1
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
2
|
Bessoles S, Chiron A, Sarrabayrouse G, De La Grange P, Abina AM, Hacein-Bey-Abina S. Erythropoietin induces tumour progression and CD39 expression on immune cells in a preclinical model of triple-negative breast cancer. Immunology 2024; 173:360-380. [PMID: 38953295 DOI: 10.1111/imm.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
The adverse effects observed in some cancer patients treated with erythropoiesis-stimulating agents such as erythropoietin (EPO) might be due to the latter's well-known immunosuppressive functions. Here, we used a mouse model of syngeneic triple-negative breast cancer to explore EPO's immunomodulatory role in a tumour setting. Our results showed that EPO treatment promotes tumour growth, exacerbates the 'immune desert', and results in a 'cold tumour'. EPO treatment changed the immune cell distribution in peripheral blood, secondary lymphoid organs, and the tumour microenvironment (TME). Our in-depth analysis showed that EPO mainly impacts CD4 T cells by accelerating their activation in the spleen and thus their subsequent exhaustion in the TME. This process is accompanied by a general elevation of CD39 expression by several immune cells (notably CD4 T cells in the tumour and spleen), which promotes an immunosuppressive TME. Lastly, we identified a highly immunosuppressive CD39+ regulatory T cell population (ICOS+, CTLA4+, Ki67+) as a potential biomarker of the risk of EPO-induced tumour progression. EPO displays pleiotropic immunosuppressive functions and enhances mammary tumour progression in mice.
Collapse
Affiliation(s)
- Stéphanie Bessoles
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Andrada Chiron
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
| | | | - Amine M Abina
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Ribrag A, Lissavalid E, Fayard J, Djerroudi L, Ghislain MS, Ramtohul T, Tardivon A. Initial MRI findings predictive of a pathological complete response to neoadjuvant treatments in HER2-positive breast cancers. Eur J Radiol 2024; 178:111625. [PMID: 39024664 DOI: 10.1016/j.ejrad.2024.111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE This study aimed to determine if initial MRI findings could predict a pathological complete response (pCR) following neoadjuvant systemic therapy (NST) in HER2-positive breast cancers. METHODS The study retrospectively included 111 patients (Center 1, training set) and 71 patients (Center 2, validation set) with HER2-positive cancer who underwent NST. Initial clinicopathological data and MRI findings were recorded. Continuous variables were analyzed using the Mann-Whitney and Student's t-tests, while categorical variables were analyzed using the χ2 or Fisher's exact test. Univariate analysis was conducted to determine the associations between these variables and pathological complete response (pCR), defined as the absence of invasive malignant cells in the breast and lymph nodes. Interobserver reproducibility was assessed for associated non-mass enhancement (NME) parameter by analyzing 50 MR studies (intraclass correlation coefficient). RESULTS pCR was achieved in 67 patients, 51 (46 %) from Center 1 and 16 (23%) from Center 2 (p = 0.003), with significant differences between Centers 1 and 2 in tumor-infiltrating lymphocyte levels and lymphovascular invasion (p < 0.001). The initial presence of suspicious associated NME was the only significant parameter predictive of pCR (p < 0.001 for Center 1 and 0.04 for Center 2). The inter-observer reproducibility for this MRI feature was good, with an intraclass correlation coefficient of 0.872 (95 % CI: 0.73-1.00). CONCLUSION The presence of suspicious associated NME in HER2-positive cancers on the initial MRI study was predictive of achieving pCR after NST. This significant preliminary finding warrants confirmation through prospective multicenter studies.
Collapse
Affiliation(s)
- Anne Ribrag
- Department of Radiology, Institut Curie, Paris, France.
| | | | - Juliette Fayard
- Department of Radiology, Institut Curie, Saint-Cloud, France
| | | | | | | | - Anne Tardivon
- Department of Radiology, Institut Curie, Paris, France
| |
Collapse
|
4
|
Yamada M, Jinno H, Naruse S, Isono Y, Maeda Y, Sato A, Matsumoto A, Ikeda T, Sugimoto M. Predictive analysis of breast cancer response to neoadjuvant chemotherapy through plasma metabolomics. Breast Cancer Res Treat 2024; 207:393-404. [PMID: 38740665 DOI: 10.1007/s10549-024-07370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Preoperative chemotherapy is a critical component of breast cancer management, yet its effectiveness is not uniform. Moreover, the adverse effects associated with chemotherapy necessitate the identification of a patient subgroup that would derive the maximum benefit from this treatment. This study aimed to establish a method for predicting the response to neoadjuvant chemotherapy in breast cancer patients utilizing a metabolomic approach. METHODS Plasma samples were obtained from 87 breast cancer patients undergoing neoadjuvant chemotherapy at our facility, collected both before the commencement of the treatment and before the second treatment cycle. Metabolite analysis was conducted using capillary electrophoresis-mass spectrometry (CE-MS) and liquid chromatography-mass spectrometry (LC-MS). We performed comparative profiling of metabolite concentrations by assessing the metabolite profiles of patients who achieved a pathological complete response (pCR) against those who did not, both in initial and subsequent treatment cycles. RESULTS Significant variances were observed in the metabolite profiles between pCR and non-pCR cases, both at the onset of preoperative chemotherapy and before the second cycle. Noteworthy distinctions were also evident between the metabolite profiles from the initial and the second neoadjuvant chemotherapy courses. Furthermore, metabolite profiles exhibited variations associated with intrinsic subtypes at all assessed time points. CONCLUSION The application of plasma metabolomics, utilizing CE-MS and LC-MS, may serve as a tool for predicting the efficacy of neoadjuvant chemotherapy in breast cancer in the future after all necessary validations have been completed.
Collapse
Affiliation(s)
- Miki Yamada
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hiromitsu Jinno
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan.
| | - Saki Naruse
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Yuka Isono
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Yuka Maeda
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Ayana Sato
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Akiko Matsumoto
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Tatsuhiko Ikeda
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- Institute of Medical Science, Tokyo Medical University, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| |
Collapse
|
5
|
Woo JW, Han EK, Suh KJ, Kim SH, Kim JH, Park SY. Alteration of PD-L1 (SP142) status after neoadjuvant chemotherapy and its clinical significance in triple-negative breast cancer. Breast Cancer Res Treat 2024; 207:301-311. [PMID: 38753066 PMCID: PMC11297096 DOI: 10.1007/s10549-024-07359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/24/2024] [Indexed: 08/03/2024]
Abstract
PURPOSE The tumor immune microenvironment can change after neoadjuvant chemotherapy (NAC) for triple-negative breast cancer (TNBC). We aimed to investigate the effects of NAC on PD-L1 (SP142) status and its clinical significance in TNBC. METHODS Paired samples of biopsy and resection specimens were collected from 182 patients with TNBC before and after NAC. PD-L1 (SP142) expression in immune cells in pre- and post-NAC breast cancer samples and the changes between them were analyzed, along with their relationships with the clinicopathological features and clinical outcomes of the patients. RESULTS Of the 182 patients, 61 (33.5%) achieved pathologic complete response (pCR) after NAC. PD-L1 (SP142) positivity, defined as immune cell staining in ≥ 1% of tumor area, was a predictor for pCR. PD-L1-positive immune cells significantly increased after NAC (2.8% to 5.2% on average) in 109 patients with measurable residual disease. Alteration of PD-L1 status was observed in 24 (22.0%) of the 109 patients with measurable residual tumors after NAC, and all PD-L1 status-converted patients, except one, revealed negative-to-positive conversion. Regarding chemotherapeutic agents, the use of platinum agents was associated with a significant increase in PD-L1-positive immune cells after NAC. In survival analyses, a positive PD-L1 status after NAC and increase of PD-L1-positive immune cells after NAC were associated with better recurrence-free survival of the patients. CONCLUSION PD-L1 (SP142) status changes after NAC, mostly as a positive conversion. As PD-L1 (SP142) status can convey prognostic and predictive information, it needs to be tested before and after NAC.
Collapse
Affiliation(s)
- Ji Won Woo
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea
| | - Eun Kyung Han
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea
| | - Koung Jin Suh
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi, 13620, Republic of Korea.
| |
Collapse
|
6
|
Stover DG, Salgado R, Savenkov O, Ballman K, Mayer EL, Magbanua MJM, Loi S, Vater M, Glover K, Watson M, Wen Y, Symmans WF, Perou C, Carey LA, Partridge AH, Rugo HS. Association between tumor-infiltrating lymphocytes and survival in patients with metastatic breast cancer receiving first-line chemotherapy: analysis of CALGB 40502. NPJ Breast Cancer 2024; 10:75. [PMID: 39169033 PMCID: PMC11339397 DOI: 10.1038/s41523-024-00683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Association of stromal tumor-infiltrating lymphocytes (sTILs) with survival outcomes among patients with metastatic breast cancer (MBC) remains unclear. The primary objective was to evaluate the association of sTILs with progression-free survival in randomized phase III trial CALGB 40502. sTILs were associated with progression-free and overall survival in chemotherapy-treated MBC when controlling for treatment arm; however, this effect did not remain significant after additional adjustment for hormone receptor status. CALGB is now part of the Alliance for Clinical Trials in Oncology. Trial Registration: ClinicalTrials.gov: NCT00785291.
Collapse
Affiliation(s)
- Daniel G Stover
- Division of Medical Oncology, Department of Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
- Pelotonia Institute for ImmunoOncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Roberto Salgado
- GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Oleksander Savenkov
- Alliance Statistics and Data Management Center, Weill-Cornell Medical College, New York, NY, USA
| | - Karla Ballman
- Alliance Statistics and Data Management Center, Weill-Cornell Medical College, New York, NY, USA
| | | | | | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark Vater
- Division of Medical Oncology, Department of Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristyn Glover
- Division of Medical Oncology, Department of Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mark Watson
- Washington University School of Medicine, St. Louis, MO, USA
| | - Yujia Wen
- Alliance Protocol Operations Office, University of Chicago, Chicago, IL, USA
| | - W Fraser Symmans
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Perou
- University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Lisa A Carey
- University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | | | - Hope S Rugo
- University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Sun HK, Jiang WL, Zhang SL, Xu PC, Wei LM, Liu JB. Predictive value of tumor-infiltrating lymphocytes for neoadjuvant therapy response in triple-negative breast cancer: A systematic review and meta-analysis. World J Clin Oncol 2024; 15:920-935. [PMID: 39071463 PMCID: PMC11271722 DOI: 10.5306/wjco.v15.i7.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND The association between tumor-infiltrating lymphocyte (TIL) levels and the response to neoadjuvant therapy (NAT) in patients with triple-negative breast cancer (TNBC) remains unclear. AIM To investigate the predictive potential of TIL levels for the response to NAT in TNBC patients. METHODS A systematic search of the National Center for Biotechnology Information PubMed database was performed to collect relevant published literature prior to August 31, 2023. The correlation between TIL levels and the NAT pathologic complete response (pCR) in TNBC patients was assessed using a systematic review and meta-analysis. Subgroup analysis, sensitivity analysis, and publication bias analysis were also conducted. RESULTS A total of 32 studies were included in this meta-analysis. The overall meta-analysis results indicated that the pCR rate after NAT treatment in TNBC patients in the high TIL subgroup was significantly greater than that in patients in the low TIL subgroup (48.0% vs 27.7%) (risk ratio 2.01; 95% confidence interval 1.77-2.29; P < 0.001, I 2 = 56%). Subgroup analysis revealed that the between-study heterogeneity originated from differences in study design, TIL level cutoffs, and study populations. Publication bias could have existed in the included studies. The meta-analysis based on different NAT protocols revealed that all TNBC patients with high levels of TILs had a greater rate of pCR after NAT treatment in all protocols (all P ≤ 0.01), and there was no significant between-protocol difference in the statistics among the different NAT protocols (P = 0.29). Additionally, sensitivity analysis demonstrated that the overall results of the meta-analysis remained consistent when the included studies were individually excluded. CONCLUSION TILs can serve as a predictor of the response to NAT treatment in TNBC patients. TNBC patients with high levels of TILs exhibit a greater NAT pCR rate than those with low levels of TILs, and this predictive capability is consistent across different NAT regimens.
