1
|
Benabdelkamel H, Nimer RM, Masood A, Al Mogren M, Abdel Rahman AM, Alfadda AA. Multiple Reaction Monitoring-Mass Spectrometric Immunoassay Analysis of Parathyroid Hormone Fragments with Vitamin D Deficiency in Patients with Diabetes Mellitus. Proteomes 2024; 12:30. [PMID: 39449502 PMCID: PMC11503337 DOI: 10.3390/proteomes12040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Current immunoassay techniques for analyzing clinically relevant parathyroid hormone (PTH) circulating fragments cannot distinguish microheterogeneity among structurally similar molecular species. This hinders the identification of molecular species and the capture of target analyte information. Since structural modifications are important in disease pathways, mass spectrometry can detect, identify, and quantify heterogeneous ligands captured by antibodies. We aimed to create a sensitive and selective multiple reaction monitoring-mass spectrometric immunoassay analysis (MRM-MSIA)-based method for detecting and quantifying PTH fragments or proteoforms for clinical research. Our study established MRM transitions using triple-quadrupole tandem mass spectrometry for the signature peptides of five PTH fragments. This method was validated according to FDA guidelines, employing the mass spectrometric immunoassay (MSIA) protocol to bolster detection selectivity and sensitivity. This validated approach was applied by analyzing samples from type 2 diabetes mellitus (T2DM) patients with and without vitamin D deficiency. We found serum PTH fragments associated with vitamin D deficiency in patients with and without T2DM. We developed and validated the MRM-MSIA technique specifically designed for the detection and quantification (amino acid (aa38-44), (aa45-51), and (aa65-75)) of these fragments associated with vitamin D deficiency and T2DM. This study is the first to accurately quantify plasma PTH fragments using MRM-MSIA, demonstrating its potential for clinical diagnostics.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia; (H.B.); (A.M.)
| | - Refat M. Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia; (H.B.); (A.M.)
| | - Maha Al Mogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia; (H.B.); (A.M.)
- Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Koc MA, Wiles TA, Weinhold DC, Rightmyer S, Weaver AL, McDowell CT, Roder J, Asmellash S, Pestano GA, Roder H, Georgantas III RW. Molecular and translational biology of the blood-based VeriStrat® proteomic test used in cancer immunotherapy treatment guidance. J Mass Spectrom Adv Clin Lab 2023; 30:51-60. [PMID: 38074293 PMCID: PMC10709509 DOI: 10.1016/j.jmsacl.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION The VeriStrat® test (VS) is a blood-based assay that predicts a patient's response to therapy by analyzing eight features in a spectrum obtained from matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis of human serum and plasma. In a recent analysis of the INSIGHT clinical trial (NCT03289780), it was found that the VS labels, VS Good and VS Poor, can effectively predict the responsiveness of non-small cell lung cancer (NSCLC) patients to immune checkpoint inhibitor (ICI) therapy. However, while VS measures the intensities of spectral features using MALDI-TOF analysis, the specific proteoforms underlying these features have not been comprehensively identified. OBJECTIVES The objective of this study was to identify the proteoforms that are measured by VS. METHODS To resolve the features obtained from the low-resolution MALDI-TOF procedure used to acquire mass spectra for VS DeepMALDI® analysis of serum was employed. This technique allowed for the identification of finer peaks within these features. Additionally, a combination of reversed-phase fractionation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was then used to identify the proteoforms associated with these peaks. RESULTS The analysis revealed that the primary constituents of the spectrum measured by VS are serum amyloid A1, serum amyloid A2, serum amyloid A4, C-reactive protein, and beta-2 microglobulin. CONCLUSION Proteoforms involved in host immunity were identified as significant components of these features. This newly acquired information improves our understanding of how VS can accurately predict patient response to therapy. It opens up additional studies that can expand our understanding even further.
