los Angeles, 612 Charles E. Young Drive East, Los Angeles, California, 90095, USA.
| | - Galyna Bondar
- Department of Medicine, Division of Cardiology, University of California Los Angeles, 100 UCLA Medical Plaza, Suite 630, Los Angeles, California, 90095, USA
| | - Christoph Rau
- Department of Anesthesiology, Division of Molecular Medicine, University of California Los Angeles, 100 UCLA Medical Plaza, Suite 630, Los Angeles, California, 90095, USA
| | - Jay Chittoor
- Department of Medicine, Division of Cardiology, University of California Los Angeles, 100 UCLA Medical Plaza, Suite 630, Los Angeles, California, 90095, USA
| | - Eleanor Chang
- Department of Medicine, Division of Cardiology, University of California Los Angeles, 100 UCLA Medical Plaza, Suite 630, Los Angeles, California, 90095, USA
| | - Azadeh Esmaeili
- Department of Medicine, Division of Cardiology, University of California Los Angeles, 100 UCLA Medical Plaza, Suite 630, Los Angeles, California, 90095, USA
| | - Martin Cadeiras
- Department of Medicine, Division of Cardiology, University of California Los Angeles, 100 UCLA Medical Plaza, Suite 630, Los Angeles, California, 90095, USA
| | - Mario Deng
- Department of Medicine, Division of Cardiology, University of California Los Angeles, 100 UCLA Medical Plaza, Suite 630, Los Angeles, California, 90095, USA.
| |
Collapse
|
24
|
Raia F, Deng MC. Artificial heart pumps: bridging the gap between science, technology and personalized medicine by relational medicine. Future Cardiol 2016; 13:23-32. [PMID: 27990844 DOI: 10.2217/fca-2016-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the US population of 300 million, 3 million have heart failure with reduced ejection fraction and 300,000 have advanced heart failure. Long-term mechanical circulatory support will, within the next decade, be recommended to 30,000 patients annually in the USA, 3000 undergo heart transplantation annually. What do these advances mean for persons suffering from advanced heart failure and their loved ones/caregivers? In this perspective article, we discuss - by exemplifying a case report of a 27-year-old man receiving a Total Artificial Heart - a practice concept of modern medicine that fully incorporates the patient's personhood perspective which we have termed Relational Medicine™. From this case study, it becomes apparent that the successful practice of modern cardiovascular medicine requires the person-person encounter as a core practice element.
Collapse
Affiliation(s)
- Federica Raia
- Graduate School of Education & Information Studies & David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Mario C Deng
- Graduate School of Education & Information Studies & David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|