Collapse
Affiliation(s)
- Hai-Kuan Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Wen-Long Jiang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Shi-Lei Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Peng-Cheng Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Li-Min Wei
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| | - Jiang-Bo Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan Province, China
| |
Collapse
|
8
|
Sasa S, Inoue H, Nakagawa M, Toba H, Goto M, Okumura K, Misaki M, Inui T, Yukishige S, Nishisho A, Hino N, Kanematsu M, Bando Y, Uehara H, Tangoku A, Takizawa H. Long-Term Outcomes of S-1 Combined With Low-Dose Docetaxel as Neoadjuvant Chemotherapy (N-1 Study, Phase II Trial) in Patients With Operable Breast Cancer. Clin Breast Cancer 2024; 24:e350-e359.e2. [PMID: 38462397 DOI: 10.1016/j.clbc.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND We previously reported that S-1 and low-dose docetaxel (DOC) (N-1 study, phase II trial) could be a well-tolerated and effective neoadjuvant chemotherapies (NACs) for patients with operable breast cancer. Herein, we analyzed the long-term outcomes and developed clinicopathological and molecular predictors of pathological complete response (pCR). PATIENTS AND METHODS Eighty-three patients received S-1 (40 mg/m2 orally on days 1-14) and DOC (40 mg/m2 intravenously on day 1) every 3 weeks for 4 to 8 cycles. Disease-free survival (DFS) and overall survival (OS) were analyzed for each population with a pCR status. To assess the relationship between pCR and clinicopathological factors such as tumor-infiltrating lymphocytes (TILs, 1+ <10%, 2+ 10%-50%, and 3+ >50%) and nuclear grade (NG), microarray was used to compare the microRNA profiles of the pCR and non-pCR groups using core needle biopsy specimens. RESULTS With a median follow-up duration of 99.0 (range, 9.0-129.0) months, the 5-year DFS and OS rates were 80.7% and 90.9%, respectively. The 5-year OS rate of the pCR group was significantly better than that of the non-pCR group (100% vs. 86.2%, p = .0176). Specifically, in triple-negative patients, the difference was significant (100% vs. 60.0%, p = .0224). Multivariate analysis revealed that high TILs (≥2-3+) and NG 2-3 independently predicted pCR. Microarray data revealed that 3 miRNAs (miR-215-5p, miR-196a-5p, and miR-196b-5p) were significantly upregulated in the pCR group. CONCLUSION Our NAC regimen achieved favorable long-term outcomes and significantly improved OS in the pCR group. High TILs, NG 2-3, and some miRNAs may be predictors of pCR.
Collapse
Affiliation(s)
- Soichiro Sasa
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroaki Inoue
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Misako Nakagawa
- Department of Surgery, Takamatsu Municipal Hospital, Takamatsu, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan.
| | - Masakazu Goto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kazumasa Okumura
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Mariko Misaki
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Inui
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Sawaka Yukishige
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Aya Nishisho
- Department of Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Naoki Hino
- Department of Surgery, Tokushima Municipal Hospital, Tokushima, Japan
| | - Miyuki Kanematsu
- Department of Surgery, Tokushima Red Cross Hospital, Komatsushima-cho, Komatsushima, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
9
|
Wang Z, Guo F, Fu G, Zhao Z, Kang N, Hou X, Zheng X. Predictive and prognostic value of aurora kinase A combined with tumor-infiltrating lymphocytes in medullary thyroid carcinoma. Front Oncol 2024; 14:1379420. [PMID: 38903715 PMCID: PMC11187078 DOI: 10.3389/fonc.2024.1379420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background Aurora kinase A (AURKA) and tumor-infiltrating lymphocytes (TILs) are both known to play an essential role in tumorigenesis. However, the expression and prognostic value of the AURKA and TILs in medullary thyroid carcinoma (MTC) have not yet been investigated. Patients and methods Surgical specimens and clinical data of 137 patients diagnosed with MTC were collected. AURKA expression and TILs infiltration were quantified by immunohistochemistry and hematoxylin-eosin staining. Subsequently, the prognostic value of AURKA expression and TIL infiltration in MTC was evaluated. Results AURKA was highly expressed in patients with multifocal tumor, cervical lymph node metastasis, and an advanced TNM stage, indicating a high probability of recurrence. AURKA further exhibited a positive correlation with TILs (R = 0.44, P < 0.001). High expression of AURKA combined with a low numbers of TILs (AURKAhigh/TILslow) was identified as an independent prognostic factor for biochemical recurrence (odds ratio: 4.57, 95% confidence interval: 1.54-14.66, P < 0.01) and recurrence-free survival (hazard ratio: 3.64, 95% confidence interval: 1.52-8.71, P < 0.001). The combination of AURKA and TILs apparently improves the prognostic value for biochemical recurrence (area under the curve: 0.751) and structural recurrence (area under the curve: 0.836) of MTC. Notably, AURKAhigh/TILslow demonstrated a high value for prediction of distant or unresectable locoregional recurrence, with an overall accuracy of 86.9%. Conclusion AURKAhigh is associated with the MTC malignancy. The combination of AURKAhigh/TILslow was identified as novel independent prognostic marker in MTC, predicting incurable disease recurrence with high accuracy.
Collapse
Affiliation(s)
- Zhongyu Wang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Fengli Guo
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Guiming Fu
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Thyroid-otolaryngology Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zewei Zhao
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ning Kang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
10
|
Santhanam M, Kumar Pandey S, Shteinfer-Kuzmine A, Paul A, Abusiam N, Zalk R, Shoshan-Barmatz V. Interaction of SMAC with a survivin-derived peptide alters essential cancer hallmarks: Tumor growth, inflammation, and immunosuppression. Mol Ther 2024; 32:1934-1955. [PMID: 38582961 PMCID: PMC11184343 DOI: 10.1016/j.ymthe.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Second mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins. Using a peptide array with 768 peptides derived from 11 selected SMAC-interacting proteins, we identified SMAC-interacting sequences. These SMAC-binding sequences were produced as cell-penetrating peptides targeted to the cytosol, mitochondria, or nucleus, inhibiting cell proliferation and inducing apoptosis in several cell lines. For in vivo study, a survivin/baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)-derived peptide was selected, due to its overexpression in many cancers and its involvement in mitosis, apoptosis, autophagy, cell proliferation, inflammation, and immune responses, as a target for cancer therapy. Specifically, a SMAC-targeting survivin/BIRC5-derived peptide, given intratumorally or intravenously, strongly inhibited lung tumor growth, cell proliferation, angiogenesis, and inflammation, induced apoptosis, and remodeled the tumor microenvironment. The peptide promoted tumor infiltration of CD-8+ cells and increased cell-intrinsic programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, resulting in cancer cell self-destruction and increased tumor cell death, preserving immune cells. Thus, targeting the interaction between the multifunctional proteins SMAC and survivin represents an innovative therapeutic cancer paradigm.
Collapse
Affiliation(s)
- Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Anna Shteinfer-Kuzmine
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Nur Abusiam
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel.
| |
Collapse
|
11
|
Ciarka A, Kunc M, Popęda M, Łacko A, Radecka B, Braun M, Pikiel J, Litwiniuk M, Pogoda K, Iżycka-Świeszewska E, Zeller A, Niemira M, Pęksa R, Biernat W, Senkus E. High tumour-infiltrating lymphocytes correlate with distinct gene expression profile and favourable survival in single hormone receptor-positive breast cancer. Contemp Oncol (Pozn) 2024; 28:75-83. [PMID: 38800535 PMCID: PMC11117162 DOI: 10.5114/wo.2024.139375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction This study aimed to evaluate the impact of tumour-infiltrating lymphocytes (TILs) on the expression of immune-related genes and prognosis in single hormone receptor-positive breast cancer. Material and methods: Tumour-infiltrating lymphocytes were analysed according to the guidelines of the International TILs Working Group in a cohort of 206 patients with single hormone receptor-positive breast cancer. Of these, 44.7% were classified as ER+/PgR-/HER2-, 18.4% as ER+/PgR-/HER2+, 26.2% as ER-/PgR+/HER2-, and 10.7% as ER-/PgR+/HER2+. Moreover, in 52 samples the analysis of gene expression profiling was performed using nCounter technology. Results Most cases (74.3%) showed at least 1% of stromal TILs, with a median of 4%, mean of 16.3%, and interquartile range of 0-20%. ER-/PgR+ tumours displayed significantly higher TILs density than ER+/PgR- cases (p < 0.001, Wilcoxon test), regardless of HER2 status. The abundance of TILs was positively associated with ER-/PgR+ phenotype, higher Ki-67, and higher grade, but not with age, tumour size, or regional and distant metastases at diagnosis. Additionally, in ER+/PgR- subgroup higher TILs were associated with HER2-positive status. Stromal TILs > 5% were associated with better survival in the whole group, but this effect was less prominent in ER-/PgR+ patients. We identified 50 differentially expressed genes (DEGs) between single hormone receptor-positive breast tumours with high and low TILs, including 39 up-regulated and 11 down-regulated genes in the high TILs group. Conclusions The up-regulated expression of immune-related genes was consistent also among separately analysed single hormone receptor-positive groups (ER+/PgR- and ER-/PgR+).
Collapse
Affiliation(s)
- Aleksandra Ciarka
- Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Kunc
- Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Popęda
- Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Łacko
- Department of Oncology, Wrocław Medical University, Wrocław, Poland
- Department of Oncology, Breast Unit, Lower Silesian Oncology Centre, Wroclaw, Poland
| | - Barbara Radecka
- Department of Oncology, Institute of Medical Sciences, University of Opole, Opole, Poland
- Department of Clinical Oncology, Tadeusz Koszarowski Cancer Centre in Opole, Opole, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Łódź, Łódź, Poland
| | - Joanna Pikiel
- Department of Oncology, Morski Hospital, Gdynia, Poland
| | - Maria Litwiniuk
- Department of Clinical Oncology, Greater Poland Cancer Centre, Poznań, Poland
| | - Katarzyna Pogoda
- Department of Breast Cancer and Reconstructive Surgery, Maria Sklodowska Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Zeller
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Niemira
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Pęksa
- Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Biernat
- Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Elżbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
12
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
13
|
Xia G, Zhang Z, Jiang Q, Wang H, Wang J. Predictive value of stromal tumor-infiltrating lymphocytes in patients with breast cancer treated with neoadjuvant chemotherapy: A meta-analysis. Medicine (Baltimore) 2024; 103:e36810. [PMID: 38335394 PMCID: PMC10860995 DOI: 10.1097/md.0000000000036810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The predictive value of tumor-infiltrating lymphocytes (TILs) in response to neoadjuvant chemotherapy (NAC) for breast cancer (BC) has received increasing attention. Here, a meta-analysis was conducted to evaluate the correlation between the expression of stromal TILs and pathological complete response (pCR) after NAC in BC patients. METHODS The PubMed, Embase, Cochrane Library, and Web of Science databases were searched online by using a combination of keywords and free words to screen literature on the expression of stromal TILs and pCR after NAC in patients with BC. The data were extracted and evaluated for quality. Relative risk (RR) was used to evaluate the relationship between the expression of stromal TILs before NAC and pCR in BC patients. Meta-analysis was performed with Review Manager 5.3 and STATA 14.0 software. RESULTS Eleven studies involving 6039 BC patients were included in the meta-analysis. The results showed a generally high expression of stromal TILs in BC patients, and the pCR rate after NAC in BC patients with a high expression of stromal TILs was significantly higher than that in BC patients with a low expression of stromal TILs [RR = 1.83, 95% confidence interval (CI): 1.69-1.97]. Subgroup analysis based on the molecular subtypes of BC showed that the pCR rate was significantly higher in patients with a high expression of stromal TILs in hormone receptor (HR)-positive BC [RR = 3.23, 95% CI: 2.43-4.30], human epidermal growth factor receptor 2 (HER-2)-positive BC [RR = 1.41, 95% CI: 1.25-1.60], and triple-negative BC [RR = 1.70, 95% CI: 1.53-1.90] than in those with a low expression of stromal TILs. Subgroup analysis based on expression threshold showed that the pCR rate was higher in patients with a high expression of stromal TILs than in patients with a low expression of stromal TILs at different expression thresholds (10% [RR = 1.99, 95% CI: 1.55-2.55], 20%/30% [RR = 1.57, 95% CI: 1.37-1.81], 50%/60% [RR = 1.91, 95% CI: 1.73-2.11]. CONCLUSION TILs can be used as a predictor of pCR after NAC in patients with BC, and the appropriate high expression threshold of stromal TILs should be selected as the predictive value according to the molecular subtype of BC.
Collapse
Affiliation(s)
- Guangfa Xia
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Ziran Zhang
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Qin Jiang
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Huan Wang
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Jie Wang
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
14
|
Mlynska A, Gibavičienė J, Kutanovaitė O, Senkus L, Mažeikaitė J, Kerševičiūtė I, Maskoliūnaitė V, Rupeikaitė N, Sabaliauskaitė R, Gaiževska J, Suveizdė K, Kraśko JA, Dobrovolskienė N, Paberalė E, Žymantaitė E, Pašukonienė V. Defining Melanoma Immune Biomarkers-Desert, Excluded, and Inflamed Subtypes-Using a Gene Expression Classifier Reflecting Intratumoral Immune Response and Stromal Patterns. Biomolecules 2024; 14:171. [PMID: 38397409 PMCID: PMC10886750 DOI: 10.3390/biom14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The spatial distribution of tumor infiltrating lymphocytes (TILs) defines several histologically and clinically distinct immune subtypes-desert (no TILs), excluded (TILs in stroma), and inflamed (TILs in tumor parenchyma). To date, robust classification of immune subtypes still requires deeper experimental evidence across various cancer types. Here, we aimed to investigate, define, and validate the immune subtypes in melanoma by coupling transcriptional and histological assessments of the lymphocyte distribution in tumor parenchyma and stroma. We used the transcriptomic data from The Cancer Genome Atlas melanoma dataset to screen for the desert, excluded, and inflamed immune subtypes. We defined subtype-specific genes and used them to construct a subtype assignment algorithm. We validated the two-step algorithm in the qPCR data of real-world melanoma tumors with histologically defined immune subtypes. The accuracy of a classifier encompassing expression data of seven genes (immune response-related: CD2, CD53, IRF1, and CD8B; and stroma-related: COL5A2, TNFAIP6, and INHBA) in a validation cohort reached 79%. Our findings suggest that melanoma tumors can be classified into transcriptionally and histologically distinct desert, excluded, and inflamed subtypes. Gene expression-based algorithms can assist physicians and pathologists as biomarkers in the rapid assessment of a tumor immune microenvironment while serving as a tool for clinical decision making.