Collapse
Affiliation(s)
| | | | - Daniel C. Weinhold
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Steven Rightmyer
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Amanda L. Weaver
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Colin T. McDowell
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Joanna Roder
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Senait Asmellash
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Gary A. Pestano
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Heinrich Roder
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | | |
Collapse
|
3
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
4
|
Tanaka M, Takarada T, Nadanaka S, Kojima R, Hosoi K, Machiba Y, Kitagawa H, Yamada T. Influences of amino-terminal modifications on amyloid fibril formation of human serum amyloid A. Arch Biochem Biophys 2023; 742:109615. [PMID: 37105512 DOI: 10.1016/j.abb.2023.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
Human serum amyloid A (SAA) is a precursor protein involved in AA amyloidosis. The N-terminal region of the SAA molecule is crucial for amyloid fibril formation, and therefore modifications in this region are considered to influence the pathogenesis of AA amyloidosis. In the present study, using the N-terminal peptide corresponding to the putative first helix region of the SAA molecule, we investigated the influences of N-terminal modifications on amyloid fibril formation. Spectroscopic analyses revealed that carbamoylation of the N-terminal amino group delayed the onset of amyloid fibril formation. From transmission electron microscopic observations, the N-terminal carbamoylated aggregate showed remarkably different morphologies from the unmodified control. In contrast, acetylation of the N-terminal amino group or truncation of N-terminal amino acid(s) considerably diminished amyloidogenic properties. Furthermore, we also tested the cell toxicity of each peptide aggregate on cultured cells by two cytotoxic assays. Irrespective of carbamoylation or acetylation, MTT assay revealed that SAA peptides reduced the reductive activity of MTT on cells, whereas no apparent increase in LDH release was observed during an LDH assay. In contrast, N-terminal truncation did not affect either MTT reduction or LDH release. These results suggest that N-terminal modification of SAA molecules can act as a switch to regulate susceptibility to AA amyloidosis.
Collapse
Affiliation(s)
- Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan.
| | - Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Risa Kojima
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Kimiko Hosoi
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Yuki Machiba
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Toshiyuki Yamada
- Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke, 329-0498, Japan
| |
Collapse
|
5
|
Toyoshima MTK, Santana MFM, Silva ARM, Mello GB, Santos-Bezerra DP, Goes MFS, Bosco AA, Caramelli B, Ronsein GE, Correa-Giannella ML, Passarelli M. Proteomics of high-density lipoprotein subfractions and subclinical atherosclerosis in type 1 diabetes mellitus: a case-control study. Diabetol Metab Syndr 2023; 15:42. [PMID: 36899434 PMCID: PMC10007776 DOI: 10.1186/s13098-023-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Subclinical atherosclerosis is frequently observed in type 1 diabetes (T1D) although the mechanisms and markers involved in the evolution to established cardiovascular disease are not well known. High-density lipoprotein cholesterol in T1D is normal or even high, and changes in its functionality and proteomics are considered. Our aim was to evaluate the proteomics of HDL subfractions in T1D and control subjects and its association with clinical variables, subclinical atherosclerosis markers and HDL functionality. METHODS A total of 50 individuals with T1D and 30 matched controls were included. Carotid-femoral pulse wave velocity (PWV), flow-mediated vasodilation (FMD), cardiovascular autonomic neuropathy (CAN), and ten-year cardiovascular risk (ASCVDR) were determined. Proteomics (parallel reaction monitoring) was determined in isolated HDL2 and HDL3 that were also utilized to measure cholesterol efflux from macrophages. RESULTS Among 45 quantified proteins, 13 in HDL2 and 33 in HDL3 were differentially expressed in T1D and control subjects. Six proteins related to lipid metabolism, one to inflammatory acute phase, one to complement system and one to antioxidant response were more abundant in HDL2, while 14 lipid metabolism, three acute-phase, three antioxidants and one transport in HDL3 of T1D subjects. Three proteins (lipid metabolism, transport, and unknown function) were more abundant in HDL2; and ten (lipid metabolism, transport, protease inhibition), more abundant in HDL3 of controls. Individuals with T1D had higher PWV and ten-year ASCVDR, and lower FMD, Cholesterol efflux from macrophages was similar between T1D and controls. Proteins in HDL2 and HDL3, especially related to lipid metabolism, correlated with PWV, CAN, cholesterol efflux, HDLc, hypertension, glycemic control, ten-year ASCVDR, and statins use. CONCLUSION HDL proteomics can be predictive of subclinical atherosclerosis in type 1 diabetes. Proteins that are not involved in reverse cholesterol transport may be associated with the protective role of HDL.