Collapse
Affiliation(s)
- Agata Mlynska
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Jolita Gibavičienė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Otilija Kutanovaitė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Linas Senkus
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Julija Mažeikaitė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Ieva Kerševičiūtė
- Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania (N.R.)
| | - Vygantė Maskoliūnaitė
- Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania (N.R.)
- National Center of Pathology, LT-08406 Vilnius, Lithuania
| | - Neda Rupeikaitė
- Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania (N.R.)
| | - Rasa Sabaliauskaitė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Justina Gaiževska
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Karolina Suveizdė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Jan Aleksander Kraśko
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Neringa Dobrovolskienė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Emilija Paberalė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
- Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania (N.R.)
| | - Eglė Žymantaitė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
| | - Vita Pašukonienė
- National Cancer Institute, LT-08406 Vilnius, Lithuania; (J.G.); (O.K.); (R.S.); (N.D.); (E.P.); (V.P.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
15
|
Tong Y, Zhou T, Wang X, Deng S, Qin L. Upregulation of CENPM promotes breast carcinogenesis by altering immune infiltration. BMC Cancer 2024; 24:54. [PMID: 38200449 PMCID: PMC10777552 DOI: 10.1186/s12885-023-11808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The involvement of centromere protein M (CENPM) in various types of cancer has been established, however, its impact on breast cancer and immune infiltration remains unknown. METHODS We examined the expression of CENPM in different cancer types by utilizing the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression Pan-Cancer (GEO) databases. Using data from the TCGA, we examined the correlation between the expression of CENPM, the prognosis, and the clinicopathological features of individuals diagnosed with breast cancer. We conducted an enrichment analysis of CENPM using the clusterProfiler R software tool, utilizing data obtained from breast cancer patients and specimens at our institution. In addition to examining the correlation between CENPM expression and genes associated with immune checkpoints, the TIDE algorithm was employed to explore the potential of CENPM as a biomarker for immunotherapy in breast cancer. The impact of CENPM on the growth of breast cancer cells was evaluated through the utilization of the CCK8 test and the colony formation assay. The effect of CENPM on the migration of breast cancer cells was assessed using scratch and transwell assays. RESULTS Research findings indicate that elevated levels of CENPM are linked to patient outcomes in breast cancer and various clinicopathological features. Furthermore, elevated levels of CENPM expression correlated with decreased levels of CD8 + T cells and mast cells, increased levels of Tregs and Th2, and reduced levels of CD8 + T cells. Additionally, the coexpression of CENPM with the majority of genes related to immune checkpoints indicates its potential to forecast the effectiveness of treatment in breast cancer. Suppression of CENPM hampers the growth and movement of breast tumor cells. CONCLUSIONS In summary, our study findings indicate that CENPM may serve as a cancer-causing gene in breast cancer and also as a biomarker for predicting the efficacy of immunotherapy. The oncogene CENPM is associated with breast cancer and is involved in cell proliferation and immune infiltration.
Collapse
Affiliation(s)
- Yanchu Tong
- Jingzhou Central Hospital, No. 60 Jingzhong Road, Jingzhou District, Jingzhou City, 434020, Hubei Province, China
| | - Tongzhou Zhou
- The HongKong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077, HKSAR, China
| | - Xiaokun Wang
- Jingzhou Central Hospital, No. 60 Jingzhong Road, Jingzhou District, Jingzhou City, 434020, Hubei Province, China
| | - Shun Deng
- Jingzhou Central Hospital, No. 60 Jingzhong Road, Jingzhou District, Jingzhou City, 434020, Hubei Province, China
| | - Lu Qin
- Jingzhou Central Hospital, No. 60 Jingzhong Road, Jingzhou District, Jingzhou City, 434020, Hubei Province, China.
| |
Collapse
|
16
|
Heger L, Heidkamp GF, Amon L, Nimmerjahn F, Bäuerle T, Maier A, Erber R, Hartmann A, Hack CC, Ruebner M, Huebner H, Fasching P, Beckmann MW, Dudziak D. Unbiased high-dimensional flow cytometry identified NK and DC immune cell signature in Luminal A-type and triple negative breast cancer. Oncoimmunology 2023; 13:2296713. [PMID: 38170155 PMCID: PMC10761100 DOI: 10.1080/2162402x.2023.2296713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and a highly heterogeneous disease. Four different subtypes are described that differ in the expression of hormone receptors as well as the growth factor receptor HER2. Treatment modalities and survival rate depend on the subtype of breast cancer. However, it is still not clear which patients benefit from immunotherapeutic approaches such as checkpoint blockade. Thus, we aimed to decipher the immune cell signature of the different breast cancer subtypes based on high-dimensional flow cytometry followed by unbiased approaches. Here, we show that the frequency of NK cells is reduced in Luminal A and B as well as triple negative breast cancer and that the phenotype of residual NK cells is changed toward regulatory CD11b-CD16- NK cells. Further, we found higher frequencies of PD-1+ CD4+ and CD8+ T cells in triple negative breast cancer. Moreover, while Luminal A-type breast cancer was enriched for CD14+ cDC2 (named type 3 DC (DC3)), CD14- cDC2 (named DC2) were more frequent in triple negative breast cancer. In contrast, HER2-enriched breast cancer did not show major alterations in the composition of the immune cell compartment in the tumor microenvironment. These findings suggest that patients with Luminal A- and B-type as well as triple negative breast cancer might benefit from immunotherapeutic approaches targeting NK cells.
Collapse
Affiliation(s)
- Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gordon F. Heidkamp
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Amon
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Maier
- Chair of Computer Science 5 (Pattern Recognition), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ramona Erber
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Carolin C. Hack
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Ruebner
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hanna Huebner
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Fasching
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W. Beckmann
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- Comprehensive Cancer Center Central Germany Jena/Leipzig, Jena, Germany
| |
Collapse
|
17
|
Qi X, Chen J, Wei S, Ni J, Song L, Jin C, Yang L, Zhang X. Prognostic significance of platelet-to-lymphocyte ratio (PLR) in patients with breast cancer treated with neoadjuvant chemotherapy: a meta-analysis. BMJ Open 2023; 13:e074874. [PMID: 37996220 PMCID: PMC10668253 DOI: 10.1136/bmjopen-2023-074874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE Platelet-to-lymphocyte ratio (PLR), known as a key systemic inflammatory parameter, has been proved to be associated with response to neoadjuvant therapy in breast cancer (BC); however, the results remain controversial. This meta-analysis was carried out to evaluate the prognostic values of PLR in patients with BC treated with neoadjuvant chemotherapy (NACT). DESIGN Meta-analysis. DATA SOURCES Relevant literature published on the following databases: PubMed, Embase, Web of Science databases and the Cochrane Library. ELIGIBILITY CRITERIA All studies involving patients with BC treated with NACT and peripheral blood pretreatment PLR recorded were included. DATA EXTRACTION AND SYNTHESIS Two researchers independently extracted and evaluated HR/OR and its 95% CI of survival outcomes, pathological complete response (pCR) rate and clinicopathological parameters. RESULTS The last search was updated to 31 December 2022. A total of 22 studies with 5533 patients with BC treated with NACT were enrolled in the final meta-analysis. Our results demonstrate that elevated PLR value appears to correlate with low pCR rate (HR 0.77, 95% CI 0.67 to 0.88, p<0.001, I2=75.80%, Ph<0.001) and poor prognosis, including overall survival (OS) (HR 1.90, 95% CI 1.39 to 2.59, p<0.001; I2=7.40%, Ph=0.365) and disease-free survival (HR 1.97, 95% CI 1.56 to 2.50, p<0.001; I2=0.0%, Ph=0.460). Furthermore, PLR level was associated with age (OR 0.86, 95% CI 0.79 to 0.93, p<0.001, I2=40.60%, Ph=0.096), menopausal status (OR 0.83, 95% CI 0.76 to 0.90, p<0.001, I2=50.80%, Ph=0.087) and T stage (OR 1.05, 95% CI 1.00 to 1.11, p=0.035; I2=70.30%, Ph=0.005) of patients with BC. CONCLUSIONS This meta-analysis demonstrated that high PLR was significantly related to the low pCR rate, poor OS and disease-free survival (DFS) of patients with BC treated with NACT. Therefore, PLR can be used as a potential predictor biomarker for the efficacy of NACT in BC.
Collapse
Affiliation(s)
- Xue Qi
- Department of Oncology, Nantong Liangchun Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China
| | - Jia Chen
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Sheng Wei
- Department of Radiotherapy, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingyi Ni
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Li Song
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Conghui Jin
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lei Yang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xunlei Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
18
|
Pescia C, Guerini-Rocco E, Viale G, Fusco N. Advances in Early Breast Cancer Risk Profiling: From Histopathology to Molecular Technologies. Cancers (Basel) 2023; 15:5430. [PMID: 38001690 PMCID: PMC10670146 DOI: 10.3390/cancers15225430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Early breast cancer (BC) is the definition applied to breast-confined tumors with or without limited involvement of locoregional lymph nodes. While risk stratification is essential for guiding clinical decisions, it can be a complex endeavor in these patients due to the absence of comprehensive guidelines. Histopathological analysis and biomarker assessment play a pivotal role in defining patient outcomes. Traditional histological criteria such as tumor size, lymph node involvement, histological type and grade, lymphovascular invasion, and immune cell infiltration are significant prognostic indicators. In addition to the hormone receptor, HER2, and-in specific scenarios-BRCA1/2 testing, molecular subtyping through gene expression profiling provides valuable insights to tailor clinical decision-making. The emergence of "omics" technologies, applicable to both tissue and liquid biopsy samples, has broadened our arsenal for evaluating the risk of early BC. However, a pressing need remains for standardized methodologies and integrated pathological models that encompass multiple analytical dimensions. In this study, we provide a detailed examination of the existing strategies for early BC risk stratification, intending to serve as a practical guide for histopathologists and molecular pathologists.
Collapse
Affiliation(s)
- Carlo Pescia
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (C.P.); (E.G.-R.); (G.V.)
- School of Pathology, University of Milan, 20141 Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (C.P.); (E.G.-R.); (G.V.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Giuseppe Viale
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (C.P.); (E.G.-R.); (G.V.)
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (C.P.); (E.G.-R.); (G.V.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| |
Collapse
|
19
|
Gandhi S, Opyrchal M, Grimm MJ, Slomba RT, Kokolus KM, Witkiewicz A, Attwood K, Groman A, Williams L, Tarquini ML, Wallace PK, Soh KT, Minderman H, Maguire O, O'Connor TL, Early AP, Levine EG, Kalinski P. Systemic infusion of TLR3-ligand and IFN-α in patients with breast cancer reprograms local tumor microenvironments for selective CTL influx. J Immunother Cancer 2023; 11:e007381. [PMID: 37963636 PMCID: PMC10649898 DOI: 10.1136/jitc-2023-007381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Presence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) predicts the effectiveness of cancer immunotherapies. The ability of toll-like receptor 3 (TLR3) ligands, interferons (IFNs) and COX2 inhibitors to synergistically induce CTL-attracting chemokines (but not regulatory T cell (Treg)-attractants) in the TME, but not in healthy tissues, observed in our preclinical studies, suggested that their systemic application can reprogram local TMEs. METHODS Six evaluable patients (33-69 years) with metastatic triple-negative breast cancer received six doses of systemic chemokine-modulating (CKM) regimen composed of TLR3 ligand (rintatolimod; 200 mg; intravenous), IFN-α2b (20 MU/m2; intravenous) and COX2 inhibitor (celecoxib; 2×200 mg; oral) over 2 weeks. The predetermined primary endpoint was the intratumoral change in the expression of CTL marker, CD8α, in the post-CKM versus pre-CKM tumor biopsies. Patients received follow-up pembrolizumab (200 mg, intravenously, every 3 weeks), starting 3-8 days after completion of CKM. RESULTS Post-CKM biopsies showed selectively increased CTL markers CD8α (average 10.2-fold, median 5.5-fold, p=0.034) and granzyme B (GZMB; 6.1-fold, median 5.8-fold, p=0.02), but not FOXP3 (Treg marker) relative to HPRT1 expression, resulting in the increases in average CD8α/FOXP3 ratio and GZMB/FOXP3 ratio. CKM increased intratumoral CTL-attractants CCL5 and CXCL10, but not Treg-attractants CCL22 or CXCL12. In contrast, CD8+ T cells and their CXCR3+ subset showed transient decreases in blood. One clinical response (breast tumor autoamputation) and three stable diseases were observed. The patient with clinical response remains disease free, with a follow-up of 46 months as of data cut-off. CONCLUSIONS Short-term systemic CKM selectively increases CTL numbers and CTL/Treg ratios in the TME, while transiently decreasing CTL numbers in the blood. Transient effects of CKM suggest that its simultaneous application with checkpoint blockade and other forms of immunotherapy may be needed for optimal outcomes.
Collapse
Affiliation(s)
- Shipra Gandhi
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mateusz Opyrchal
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Melissa J Grimm
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ronald T Slomba
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kathleen M Kokolus
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Agnieszka Witkiewicz
- Advanced Tissue Imaging Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kristopher Attwood
- Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Adrienne Groman
- Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lauren Williams
- Clinical Research Services, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Lynne Tarquini
- Clinical Research Services, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul K Wallace
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kah Teong Soh
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Hans Minderman
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Orla Maguire
- Flow & Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tracey L O'Connor
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Amy P Early
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ellis G Levine
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Pawel Kalinski
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
20
|
Liu M, Qian S, Wu J, Xiao J, Zeng X. The effects of neoadjuvant zoledronic acid in breast cancer patients: A meta-analysis of randomized controlled trials. Asian J Surg 2023; 46:4124-4130. [PMID: 36732184 DOI: 10.1016/j.asjsur.2023.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
To explore the effects of Zoledronic acid (ZA) in the neoadjuvant setting, we conducted a meta-analysis of randomized controlled trials (RCTs) of neoadjuvant therapy with or without ZA in breast cancer (BC). A systematic literature search was carried out by two reviewers independently on the basis of three electronic databases up to February 2022. Six RCTs with a total of 949 patients, comparing neoadjuvant therapy with or without ZA in BC were included. In the total population, adding ZA to the neoadjuvant setting didn't improved the pathological complete response (pCR) rates (Risk Ratio (RR) = 1.38, 95% CI 0.94-2.03, p = 0.10). However, subgroup analysis revealed that the addition of ZA resulted in an increased pCR rate in postmenopausal women (RR = 2.30, 95% CI 0.93-5.71, p = 0.07) and in patients with triple-negative BC (RR = 2.85, 95% CI 1.01-8.03, p = 0.05), although these results were not statistically significant. Furthermore, the additional ZA did not show benefits on objective response rate, breast-conserving surgery rate or recurrence rate. For mortality, however, the additional ZA resulting in worse outcome compared to the control group (RR = 1.48, 95% CI 1.04-2.10, p = 0.03). Our study suggested that addition of ZA to neoadjuvant therapy didn't improved the pCR rate. Further investigations are warranted in postmenopausal women and patients with triple-negative BC, since these subgroups might benefit from ZA treatment.
Collapse
Affiliation(s)
- Mei Liu
- Department of Breast Cancer, Chongqing University Cancer Hospital, Chongqing, 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shengqiang Qian
- Department of Urology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400000, China
| | - Jing Wu
- Department of Breast Cancer, Chongqing University Cancer Hospital, Chongqing, 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaohua Zeng
- Department of Breast Cancer, Chongqing University Cancer Hospital, Chongqing, 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
21
|
Wu R, Oshi M, Asaoka M, Yan L, Benesch MG, Khoury T, Nagahashi M, Miyoshi Y, Endo I, Ishikawa T, Takabe K. Intratumoral Tumor Infiltrating Lymphocytes (TILs) are Associated With Cell Proliferation and Better Survival But Not Always With Chemotherapy Response in Breast Cancer. Ann Surg 2023; 278:587-597. [PMID: 37318852 PMCID: PMC10481934 DOI: 10.1097/sla.0000000000005954] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To investigate the clinical relevance of intratumoral tumor infiltrating lymphocytes (TILs) in breast cancer as measured by computational deconvolution of bulk tumor transcriptomes. SUMMARY BACKGROUND DATA Commonly assessed TILs, located in tumor stroma without direct contact with cancer cells (stromal TILs), correlate with breast cancer treatment response and survival. The clinical relevance of intratumoral TILs has been less studied partly due to their rarity; however, they may have nonnegligible effects given their direct contact with cancer cells. METHODS In all, 5870 breast cancer patients from TCGA, METABRIC, GSE96058, GSE25066, GSE163882, GSE123845, and GSE20271 cohorts were analyzed and validated. RESULTS The intratumoral TIL score was established by the sum of all types of lymphocytes using the xCell algorithm. This score was the highest in triple-negative breast cancer (TNBC) and the lowest in the ER-positive/HER2-negative subtype. It correlated with cytolytic activity and infiltrations of dendritic cells, macrophages, and monocytes, and uniformly enriched immune-related gene sets regardless of subtype. Intratumoral TIL-high tumors correlated with higher mutation rates and significant cell proliferation on biological, pathological, and molecular analyses only in the ER-positive/HER2-negative subtype. It was significantly associated with pathological complete response after anthracycline- and taxane-based neoadjuvant chemotherapy in about half of the cohorts, regardless of the subtype. Intratumoral TIL-high tumors correlated with better overall survival in HER2-positive and TNBC subtypes consistently in 3 cohorts. CONCLUSIONS Intratumoral TILs estimated by transcriptome computation were associated with increased immune response and cell proliferation in ER-positive/HER2-negative and better survival in HER2-positive and TNBC subtypes, but not always with pathological complete response after neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Mariko Asaoka
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Matthew G.K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Masayuki Nagahashi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
22
|
Gasparri ML, Albasini S, Truffi M, Favilla K, Tagliaferri B, Piccotti F, Bossi D, Armatura G, Calcinotto A, Chiappa C, Combi F, Curcio A, Della Valle A, Ferrari G, Folli S, Ghilli M, Listorti C, Mancini S, Marinello P, Mele S, Pertusati A, Roncella M, Rossi L, Rovera F, Segattini S, Sgarella A, Tognali D, Corsi F. Low neutrophil-to-lymphocyte ratio and pan-immune-inflammation-value predict nodal pathologic complete response in 1274 breast cancer patients treated with neoadjuvant chemotherapy: a multicenter analysis. Ther Adv Med Oncol 2023; 15:17588359231193732. [PMID: 37720495 PMCID: PMC10504832 DOI: 10.1177/17588359231193732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023] Open
Abstract
Background Systemic inflammatory markers draw great interest as potential blood-based prognostic factors in several oncological settings. Objectives The aim of this study is to evaluate whether neutrophil-to-lymphocyte ratio (NLR) and pan-immune-inflammation value (PIV) predict nodal pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in node-positive (cN+) breast cancer (BC) patients. Design Clinically, cN+ BC patients undergoing NAC followed by breast and axillary surgery were enrolled in a multicentric study from 11 Breast Units. Methods Pretreatment blood counts were collected for the analysis and used to calculate NLR and PIV. Logistic regression analyses were performed to evaluate independent predictors of nodal pCR. Results A total of 1274 cN+ BC patients were included. Nodal pCR was achieved in 586 (46%) patients. At multivariate analysis, low NLR [odds ratio (OR) = 0.71; 95% CI, 0.51-0.98; p = 0.04] and low PIV (OR = 0.63; 95% CI, 0.44-0.90; p = 0.01) were independently predictive of increased likelihood of nodal pCR. A sub-analysis on cN1 patients (n = 1075) confirmed the statistical significance of these variables. PIV was significantly associated with axillary pCR in estrogen receptor (ER)-/human epidermal growth factor receptor 2 (HER2)+ (OR = 0.31; 95% CI, 0.12-0.83; p = 0.02) and ER-/HER2- (OR = 0.41; 95% CI, 0.17-0.97; p = 0.04) BC patients. Conclusion This study found that low NLR and PIV levels predict axillary pCR in patients with BC undergoing NAC. Registration Eudract number NCT05798806.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- Department of Gynecology and Obstetrics, Ospedale Regionale di Lugano EOC, Lugano, Switzerland
- Centro di Senologia della Svizzera Italiana, Ospedale Regionale di Lugano EOC, Lugano, Switzerland
| | - Sara Albasini
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Karin Favilla
- Scuola di specializzazione in Chirurgia Generale, Università di Milano, Milano, Italy
| | | | | | - Daniela Bossi
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Giulia Armatura
- Chirurgia Generale, Ospedale Centrale di Bolzano, Azienda Sanitaria dell’Alto Adige, Bolzano, Italy
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Lugano, Switzerland
| | | | - Francesca Combi
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
- Division of Breast Surgical Oncology, Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University Hospital of Modena, Modena, Italy
| | - Annalisa Curcio
- Chirurgia Senologica, Ospedale Morgagni Pierantoni, Ausl Romagna, Forlì, Italy
| | - Angelica Della Valle
- General Surgery 3- Breast Surgery, Department of Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Secondo Folli
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Ghilli
- Breast Cancer Centre, University Hospital of Pisa, Pisa, Italy
| | - Chiara Listorti
- Breast Unit, Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Mancini
- Breast Surgery, Department of Surgery, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Peter Marinello
- Chirurgia Generale, Ospedale Centrale di Bolzano, Azienda Sanitaria dell’Alto Adige, Bolzano, Italy
| | - Simone Mele
- Breast Surgery Unit, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Anna Pertusati
- Breast Surgery, Department of Surgery, ASST Fatebenefratelli Sacco, Milano, Italy
| | | | - Lorenzo Rossi
- Centro di Senologia della Svizzera Italiana, Ospedale Regionale di Lugano EOC, Lugano, Switzerland
- Institute of Oncology of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | | | - Silvia Segattini
- Division of Breast Surgical Oncology, Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University Hospital of Modena, Modena, Italy
| | - Adele Sgarella
- General Surgery 3 – Breast Surgery, Department of Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Università degli studi di Pavia, Pavia, Italy
| | - Daniela Tognali
- Chirurgia Senologica, Ospedale Morgagni Pierantoni, Ausl Romagna, Forlì, Italy
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, Pavia, Lombardia, Italy
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italy
| |
Collapse
|
23
|
Lejeune M, Reverté L, Gallardo N, Sauras E, Bosch R, Mata D, Roso A, Petit A, Peg V, Riu F, García-Fontgivell J, Relea F, Vieites B, de la Cruz-Merino L, Arenas M, Rodriguez V, Galera J, Korzynska A, Plancoulaine B, Álvaro T, López C. Matrix Metalloproteinase-9 Expression Is Associated with the Absence of Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients. Int J Mol Sci 2023; 24:11297. [PMID: 37511057 PMCID: PMC10378773 DOI: 10.3390/ijms241411297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is particularly challenging due to the weak or absent response to therapeutics and its poor prognosis. The effectiveness of neoadjuvant chemotherapy (NAC) response is strongly influenced by changes in elements of the tumor microenvironment (TME). This work aimed to characterize the residual TME composition in 96 TNBC patients using immunohistochemistry and in situ hybridization techniques and evaluate its prognostic implications for partial responders vs. non-responders. Compared with non-responders, partial responders containing higher levels of CD83+ mature dendritic cells, FOXP3+ regulatory T cells, and IL-15 expression but lower CD138+ cell concentration exhibited better OS and RFS. However, along with tumor diameter and positive nodal status at diagnosis, matrix metalloproteinase-9 (MMP-9) expression in the residual TME was identified as an independent factor associated with the impaired response to NAC. This study yields new insights into the key components of the residual tumor bed, such as MMP-9, which is strictly associated with the lack of a pathological response to NAC. This knowledge might help early identification of TNBC patients less likely to respond to NAC and allow the establishment of new therapeutic targets.