Collapse
Affiliation(s)
- Marcos Tadashi K Toyoshima
- Laboratorio de Lipides (LIM10), Hospital das Clinicas (HCFMUSP) Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, Room 3305, Sao Paulo, SP, 01246-000, Brazil
- Serviço de Onco-Endocrinologia, Instituto do Câncer do Estado de São Paulo Octávio Frias de Oliveira, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Monique F M Santana
- Laboratorio de Lipides (LIM10), Hospital das Clinicas (HCFMUSP) Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, Room 3305, Sao Paulo, SP, 01246-000, Brazil
| | - Amanda R M Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriela B Mello
- Laboratorio de Lipides (LIM10), Hospital das Clinicas (HCFMUSP) Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, Room 3305, Sao Paulo, SP, 01246-000, Brazil
| | - Daniele P Santos-Bezerra
- Laboratório de Carboidratos e Radioimunoensaio (LIM18), Hospital das Clinicas (HCFMUSP) Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marisa F S Goes
- Laboratório de Aterosclerose, Instituto do Coração, Hospital das Clinicas (HCFMUSP) Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Adriana A Bosco
- Laboratório de Carboidratos e Radioimunoensaio (LIM18), Hospital das Clinicas (HCFMUSP) Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Bruno Caramelli
- Unidade de Medicina Interdisciplinar em Cardiologia (UnMic), Instituto do Coração, Hospital das Clinicas (InCor, HCFMUSP) Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Graziella E Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM18), Hospital das Clinicas (HCFMUSP) Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marisa Passarelli
- Laboratorio de Lipides (LIM10), Hospital das Clinicas (HCFMUSP) Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, Room 3305, Sao Paulo, SP, 01246-000, Brazil.
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Abolbaghaei A, Turner M, Thibodeau JF, Holterman CE, Kennedy CRJ, Burger D. The Proteome of Circulating Large Extracellular Vesicles in Diabetes and Hypertension. Int J Mol Sci 2023; 24:ijms24054930. [PMID: 36902363 PMCID: PMC10003702 DOI: 10.3390/ijms24054930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Hypertension and diabetes induce vascular injury through processes that are not fully understood. Changes in extracellular vesicle (EV) composition could provide novel insights. Here, we examined the protein composition of circulating EVs from hypertensive, diabetic and healthy mice. EVs were isolated from transgenic mice overexpressing human renin in the liver (TtRhRen, hypertensive), OVE26 type 1 diabetic mice and wild-type (WT) mice. Protein content was analyzed using liquid chromatography-mass spectrometry. We identified 544 independent proteins, of which 408 were found in all groups, 34 were exclusive to WT, 16 were exclusive to OVE26 and 5 were exclusive to TTRhRen mice. Amongst the differentially expressed proteins, haptoglobin (HPT) was upregulated and ankyrin-1 (ANK1) was downregulated in OVE26 and TtRhRen mice compared with WT controls. Conversely, TSP4 and Co3A1 were upregulated and SAA4 was downregulated exclusively in diabetic mice; and PPN was upregulated and SPTB1 and SPTA1 were downregulated in hypertensive mice, compared to WT mice. Ingenuity pathway analysis identified enrichment in proteins associated with SNARE signaling, the complement system and NAD homeostasis in EVs from diabetic mice. Conversely, in EVs from hypertensive mice, there was enrichment in semaphroin and Rho signaling. Further analysis of these changes may improve understanding of vascular injury in hypertension and diabetes.