Collapse
Affiliation(s)
- Marylène Lejeune
- Oncological Pathology and Bioinformatics Research Group, Molecular Biology and Research Section, Pathology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Esplanetes, 14, 43500 Tortosa, Spain
| | - Laia Reverté
- Oncological Pathology and Bioinformatics Research Group, Molecular Biology and Research Section, Pathology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Esplanetes, 14, 43500 Tortosa, Spain
| | - Noèlia Gallardo
- Oncological Pathology and Bioinformatics Research Group, Molecular Biology and Research Section, Pathology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Esplanetes, 14, 43500 Tortosa, Spain
| | - Esther Sauras
- Oncological Pathology and Bioinformatics Research Group, Molecular Biology and Research Section, Pathology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Esplanetes, 14, 43500 Tortosa, Spain
- Clinical Studies Unit, Hospital de Tortosa Verge de la Cinta, Carretera Esplanetes, 14, 43500 Tortosa, Spain
| | - Ramon Bosch
- Oncological Pathology and Bioinformatics Research Group, Molecular Biology and Research Section, Pathology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Esplanetes, 14, 43500 Tortosa, Spain
| | - Daniel Mata
- Oncological Pathology and Bioinformatics Research Group, Molecular Biology and Research Section, Pathology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Esplanetes, 14, 43500 Tortosa, Spain
| | - Albert Roso
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Gran Via Corts Catalanes, 587, 08007 Barcelona, Spain
| | - Anna Petit
- Pathology Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Vicente Peg
- Pathology Department, Hospital Universitari de Vall Hebron, 08035 Barcelona, Spain
| | - Francisco Riu
- Pathology Department, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Joan García-Fontgivell
- Pathology Department, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Fernanda Relea
- Pathology Department, Hospital General de Ciudad Real, 13005 Ciudad Real, Spain
| | - Begoña Vieites
- Pathology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | | | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43204 Tarragona, Spain
| | - Valeri Rodriguez
- Oncology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43500 Tortosa, Spain
| | - Juana Galera
- Gynaecology Department, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Anna Korzynska
- Laboratory of Processing and Analysis of Microscopic Images, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Benoît Plancoulaine
- ANTICIPE, INSERM, François Baclesse Comprehensive Cancer Center, University Caen Normandy, 14000 Caen, France
| | - Tomás Álvaro
- Oncological Pathology and Bioinformatics Research Group, Molecular Biology and Research Section, Pathology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Esplanetes, 14, 43500 Tortosa, Spain
| | - Carlos López
- Oncological Pathology and Bioinformatics Research Group, Molecular Biology and Research Section, Pathology Department, Hospital de Tortosa Verge de la Cinta, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Esplanetes, 14, 43500 Tortosa, Spain
| |
Collapse
|
24
|
Koukourakis IM, Papadimitriou M, Desse D, Zygogianni A, Papadimitriou C. Anti-Tumor Immunity and Preoperative Radiovaccination: Emerging New Concepts in the Treatment of Breast Cancer. Int J Mol Sci 2023; 24:ijms24119310. [PMID: 37298262 DOI: 10.3390/ijms24119310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Neoadjuvant chemotherapy (NACT) for certain breast cancer (BC) subtypes confers significant tumor regression rates and a survival benefit for patients with a complete pathologic response. Clinical and preclinical studies have demonstrated that immune-related factors are responsible for better treatment outcomes, and thus, neoadjuvant immunotherapy (IO) has emerged as a means to further improve patient survival rates. Innate immunological "coldness", however, of specific BC subtypes, especially of the luminal ones, due to their immunosuppressive tumor microenvironment, hinders the efficacy of immune checkpoint inhibitors. Treatment policies aiming to reverse this immunological inertia are, therefore, needed. Moreover, radiotherapy (RT) has been proven to have a significant interplay with the immune system and promote anti-tumor immunity. This "radiovaccination" effect could be exploited in the neoadjuvant setting of BC and significantly enhance the effects of the already established clinical practice. Modern stereotactic irradiation techniques directed to the primary tumor and involved lymph nodes may prove important for the RT-NACT-IO combination. In this review, we provide an overview and critically discuss the biological rationale, clinical experience, and ongoing research underlying the interplay between neoadjuvant chemotherapy, anti-tumor immune response, and the emerging role of RT as a preoperative adjunct with immunological therapeutic implications in BC.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Marios Papadimitriou
- Oncology Unit, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitra Desse
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
25
|
Pan L, Han J, Lin M. Targeting breast cancer stem cells directly to treat refractory breast cancer. Front Oncol 2023; 13:981247. [PMID: 37251931 PMCID: PMC10213424 DOI: 10.3389/fonc.2023.981247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/02/2023] [Indexed: 05/31/2023] Open
Abstract
For patients with refractory breast cancer (BC), integrative immunotherapies are emerging as a critical component of treatment. However, many patients remain unresponsive to treatment or relapse after a period. Different cells and mediators in the tumor microenvironment (TME) play important roles in the progression of BC, and cancer stem cells (CSCs) are deemed the main cause of relapse. Their characteristics depend on their interactions with their microenvironment as well as on the inducing factors and elements in this environment. Strategies to modulate the immune system in the TME of BC that are aimed at reversing the suppressive networks within it and eradicating residual CSCs are, thus, essential for improving the current therapeutic efficacy of BC. This review focuses on the development of immunoresistance in BCs and discusses the strategies that can modulate the immune system and target breast CSCs directly to treat BC including immunotherapy with immune checkpoint blockades.
Collapse
Affiliation(s)
- Liping Pan
- Wuhan Center for Clinical Laboratory, Wuhan, China
| | - Juan Han
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Lin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Pore AA, Dhanasekara CS, Navaid HB, Vanapalli SA, Rahman RL. Comprehensive Profiling of Cancer-Associated Cells in the Blood of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy to Predict Pathological Complete Response. Bioengineering (Basel) 2023; 10:bioengineering10040485. [PMID: 37106672 PMCID: PMC10136335 DOI: 10.3390/bioengineering10040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) can affect pathological complete response (pCR) in breast cancers; the resection that follows identifies patients with residual disease who are then offered second-line therapies. Circulating tumor cells (CTCs) and cancer-associated macrophage-like cells (CAMLs) in the blood can be used as potential biomarkers for predicting pCR before resection. CTCs are of epithelial origin that undergo epithelial-to-mesenchymal transition to become more motile and invasive, thereby leading to invasive mesenchymal cells that seed in distant organs, causing metastasis. Additionally, CAMLs in the blood of cancer patients are reported to either engulf or aid the transport of cancer cells to distant organs. To study these rare cancer-associated cells, we conducted a preliminary study where we collected blood from patients treated with NAC after obtaining their written and informed consent. Blood was collected before, during, and after NAC, and Labyrinth microfluidic technology was used to isolate CTCs and CAMLs. Demographic, tumor marker, and treatment response data were collected. Non-parametric tests were used to compare pCR and non-pCR groups. Univariate and multivariate models were used where CTCs and CAMLs were analyzed for predicting pCR. Sixty-three samples from 21 patients were analyzed. The median(IQR) pre-NAC total and mesenchymal CTC count/5 mL was lower in the pCR vs. non-pCR group [1(3.5) vs. 5(5.75); p = 0.096], [0 vs. 2.5(7.5); p = 0.084], respectively. The median(IQR) post-NAC CAML count/5 mL was higher in the pCR vs. non-pCR group [15(6) vs. 6(4.5); p = 0.004]. The pCR group was more likely to have >10 CAMLs post-NAC vs. non-pCR group [7(100%) vs. 3(21.4%); p = 0.001]. In a multivariate logistic regression model predicting pCR, CAML count was positively associated with the log-odds of pCR [OR = 1.49(1.01, 2.18); p = 0.041], while CTCs showed a negative trend [Odds Ratio (OR) = 0.44(0.18, 1.06); p = 0.068]. In conclusion, increased CAMLs in circulation after treatment combined with lowered CTCs was associated with pCR.
Collapse
Affiliation(s)
- Adity A Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Hunaiz Bin Navaid
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
27
|
Munkácsy G, Santarpia L, Győrffy B. Therapeutic Potential of Tumor Metabolic Reprogramming in Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24086945. [PMID: 37108109 PMCID: PMC10138520 DOI: 10.3390/ijms24086945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with clinical features of high metastatic potential, susceptibility to relapse, and poor prognosis. TNBC lacks the expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is characterized by genomic and transcriptional heterogeneity and a tumor microenvironment (TME) with the presence of high levels of stromal tumor-infiltrating lymphocytes (TILs), immunogenicity, and an important immunosuppressive landscape. Recent evidence suggests that metabolic changes in the TME play a key role in molding tumor development by impacting the stromal and immune cell fractions, TME composition, and activation. Hence, a complex inter-talk between metabolic and TME signaling in TNBC exists, highlighting the possibility of uncovering and investigating novel therapeutic targets. A better understanding of the interaction between the TME and tumor cells, and the underlying molecular mechanisms of cell-cell communication signaling, may uncover additional targets for better therapeutic strategies in TNBC treatment. In this review, we aim to discuss the mechanisms in tumor metabolic reprogramming, linking these changes to potential targetable molecular mechanisms to generate new, physical science-inspired clinical translational insights for the cure of TNBC.
Collapse
Affiliation(s)
- Gyöngyi Munkácsy
- National Laboratory for Drug Research and Development, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
- Oncology Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 5-7, 1094 Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 5-7, 1094 Budapest, Hungary
| |
Collapse
|
28
|
To NH, Gabelle-Flandin I, Luong TMH, Loganadane G, Ouidir N, Boukhobza C, Grellier N, Verry C, Thiolat A, Cohen JL, Radosevic-Robin N, Belkacemi Y. Pathologic Response to Neoadjuvant Sequential Chemoradiation Therapy in Locally Advanced Breast Cancer: Preliminary, Translational Results from the French Neo-APBI-01 Trial. Cancers (Basel) 2023; 15:cancers15072030. [PMID: 37046691 PMCID: PMC10092968 DOI: 10.3390/cancers15072030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Background: Radiation therapy (RT), a novel approach to boost the anticancer immune response, has been progressively evaluated in the neoadjuvant setting in breast cancer (BC). Purpose: We aimed to evaluate immunity-related indicators of response to neoadjuvant chemoradiation therapy (NACRT) in BC for better treatment personalization. Patients and Methods: We analyzed data of the first 42 patients included in the randomized phase 2 Neo-APBI-01 trial comparing standard neoadjuvant chemotherapy (NACT) and NACRT regimen in locally advanced triple-negative (TN) and luminal B (LB) subtype BC. Clinicopathological parameters, blood counts and the derived parameters, total tumor-infiltrating lymphocytes (TILs) and their subpopulation, as well as TP53 mutation status, were assessed as predictors of response. Results: Twenty-one patients were equally assigned to each group. The pathologic complete response (pCR) was 33% and 38% in the NACT and NACRT groups, respectively, with a dose-response effect. Only one LB tumor reached pCR after NACRT. Numerous parameters associated with response were identified, which differed according to the assigned treatment. In the NACRT group, baseline hemoglobin of ≥13 g/dL and body mass index of <26 were strongly associated with pCR. Higher baseline neutrophils-to-lymphocytes ratio, total TILs, and T-effector cell counts were favorable for pCR. Conclusion: This preliminary analysis identified LB and low-TIL tumors as poor responders to the NACRT protocol, which delivered RT after several cycles of chemotherapy. These findings will allow for amending the selection of patients for the trial and help better design future trials of NACRT in BC.
Collapse
|
29
|
François A, Descarpentrie J, Badiola I, Siegfried G, Evrard S, Pernot S, Khatib AM. Reprogramming immune cells activity by furin-like enzymes as emerging strategy for enhanced immunotherapy in cancer. Br J Cancer 2023; 128:1189-1195. [PMID: 36522477 PMCID: PMC10050397 DOI: 10.1038/s41416-022-02073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy is becoming an advanced clinical management for various cancers. Rebuilding of aberrant immune surveillance on cancers has achieved notable progress in the past years by either in vivo or ex vivo engineering of efficient immune cells. Immune cells can be programmed with several strategies that improves their therapeutic influence and specificity. It has become noticeable that effective immunotherapy must consider the complete complexity of the immune cell function. However, today, almost all immune cells can be transiently or stably reprogrammed against various cancer cells. As a consequence, investigations have interrogated strategies to improve the efficacy of cancer immunotherapies by enhancing T-cell infiltration into tumour tissues. Here, we review the emerging role of furin-like enzymes work related to T-cell reprogramming, their tumour infiltration and cytotoxic function.
Collapse
Affiliation(s)
- Alexia François
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Jean Descarpentrie
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Géraldine Siegfried
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Serge Evrard
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
- Institut Bergonié, 33000, Bordeaux, France
| | - Simon Pernot
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
- Institut Bergonié, 33000, Bordeaux, France
| | - Abdel-Majid Khatib
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France.
- Institut Bergonié, 33000, Bordeaux, France.
| |
Collapse
|
30
|
Zhang W, Xu K, Li Z, Wang L, Chen H. Tumor immune microenvironment components and the other markers can predict the efficacy of neoadjuvant chemotherapy for breast cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1579-1593. [PMID: 36652115 DOI: 10.1007/s12094-023-03075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Breast cancer is an epithelial malignant tumor that occurs in the terminal ducts of the breast. Neoadjuvant chemotherapy (NACT) is an important part of breast cancer treatment. Its purpose is to use systemic treatment for some locally advanced breast cancer patients, to decrease the tumor size and clinical stage so that non-operable breast cancer patients can have a chance to access surgical treatment, or patients who are not suitable for breast-conserving surgery can get the opportunity of breast-conserving. However, some patients who do not respond to NACT will lead deterioration in their condition. Therefore, prediction of NACT efficacy in breast cancer is vital for precision therapy. The tumor microenvironment (TME) has a crucial role in the carcinogenesis and therapeutic response of breast cancer. In this review, we summarized the immune cells, immune checkpoints, and other biomarkers in the TME that can evaluate the efficacy of NACT in treating breast cancer. We believe that the detection and evaluation of the TME components in breast cancer are helpful to predict the efficacy of NACT, and the prediction methods are in the prospect. In addition, we also summarized other predictive factors of NACT, such as imaging examination, biochemical markers, and multigene/multiprotein profiling.
Collapse
Affiliation(s)
- Weiqian Zhang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ke Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zhengfa Li
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Linwei Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China. .,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
31
|
Kitajima K, Higuchi T, Fujimoto Y, Ishikawa E, Yokoyama H, Komoto H, Inao Y, Yamakado K, Miyoshi Y. Relationship between FDG-PET and the immune microenvironment in breast cancer. Eur J Radiol 2023; 158:110661. [PMID: 36542934 DOI: 10.1016/j.ejrad.2022.110661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the relationship between fluorodeoxyglucose (FDG) uptake (maximum standardised uptake value [SUVmax]) and immune markers (tumour-infiltrating lymphocytes [TILs] and neutrophil-to-lymphocyte ratio [NLR]) and evaluate the potential prognostic value of any correlations. METHODS Data from 502 patients with breast cancer, including 346 oestrogen receptor (ER)-positive / human epidermal growth factor receptor 2 (HER2)-negative, 88 HER2-positive, and 68 triple-negative cases, who had undergone surgery were reviewed. Relationships between the clinicopathological factors, SUVmax, TILs, NLR, recurrence-free survival (RFS), and overall survival of all patients and each subtype were evaluated using a Cox proportional hazards model and log-rank test. A sub-analysis of patients divided into low and high TIL groups was also undertaken. RESULTS High SUVmax was significantly related to high TILs (p < 0.0001). In low TIL (TILs1) group, patients with high SUVmax (≥3.585) had a significantly shorter RFS than those with low SUVmax (<3.585; p < 0.0001). In high TIL (TILs2,3) group, patients with high SUVmax had a shorter RFS than those with low SUVmax without a significant difference (p = 0.35). Multivariate analysis of 502 patients showed high SUVmax, high T status, and nodal metastasis were independent negative predictors of RFS. In 317 TILs-low patients, high SUVmax, high T status, nodal metastasis, and ER-positivity were independent predictors of RFS. In 185 TILs-high patients, nodal metastasis was an independent predictor of RFS. In ER-positive/HER2-negative and HER2-positive subtypes, SUVmax was a significant predictive parameter in the TILs-low but not TILs-high groups. CONCLUSION FDG uptake may be predictive of immunological features and aggressive features in breast cancer patients.
Collapse
Affiliation(s)
| | - Tomoko Higuchi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo, Japan.
| | - Yukie Fujimoto
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo, Japan.
| | - Eri Ishikawa
- Department of Surgical Pathology, Hyogo College of Medicine, Hyogo, Japan.
| | | | - Hisashi Komoto
- Department of Radiology, Hyogo College of Medicine, Hyogo, Japan.
| | - Yoshie Inao
- Department of Radiology, Hyogo College of Medicine, Hyogo, Japan.
| | | | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo, Japan.
| |
Collapse
|
32
|
Jeon SH, Kim SW, Na K, Seo M, Sohn YM, Lim YJ. Radiomic models based on magnetic resonance imaging predict the spatial distribution of CD8 + tumor-infiltrating lymphocytes in breast cancer. Front Immunol 2022; 13:1080048. [PMID: 36601118 PMCID: PMC9806253 DOI: 10.3389/fimmu.2022.1080048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Infiltration of CD8+ T cells and their spatial contexture, represented by immunophenotype, predict the prognosis and therapeutic response in breast cancer. However, a non-surgical method using radiomics to evaluate breast cancer immunophenotype has not been explored. Here, we assessed the CD8+ T cell-based immunophenotype in patients with breast cancer undergoing upfront surgery (n = 182). We extracted radiomic features from the four phases of dynamic contrast-enhanced magnetic resonance imaging, and randomly divided the patients into training (n = 137) and validation (n = 45) cohorts. For predicting the immunophenotypes, radiomic models (RMs) that combined the four phases demonstrated superior performance to those derived from a single phase. For discriminating the inflamed tumor from the non-inflamed tumor, the feature-based combination model from the whole tumor (RM-wholeFC) showed high performance in both training (area under the receiver operating characteristic curve [AUC] = 0.973) and validation cohorts (AUC = 0.985). Similarly, the feature-based combination model from the peripheral tumor (RM-periFC) discriminated between immune-desert and excluded tumors with high performance in both training (AUC = 0.993) and validation cohorts (AUC = 0.984). Both RM-wholeFC and RM-periFC demonstrated good to excellent performance for every molecular subtype. Furthermore, in patients who underwent neoadjuvant chemotherapy (n = 64), pre-treatment images showed that tumors exhibiting complete response to neoadjuvant chemotherapy had significantly higher scores from RM-wholeFC and lower scores from RM-periFC. Our RMs predicted the immunophenotype of breast cancer based on the spatial distribution of CD8+ T cells with high accuracy. This approach can be used to stratify patients non-invasively based on the status of the tumor-immune microenvironment.
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - So-Woon Kim
- Department of Pathology, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Mirinae Seo
- Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Yu-Mee Sohn
- Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Yu Jin Lim
- Department of Radiation Oncology, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea,*Correspondence: Yu Jin Lim,
| |
Collapse
|
33
|
Tumor-Infiltrating Lymphocytes and Immune Response in HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14246034. [PMID: 36551522 PMCID: PMC9776701 DOI: 10.3390/cancers14246034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Human epidermal growth factor receptor 2-positive (HER2-positive) breast cancer accounts for 15 to 25% of breast cancer cases. Although therapies based on the use of monoclonal anti-HER2 antibodies present clinical benefit for a subtype of patients with HER2-positive breast cancer, more than 50% of them are unresponsive to targeted therapies or they eventually relapse. In recent years, reactivation of the adaptive immune system in patients with solid tumors has emerged as a therapeutic option with great potential for clinical benefit. Since the approval of the first treatment directed against HER2 as a therapeutic target, the range of clinical options has expanded greatly, and, in this sense, cellular immunotherapy with T cells relies on the cytotoxicity generated by these cells, which ultimately leads to antitumor activity. Lymphocytic infiltration of tumors encompasses a heterogeneous population of immune cells within the tumor microenvironment that exhibits distinct patterns of immune activation and exhaustion. The prevalence and prognostic value of tumor-infiltrating lymphocyte (TIL) counts are associated with a favorable prognosis in HER2-positive breast cancers. This review discusses emerging findings that contribute to a better understanding of the role of immune infiltrates in HER2-positive breast cancer. In addition, it summarizes the most recent results in HER2-positive breast cancer immunotherapy and anticipates which therapeutic strategies could be applied in the immediate future.
Collapse
|
34
|
Wang H, Lu Y, Li Y, Li S, Zhang X, Geng C. Nomogram for Early Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Combining Both Clinicopathological and Imaging Indicators. Curr Probl Cancer 2022; 46:100914. [PMID: 36351312 DOI: 10.1016/j.currproblcancer.2022.100914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
To construct a nomogram for early prediction of pathological complete response (pCR) in patients with breast cancer (BC) after neoadjuvant chemotherapy (NAC). A total of 257 patients with BC from the fourth hospital of Hebei Medical University were included in the study. The patients were divided into training (n = 128) and validation groups (n = 129). Variables were screened using univariate and multivariate logistic regression analyses, and the nomogram model was set up based on the training group. The training and validation groups were validated using the receiver operating characteristic (ROC) curves and calibration plots. The diagnostic value of the nomogram was evaluated using decision curve analysis (DCA). Indicators such as hormone receptor status, clinical TNM stage, and change rate in apparent diffusion coefficient of breast magnetic resonance imaging after two NAC cycles were used for nomogram construction. The calibration plots showed high consistency between nomogram-predicted and actual pCR probabilities in the training and validation groups. The areas under the curve of the ROC curve with discrimination ability were 0.942 and 0.921 in the training and validation groups, respectively. This showed an excellent discrimination ability of our nomogram for pCR prediction. Further, DCA showed favorable diagnostic value in our model. The nomogram may be instructive to clinicians for early prediction of pCR and helpful to adjust the treatment program on time in neoadjuvant management.
Collapse
Affiliation(s)
- Haoqi Wang
- Breast Disease Diagnostic and Therapeutic Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuyang Lu
- Thyroid and Breast Department, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yilun Li
- Breast Disease Diagnostic and Therapeutic Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sainan Li
- Breast Disease Diagnostic and Therapeutic Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xi Zhang
- Breast Disease Diagnostic and Therapeutic Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cuizhi Geng
- Breast Disease Diagnostic and Therapeutic Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
35
|
Passalacqua MI, Rizzo G, Santarpia M, Curigliano G. 'Why is survival with triple negative breast cancer so low? insights and talking points from preclinical and clinical research'. Expert Opin Investig Drugs 2022; 31:1291-1310. [PMID: 36522800 DOI: 10.1080/13543784.2022.2159805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Triple negative breast cancer is typically related to poor prognosis, early metastasis, and high recurrence rate. Intrinsic and extrinsic biological features of TNBC and resistance mechanisms to conventional therapies can support its aggressive behavior, characterizing TNBC how extremely heterogeneous. Novel combination strategies are under investigation, including immunotherapeutic agents, anti-drug conjugates, PARP inhibitors, and various targeting agents, exploring, in the meanwhile, possible predictive biomarkers to correctly select patients for the optimal treatment for their specific subtype. AREAS COVERED This article examines the main malignity characteristics across different subtype, both histological and molecular, and the resistance mechanisms, both primary and acquired, to different drugs explored in the landscape of TNBC treatment, that lead TNBC to still has high mortality rate. EXPERT OPINION The complexity of TNBC is not only the main reason of its aggressivity, but its heterogeneity should be exploited in terms of therapeutics opportunities, combining agents with different mechanism of action, after a correct selection by biologic or molecular biomarkers. The main goal is to understand what TNBC really is and to act selectively on its characteristics, with a personalized anticancer treatment.
Collapse
Affiliation(s)
- Maria Ilenia Passalacqua
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Graziella Rizzo
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| |
Collapse
|
36
|
Li S, Zhang Y, Zhang P, Xue S, Chen Y, Sun L, Yang R. Predictive and prognostic values of tumor infiltrating lymphocytes in breast cancers treated with neoadjuvant chemotherapy: A meta-analysis. Breast 2022; 66:97-109. [PMID: 36219945 PMCID: PMC9550538 DOI: 10.1016/j.breast.2022.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND This meta-analysis assessed the predictive and prognostic value of tumor infiltrating lymphocytes (TILs) in neoadjuvant chemotherapy (NACT) treated breast cancer and an optimal threshold for predicting pathologic complete response (pCR). METHODS A systematic search of PubMed, EMBASE and Web of Science electronic databases was conducted to identify eligible studies published before April 2022. Either a fixed or random effects model was applied to estimate the pooled hazard ratio (HR) and odds ratio (OR) for prognosis and predictive values of TILs in breast cancer patients treated with NACT. The study is registered with PROSPERO (CRD42020221521). RESULTS A total of 29 published studies were eligible. Increased levels of TILs predicted response to NACT in HER2 positive breast cancer (OR = 2.54 95%CI, 1.50-4.29) and triple negative breast cancer (TNBC) (OR = 3.67, 95%CI, 1.93-6.97), but not for hormone receptor (HR) positive breast cancer (OR = 1.68, 95 %CI, 0.67-4.25). A threshold of 20% of H & E-stained TILs was associated with prediction of pCR in both HER2 positive breast cancer (P = 0.035) and TNBC (P = 0.001). Moreover, increased levels of TILs (either iTILs or sTILs) were associated with survival benefit in HER2-positive breast cancer and TNBC. However, an increased level of TILs was not a prognostic factor for survival in HR positive breast cancer (pooled HR = 0.64, 95%CI: 0.03-14.1, P = 0.78). CONCLUSIONS Increased levels of TILs were associated with increased rates of response to NACT and improved prognosis for the molecular subtypes of TNBC and HER2-positive breast cancer, but not for patients with HR positive breast cancer. A threshold of 20% TILs was the most powerful outcome prognosticator of pCR.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Pharmacy Administration, School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Zhang
- Department of Clinical Pharmacy, School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Peigen Zhang
- Department of Pharmacy Administration, School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Shuijing Xue
- Department of Pharmacy Administration, School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Chen
- Department of Pharmacy Administration, School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Lihua Sun
- Department of Pharmacy Administration, School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China,Corresponding author. Department of pharmacy administration, School of Business Administration, Shenyang Pharmaceutical University, 103 Wen hua Road, Shenyang, 110016, Liaoning Province, PR China.
| | - Rui Yang
- Clinical Pharmacology Laboratory, The Second Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, China
| |
Collapse
|
37
|
Duanmu H, Bhattarai S, Li H, Shi Z, Wang F, Teodoro G, Gogineni K, Subhedar P, Kiraz U, Janssen EAM, Aneja R, Kong J. A spatial attention guided deep learning system for prediction of pathological complete response using breast cancer histopathology images. Bioinformatics 2022; 38:4605-4612. [PMID: 35962988 PMCID: PMC9525016 DOI: 10.1093/bioinformatics/btac558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) patients accurately is direly needed for clinical decision making. pCR is also regarded as a strong predictor of overall survival. In this work, we propose a deep learning system to predict pCR to NAC based on serial pathology images stained with hematoxylin and eosin and two immunohistochemical biomarkers (Ki67 and PHH3). To support human prior domain knowledge-based guidance and enhance interpretability of the deep learning system, we introduce a human knowledge-derived spatial attention mechanism to inform deep learning models of informative tissue areas of interest. For each patient, three serial breast tumor tissue sections from biopsy blocks were sectioned, stained in three different stains and integrated. The resulting comprehensive attention information from the image triplets is used to guide our prediction system for prognostic tissue regions. RESULTS The experimental dataset consists of 26 419 pathology image patches of 1000×1000 pixels from 73 TNBC patients treated with NAC. Image patches from randomly selected 43 patients are used as a training dataset and images patches from the rest 30 are used as a testing dataset. By the maximum voting from patch-level results, our proposed model achieves a 93% patient-level accuracy, outperforming baselines and other state-of-the-art systems, suggesting its high potential for clinical decision making. AVAILABILITY AND IMPLEMENTATION The codes, the documentation and example data are available on an open source at: https://github.com/jkonglab/PCR_Prediction_Serial_WSIs_biomarkers. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hongyi Duanmu
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | | | - Hongxiao Li
- Department of Mathematics and Statistics and Computer Science, Georgia State University, Atlanta, GA, USA
| | - Zhan Shi
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
| | - Fusheng Wang
- Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA
| | - George Teodoro
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Keerthi Gogineni
- Department of Hematology-Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Georgia Cancer Center for Excellence, Grady Health System, Atlanta, GA, USA
| | - Preeti Subhedar
- Georgia Cancer Center for Excellence, Grady Health System, Atlanta, GA, USA
| | - Umay Kiraz
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Ritu Aneja
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jun Kong
- Department of Mathematics and Statistics and Computer Science, Georgia State University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
38
|
The Impact of Tumor Infiltrating Lymphocytes Densities and Ki67 Index on Residual Breast Cancer Burden following Neoadjuvant Chemotherapy. Int J Breast Cancer 2022; 2022:2597889. [PMID: 36133828 PMCID: PMC9484975 DOI: 10.1155/2022/2597889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
To avoid unnecessary neoadjuvant chemotherapy in case anticipating a poor therapy response, it is essential to find the pathological parameters that would predict pathological complete response or at least a decrease in tumor burden following neoadjuvant chemotherapy. The purpose of this study is to investigate the hypothesis that tumor infiltrating lymphocytes can predict the efficacy of neoadjuvant chemotherapy and to find the Ki67 cutoff value that best predicts the benefit of chemotherapy. 153 cases of breast cancer were chosen, based on their molecular subtype: triple negative subtype (77) and luminal, HER2-ve subtype (76). Histopathological assessment of pretherapy core biopsies was conducted to assess variable pathological parameters including TILs rates with the aid of immunohistochemical staining for CD20 and CD3. Moreover, core biopsies were stained for Ki67, and the findings were compared to the residual cancer burden following neoadjuvant chemotherapy. On analyzing and contrasting the two groups, a significant association between molecular subtype and pathological complete response was confirmed, while tumor-infiltrating lymphocytes in either group had no effect on therapy response. We used receiver operating characteristic curve analysis to determine that a cutoff of 36% for Ki67 is the most accurate value to predict complete therapy response.
Collapse
|
39
|
Tumor infiltrating lymphocytes (TILs) as a predictive biomarker of response to checkpoint blockers in solid tumors: a systematic review. Crit Rev Oncol Hematol 2022; 177:103773. [PMID: 35917885 DOI: 10.1016/j.critrevonc.2022.103773] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy is a standard of care in many solid tumors but many patients derive limited benefit from it. There is increasing interest toward tumor infiltrating lymphocytes (TILs) since their presence may be related with good outcomes from treatment with immune checkpoint blockers. We aimed at systematically reviewing existing evidence about the role of TILs as possible predictors of response to immunotherapy in solid tumors. We reviewed 1193 records published from January 2010 until December 2021. Associations between TILs and outcomes were observed mainly in melanoma and breast cancer. Overall survival and overall response rate for advanced disease and pathological complete response for early-phase tumors were the most commonly assessed endpoints. No definitive conclusion can be drawn on the predictive role of TILs. Additional studies, exploiting data from prospective, randomized clinical trials should further evaluate TILs also with the aim of identifying standard cut-off to differentiate between high and low TILs.
Collapse
|
40
|
Kashiwagi S, Asano Y, Takada K, Goto W, Kouhashi R, Yabumoto A, Tauchi Y, Morisaki T, Ogisawa K, Shibutani M, Tanaka H, Ohira M. Validation of the Optimum Timing of Assessment of Tumor Infiltrating Lymphocytes During Preoperative Chemotherapy for Breast Cancer. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:443-451. [PMID: 35813011 PMCID: PMC9254105 DOI: 10.21873/cdp.10127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND/AIM Tumor microenvironment (TME) assessment is considered to play an important role in the prediction of prognosis and therapeutic response following breast cancer treatment. No consensus has been reached regarding evaluation methods despite reports on the utilization of tumor-infiltrating lymphocytes (TILs) for immune TME (iTME) monitoring. Optimum timing of iTME assessment has not yet been established. PATIENTS AND METHODS Two hundred thirty-nine patients were treated with neoadjuvant chemotherapy (NAC). During the period from diagnostic needle biopsy to NAC initiation for breast cancer, the optimal evaluation timing was examined using a receiver operating characteristic (ROC) curve analysis. RESULTS A significant correlation between TILs and pathological complete response (pCR) was only observed in the short-term group (≤35 days) (p=0.033). Prognostic analysis revealed that in the short-term group, patients with high TIL levels had a significantly better survival prognosis relative to those with low TIL levels (>35 days) [disease-free survival (DFS): p=0.001, overall survival (OS): p=0.021]. TILs were identified as an independent factor affecting DFS in a multivariate analysis (p=0.008, hazard ratio=0.130). CONCLUSION TIL assessment during NAC for breast cancer is a prognostic predictor only when performed at ≤35 days before NAC initiation.
Collapse
Affiliation(s)
- Shinichiro Kashiwagi
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuka Asano
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Takada
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Wataru Goto
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Rika Kouhashi
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akimichi Yabumoto
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukie Tauchi
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tamami Morisaki
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kana Ogisawa
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masatsune Shibutani
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
41
|
Xiao Y, Ding J, Ma D, Chen S, Li X, Yu K. Predicting Pathological Complete Response in Neoadjuvant Dual Blockade With Trastuzumab and Pertuzumab in HER2 Gene Amplified Breast Cancer. Front Immunol 2022; 13:877825. [PMID: 35663978 PMCID: PMC9161548 DOI: 10.3389/fimmu.2022.877825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Dual-targeted therapy is the standard treatment for human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and effective biomarkers to predict the response to neoadjuvant trastuzumab and pertuzumab treatment need further investigation. Here, we developed a predictive model to evaluate the dual-targeted neoadjuvant treatment efficacy in HER2 gene-amplified breast cancer. Method This retrospective study included 159 HER2-amplified patients with locally advanced breast cancer who received neoadjuvant trastuzumab, pertuzumab, and chemotherapy. The correlation between clinicopathological factors and pathological complete response (pCR, in the breast and axilla) was evaluated. Patients were randomly assigned into the training set (n=110) and the testing set (n=49). We used an independent cohort (n=65) for external validation. We constructed our predictive nomogram model with the results of risk variables associated with pCR identified in the multivariate logistic analysis. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve, decision curve analysis, and calibration curves were employed to assess the nomogram's performance. Results We revealed that the HER2/CEP17 ratio (p=0.001), CD8 levels (p=0.005), and histological grade (p=0.007) were independent indicators for pCR in dual-targeted neoadjuvant treatment after multivariate adjustment. The combined prediction efficacy of the three indicators was significantly higher than that of each single indicator alone. The AUCs were 0.819, 0.773, and 0.744 in the training, testing, and external validation sets, respectively. Conclusions The HER2/CEP17 ratio, CD8 levels, and histological grade were significantly correlated with pCR in dual-targeted neoadjuvant treatment. The combined model using these three markers provided a better predictive value for pCR than the HER2/CEP17 ratio, CD8 levels, and the histological grade alone, which showed that an immunological effect partially mediates the predictive impact of neoadjuvant treatment.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Breast Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jiahan Ding
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dachang Ma
- Department of Breast Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Sheng Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Keda Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
42
|
Urueña C, Lasso P, Bernal-Estevez D, Rubio D, Salazar AJ, Olaya M, Barreto A, Tawil M, Torregrosa L, Fiorentino S. The breast cancer immune microenvironment is modified by neoadjuvant chemotherapy. Sci Rep 2022; 12:7981. [PMID: 35562400 PMCID: PMC9106657 DOI: 10.1038/s41598-022-12108-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
Neoadjuvant chemotherapy (NAT) in breast cancer (BC) has been used to reduce tumor burden prior to surgery. However, the impact on prognosis depends on the establishment of Pathological Complete Response (pCR), which is influenced by tumor-infiltrating lymphocyte levels and the activation of the antitumor immune response. Nonetheless, NAT can affect immune infiltration and the quality of the response. Here, we showed that NAT induces dynamic changes in the tumor microenvironment (TME). After NAT, an increase of regulatory T cells and a decrease of CD8+ T cells was found in tumor, correlated with the presence of metastatic cells in lymph nodes. In addition, an increase of polymorphonuclear myeloid-derived suppressor like cells was found in luminal patients post-NAT. pCR patients showed a balance between the immune populations, while non-pCR patients presented an inverse relationship in the frequency of CD68+ versus CD3+, CD8+, and CD20+ cells. Moreover, activated T cells were found in peripheral blood, as well as an increase in T cell clonality with a lower diversity post-NAT. Overall, these results shown that NAT induces an activation of immune response, however, a balance in the TME seems to be related to a better antigenic presentation and therefore a better response to treatment.
Collapse
Affiliation(s)
- Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - David Bernal-Estevez
- Grupo de Investigación en Inmunología y Oncología Clínica, Fundación Salud de los Andes, Bogotá, Colombia
| | - Diego Rubio
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Ana Janeth Salazar
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mercedes Olaya
- Departamento de Patología, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia
| | - Mauricio Tawil
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Lilian Torregrosa
- Departamento de Cirugía y Especialidades, Hospital Universitario San Ignacio, Centro Javeriano de Oncología, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, C.P. 110211, Bogotá, Colombia.
| |
Collapse
|
43
|
Subclassifying triple-negative breast cancers and its potential clinical utility. Virchows Arch 2022; 481:13-21. [PMID: 35471664 DOI: 10.1007/s00428-022-03329-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
The molecular subtyping of triple-negative breast cancer (TNBC) is critical to guiding individualized patient treatment. In this study, we sought to characterize the clinicopathologic features of TNBC subtypes and to identify correlates of patient survival in an effort to provide a robust foundation for treatment planning. We additionally assessed PD-L1 expression in Chinese TNBC patients and evaluated the relationship between such expression and immunotherapeutic treatment outcomes. Based on analyses of histologic characteristics including apocrine differentiation, tumor-infiltrating lymphocytes, and metaplastic features, we selected immunohistochemical (IHC) markers including CD8, FOXC1, and AR for use in classifying TNBC cases. Associations between these subtypes and a range of clinicopathologic characteristics were evaluated. We classified a cohort of 93 TNBC patients into individuals with luminal androgen receptor (LAR), immunomodulatory (IM), basal-like immune-suppressed (BLIS), and mesenchymal (MES) tumor subtypes (23, 24, 39, and 7 cases, respectively). PD-L1 positivity was observed in 49.6% of cases and was more common in individuals with IM subtype disease. Mismatch repair deficiency (dMMR) was observed in just one patient. Significant differences in histologic grade, pT stage, lymphocyte distribution patterns, large scarring areas without cells in tumor of central (central scar), and PD-L1, P53, and Rb status were observed among these TNBC subtypes, whereas no such differences were observed with respect to age, invasion pattern, or pN stage. Rates of disease progression were higher at the 40-50 month follow-up time point, but there were no significant differences in recurrence-free survival or breast cancer-specific survival among these subtypes. IHC markers associated with clinicopathologic characteristics represent a powerful approach to TNBC molecular typing, providing a foundation for precision patient treatment. PD-L1 expression may represent a relevant factor in TNBC patient immunotherapeutic treatment planning, whereas dMMR is not likely to be of substantial value when evaluating immunotherapeutic efficacy in these patients.
Collapse
|
44
|
Jimenez JE, Abdelhafez A, Mittendorf EA, Elshafeey N, Yung JP, Litton JK, Adrada BE, Candelaria RP, White J, Thompson AM, Huo L, Wei P, Tripathy D, Valero V, Yam C, Hazle JD, Moulder SL, Yang WT, Rauch GM. A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer. Eur J Radiol 2022; 149:110220. [DOI: 10.1016/j.ejrad.2022.110220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
|
45
|
Elliott MJ, Wilson B, Cescon DW. Current Treatment and Future Trends of Immunotherapy in Breast Cancer. Curr Cancer Drug Targets 2022; 22:667-677. [PMID: 35301950 DOI: 10.2174/1568009622666220317091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
Immunotherapy continues to redefine the solid tumor treatment landscape with inhibitors of the PD-L1/PD-1 immune checkpoint having the most widespread impact. As the most common cancer diagnosed worldwide, there is significant interest in the development of immunotherapy for the treatment of breast cancer in both the early and metastatic settings. Recently reported results of several clinical trials have identified potential roles for immunotherapy agents alone or in combination with standard treatment for early and metastatic disease. While trials to date have been promising, immunotherapy thus far has been shown to benefit only a select group of patients with breast cancer, defined by tumor subtype, PD-L1 expression, and line of therapy. With over 250 trials ongoing, emerging data will enable the further refinement of breast cancer immunotherapy strategies. The integration of multiple putative biomarkers and consideration of dynamic markers of early response or resistance may inform optimal patient selection for immunotherapy investigation and integration into clinical practice. This review will summarize the current evidence for immune-checkpoint blockade (ICB) in the treatment of early and metastatic breast cancer and highlight current and potential future biomarkers of therapeutic response.
Collapse
Affiliation(s)
- Mitchell J Elliott
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, Ontario, Canada
| | - Brooke Wilson
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, Ontario, Canada
- University of New South Wales, Kensington, New South Wales, Australia
| | - David W Cescon
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Alhesa A, Awad H, Bloukh S, Al-Balas M, El-Sadoni M, Qattan D, Azab B, Saleh T. PD-L1 expression in breast invasive ductal carcinoma with incomplete pathological response to neoadjuvant chemotherapy. Int J Immunopathol Pharmacol 2022; 36:3946320221078433. [PMID: 35225058 PMCID: PMC8891930 DOI: 10.1177/03946320221078433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To investigate the expression of programmed death-ligand 1 (PD-L1) in breast cancer in association with incomplete pathological response (PR) to neoadjuvant chemotherapy (NAC). Methods PD-L1 expression was evaluated using immunohistochemistry in post-operative, post-NAC samples of 60 patients (n = 60) diagnosed with breast invasive ductal carcinoma with incomplete PR to NAC, including 31 matched pre-NAC and post-NAC samples (n = 31). PD-L1 protein expression was assessed using three scoring approaches, including the tumor proportion score (TPS), the immune cell score (ICS), and the combined tumor and immune cell score (combined positive score, CPS) with a 1% cut-off. Results In the post-operative, post-NAC samples (n = 60), positive expression rate of PD-L1 was observed in 18.3% (11/60) of cases by TPS, 31.7% (19/60) by ICS, and 25% (15/60) by CPS. In matched samples, positive expression rate of PD-L1 was observed in 19.3% (6/31) of patients by TPS, 51.6% (16/31) by ICS, and 19.3% (6/31) by CPS in pre-NAC specimens, while it was observed in 22.6% (7/31) of matched post-NAC samples by TPS, 22.6% (7/31) by ICS, and 19.3% (6/31) by CPS. In the matched samples, there was a significant decrease in PD-L1 immunoexpression using ICS in post-NAC specimens (McNemar’s, p = 0.020), while no significant differences were found using TPS and CPS between pre- and post-NAC samples (p = 1.000, p = 0.617; respectively). PD-L1 immunoexpression determined by TPS or CPS was only significantly associated with ER status (p = 0.022, p = 0.021; respectively), but not with other clinicopathological variables. We could not establish a correlation between PD-L1 expression and the overall survival rate (p > 0.05). There were no significant differences in the tumor infiltrating lymphocytes count between the paired pre- and post-NAC samples (t = 0.581, p = 0.563 or Wilcoxon’s Signed Rank test; z = -0.625, p = 0.529). Conclusion Our findings indicate that PD-L1 protein expression in infiltrating immune cells was significantly reduced in breast tumors that developed incomplete PR following the exposure to NAC.
Collapse
Affiliation(s)
- Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Heyam Awad
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mahmoud Al-Balas
- Department of General and Specialized Surgery, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Duaa Qattan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Bilal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
47
|
Zahran AM, Rayan A, Zahran ZAM, Mohamed WMY, Mohamed DO, Abdel-Rahim MH, El-Badawy O. Overexpression of PD-1 and CD39 in tumor-infiltrating lymphocytes compared with peripheral blood lymphocytes in triple-negative breast cancer. PLoS One 2022; 17:e0262650. [PMID: 35051220 PMCID: PMC8775239 DOI: 10.1371/journal.pone.0262650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIM Growing evidence highlighted the primary role of the immune system in the disease course of triple-negative breast cancer (TNBC). The study aim was to investigate the expression of PD-1 and CD39 on CD4+ and CD8+ cells infiltrating tumor tissue compared to their counterparts in peripheral blood and explore its association with tumor characteristics, disease progression, and prognosis in females with TNBC. PATIENTS AND METHODS The study included 30 TNBC patients and 20 healthy controls. Cancer and normal breast tissue and peripheral blood samples were collected for evaluation of the expression of PD-1 and CD39 on CD4+ and CD8+T cells by flow cytometry. RESULTS A marked reduction in the percentage of CD8+ T lymphocytes and a significant increase in the frequencies of CD4+ T lymphocytes and CD4+ and CD8+ T lymphocytes expressing PD1 and CD39 were evident in tumor tissue in comparison with the normal breast tissue. The DFS was inversely related to the cancer tissue PD1+CD8+ and CD39+CD8+ T lymphocytes. Almost all studied cells were significantly increased in the tumor tissue than in peripheral blood. Positive correlations were detected among peripheral PD1+CD4+T lymphocytes and each of cancer tissue PD1+CD4+, PD1+CD8+and CD39+CD8+T cells, and among peripheral and cancer tissue CD39+CD4+and CD39+CD8+ T cells. CONCLUSIONS The CD39 and PD1 inhibitory pathways are synergistically utilized by TNBC cells to evade host immune response causing poor survival. Hence, combinational immunotherapy blocking these pathways might be a promising treatment strategy in this type of cancer.
Collapse
Affiliation(s)
- Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Wael M. Y. Mohamed
- Oncology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
- Consultant Medical Oncologist Locum, Swansea University Hospital, Swansea, United Kingdom
| | - Dalia O. Mohamed
- Department of Radiation Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mona H. Abdel-Rahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
48
|
Pullikuth AK, Routh ED, Zimmerman KD, Chifman J, Chou JW, Soike MH, Jin G, Su J, Song Q, Black MA, Print C, Bedognetti D, Howard-McNatt M, O’Neill SS, Thomas A, Langefeld CD, Sigalov AB, Lu Y, Miller LD. Bulk and Single-Cell Profiling of Breast Tumors Identifies TREM-1 as a Dominant Immune Suppressive Marker Associated With Poor Outcomes. Front Oncol 2021; 11:734959. [PMID: 34956864 PMCID: PMC8692779 DOI: 10.3389/fonc.2021.734959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundTriggering receptor expressed on myeloid cells (TREM)-1 is a key mediator of innate immunity previously associated with the severity of inflammatory disorders, and more recently, the inferior survival of lung and liver cancer patients. Here, we investigated the prognostic impact and immunological correlates of TREM1 expression in breast tumors.MethodsBreast tumor microarray and RNAseq expression profiles (n=4,364 tumors) were analyzed for associations between gene expression, tumor immune subtypes, distant metastasis-free survival (DMFS) and clinical response to neoadjuvant chemotherapy (NAC). Single-cell (sc)RNAseq was performed using the 10X Genomics platform. Statistical associations were assessed by logistic regression, Cox regression, Kaplan-Meier analysis, Spearman correlation, Student’s t-test and Chi-square test.ResultsIn pre-treatment biopsies, TREM1 and known TREM-1 inducible cytokines (IL1B, IL8) were discovered by a statistical ranking procedure as top genes for which high expression was associated with reduced response to NAC, but only in the context of immunologically “hot” tumors otherwise associated with a high NAC response rate. In surgical specimens, TREM1 expression varied among tumor molecular subtypes, with highest expression in the more aggressive subtypes (Basal-like, HER2-E). High TREM1 significantly and reproducibly associated with inferior distant metastasis-free survival (DMFS), independent of conventional prognostic markers. Notably, the association between high TREM1 and inferior DMFS was most prominent in the subset of immunogenic tumors that exhibited the immunologically hot phenotype and otherwise associated with superior DMFS. Further observations from bulk and single-cell RNAseq analyses indicated that TREM1 expression was significantly enriched in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and M2-like macrophages, and correlated with downstream transcriptional targets of TREM-1 (IL8, IL-1B, IL6, MCP-1, SPP1, IL1RN, INHBA) which have been previously associated with pro-tumorigenic and immunosuppressive functions.ConclusionsTogether, these findings indicate that increased TREM1 expression is prognostic of inferior breast cancer outcomes and may contribute to myeloid-mediated breast cancer progression and immune suppression.
Collapse
Affiliation(s)
- Ashok K. Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Eric D. Routh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Julia Chifman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Mathematics and Statistics, American University, Washington, DC, United States
| | - Jeff W. Chou
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Michael H. Soike
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Jing Su
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Michael A. Black
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Cristin Print
- Department of Molecular Medicine and Pathology and Maurice Wilkins Institute, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Davide Bedognetti
- Cancer Program, Sidra Medicine, Doha, Qatar & Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Marissa Howard-McNatt
- Surgical Oncology Service, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Stacey S. O’Neill
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Alexandra Thomas
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Section of Hematology and Oncology, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | | | - Yong Lu
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- *Correspondence: Lance D. Miller,
| |
Collapse
|
49
|
Miyazaki K, Morine Y, Yamada S, Saito Y, Tokuda K, Okikawa S, Yamashita S, Oya T, Ikemoto T, Imura S, Hu H, Morioka H, Tsuneyama K, Shimada M. Stromal tumor-infiltrating lymphocytes level as a prognostic factor for resected intrahepatic cholangiocarcinoma and its prediction by apparent diffusion coefficient. Int J Clin Oncol 2021; 26:2265-2274. [PMID: 34596803 DOI: 10.1007/s10147-021-02026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) are a prognostic factor or an indicator of chemotherapy response for various malignancies. The aim of this study was to investigate the prognostic impact of TILs in resected intrahepatic cholangiocarcinoma (IHCC). We also investigated the usefulness of the apparent diffusion coefficient (ADC) in diffusion-weighted magnetic resonance imaging (DW-MRI) to predict TILs. METHODS We enrolled 23 patients with IHCC who underwent initial hepatic resection in Tokushima University Hospital from 2006 to 2017. We evaluated stromal TILs in the tumor marginal area and central area in surgical specimens. Patients were divided into low vs high stromal TILs groups. We analyzed the patients' clinicopathological factors, including prognosis, according to the degree of stromal TILs. We also analyzed the correlation between stromal TILs and the minimum ADC value. RESULTS Stromal TILs in the marginal area reflected overall survival more accurately than that in the central area. Additionally, marginal low TILs was significantly associated with lymph node metastasis and portal vein invasion. Both overall- and disease-free survival rates in the marginal low TILs group were significantly worse than those in the marginal high TILs group (P < 0.05). In the multivariate analysis, marginal low TILs were an independent prognostic factor for both overall- and disease-free survival (P < 0.05), and marginal low TILs were significantly associated with lower minimum ADC values (P < 0.02). CONCLUSIONS Stromal TILs, especially in the marginal area, might demonstrate prognostic impact in patients with IHCC. Moreover, the ADC values from MRI may predict TILs in IHCC tumor tissue.
Collapse
Affiliation(s)
- Katsuki Miyazaki
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shinichiro Yamada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yu Saito
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kazunori Tokuda
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shohei Okikawa
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shoko Yamashita
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.,Department of Pathology and Laboratory Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Satoru Imura
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Haun Hu
- Department of Public Health, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hisayoshi Morioka
- Department of Public Health, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
50
|
Chen Y, Klingen TA, Aas H, Wik E, Akslen LA. Tumor-associated lymphocytes and macrophages are related to stromal elastosis and vascular invasion in breast cancer. J Pathol Clin Res 2021; 7:517-527. [PMID: 34076969 PMCID: PMC8363927 DOI: 10.1002/cjp2.226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023]
Abstract
The tumor microenvironment plays a critical role in breast cancer progression. Here, we investigated tumor-infiltrating lymphocytes (TILs) and associations with macrophage numbers, tumor stromal elastosis, vascular invasion, and tumor detection mode. We performed a population-based retrospective study using data from The Norwegian Breast Cancer Screening Program in Vestfold County (2004-2009), including 200 screen-detected and 82 interval cancers. The number of TILs (CD45+, CD3+, CD4+, CD8+, and FOXP3+) and tumor-associated macrophages (CD163+) was counted using immunohistochemistry on tissue microarray slides. Lymphatic and blood vessel invasion (LVI and BVI) were recorded using D2-40 and CD31 staining, and the amount of elastosis (high/low) was determined on regular HE-stained slides. High numbers of all TIL subsets were associated with LVI (p ≤ 0.04 for all), and high counts of several TIL subgroups (CD8+, CD45+, and FOXP3+) were associated with BVI (p ≤ 0.04 for all). Increased levels of all TIL subsets, except CD4+, were associated with estrogen receptor-negative tumors (p < 0.001) and high tumor cell proliferation by Ki67 (p < 0.001). Furthermore, high levels of all TIL subsets were associated with high macrophage counts (p < 0.001) and low-grade stromal elastosis (p ≤ 0.02). High counts of CD3+, CD8+, and FOXP3+ TILs were associated with interval detected tumors (p ≤ 0.04 for all). Finally, in the luminal A subgroup, high levels of CD3+ and FOXP3+ TILs were associated with shorter recurrence-free survival, and high counts of FOXP3+ were linked to reduced breast cancer-specific survival. In conclusion, higher levels of different TIL subsets were associated with stromal features such as high macrophage counts (CD163+), presence of vascular invasion, absence of stromal elastosis, as well as increased tumor cell proliferation and interval detection mode. Our findings support a link between immune cells and vascular invasion in more aggressive breast cancer. Notably, presence of TIL subsets showed prognostic value within the luminal A category.
Collapse
Affiliation(s)
- Ying Chen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyVestfold HospitalTønsbergNorway
- Department of PathologyOslo University HospitalOsloNorway
| | - Tor Audun Klingen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyVestfold HospitalTønsbergNorway
| | - Hans Aas
- Department of SurgeryVestfold HospitalTønsbergNorway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| |
Collapse
|