Collapse
Affiliation(s)
- Akram Abolbaghaei
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Maddison Turner
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Thibodeau
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Chet E. Holterman
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Christopher R. J. Kennedy
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
- Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Dylan Burger
- Chronic Disease Program, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
- Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8241)
| |
Collapse
|
7
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands. Front Endocrinol (Lausanne) 2023; 14:1119227. [PMID: 36817589 PMCID: PMC9935590 DOI: 10.3389/fendo.2023.1119227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Originally, it was thought that a single serum amyloid A (SAA) protein was involved in amyloid A amyloidosis, but in fact, SAA represents a four-membered family wherein SAA1 and SAA2 are acute phase proteins (A-SAA). SAA is highly conserved throughout evolution within a wide range of animal species suggestive of an important biological function. In fact, A-SAA has been linked to a number of divergent biological activities wherein a number of these functions are mediated via the G protein-coupled receptor (GPCR), formyl peptide receptor (FPR) 2. For instance, through the activation of FPR2, A-SAA has been described to regulate leukocyte activation, atherosclerosis, pathogen recognition, bone formation and cell survival. Moreover, A-SAA is subject to post-translational modification, primarily through proteolytic processing, generating a range of A-SAA-derived peptides. Although very little is known regarding the biological effect of A-SAA-derived peptides, they have been shown to promote neutrophil and monocyte migration through FPR2 activation via synergy with other GPCR ligands namely, the chemokines CXCL8 and CCL3, respectively. Within this review, we provide a detailed analysis of the FPR2-mediated functions of A-SAA. Moreover, we discuss the potential role of A-SAA-derived peptides as allosteric modulators of FPR2.
Collapse
|
8
|
Regulation of Atherosclerosis by Toll-Like Receptor 4 Induced by Serum Amyloid 1: A Systematic In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4887593. [PMID: 36158875 PMCID: PMC9499805 DOI: 10.1155/2022/4887593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
The objective of this study was to investigate the effects of serum amyloid 1 (SAA1) on activation of endothelial cells, formation of foam cells, platelet aggregation, and monocyte/platelet adhesion to endothelial cells. The effect of SAA1 on the inflammatory activation of endothelial cells was investigated by detecting the expression of inflammatory factors and adhesion molecules. The role of SAA1 in formation of foam cells was verified by detecting lipid deposition and expression of molecules related to the formation of foam cells. After platelets were stimulated by SAA1, the aggregation rate was evaluated to determine the effect of SAA1 on platelet aggregation. Monocytes/platelets were cocultured with human umbilical vein endothelial cells (HUVECs) pretreated with or without SAA1 to determine whether SAA1 affected monocyte/platelet adhesion to endothelial cells. By inhibiting toll-like receptor 4 (TLR4) function, we further identified the role of TLR4 signaling in SAA1-mediated endothelial inflammatory activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs. SAA1 significantly increased the expression of adhesion molecules and inflammatory factors in HUVECs. Moreover, SAA1 also promoted lipid deposition and the expression of inflammatory factors and low-density lipoprotein receptor-1 (LOX-1) in THP-1-derived macrophages. In addition, SAA1 induced platelet aggregation and enhanced monocyte/platelet adhesion to HUVECs. However, the TLR4 antagonist significantly inhibited SAA1-induced endothelial cell activation, foam-cell formation, and monocyte/platelet adhesion to HUVECs and downregulated the expression of myeloid differentiation factor 88 (MyD88), phosphor-inhibitor of nuclear factor κB kinase subunit α/β (P-IKKα/β), phospho-inhibitor of nuclear factor κB subunit α (P-IKBα), and phosphorylation of nuclear transcription factor-κB p65 (P-p65) in SAA1-induced HUVECs and THP-1 cells. Conclusively, it is speculated that SAA1 promotes atherosclerosis through enhancing endothelial cell activation, platelet aggregation, foam-cell formation, and monocyte/platelet adhesion to endothelial cells. These biological functions of SAA1 may depend on the activation of TLR4-related nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
|
9
|
Jia X, Toda K, He L, Miao D, Yamada S, Yu L, Kodama K. Expression-based Genome-wide Association Study Links OPN and IL1-RA With Newly Diagnosed Type 1 Diabetes in Children. J Clin Endocrinol Metab 2022; 107:1825-1832. [PMID: 35460250 PMCID: PMC9391606 DOI: 10.1210/clinem/dgac256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Islet autoantibodies (IAbs) are currently the most reliable indicators of islet autoimmunity. However, IAbs do not fully meet the need for the prediction and intervention of type 1 diabetes (T1D). Serological proteins should be great sources for biomarkers. OBJECTIVE This work aimed to identify new proteomic biomarkers with the technology of an expression-based genome-wide association study (eGWAS) in children newly diagnosed with T1D. METHODS In an attempt to identify additional biomarkers, we performed an eGWAS using microarray data from 169 arrays of the pancreatic islets of T1D rodents (78 T1D cases and 91 controls). We ranked all 16 099 protein-coding genes by the likelihood of differential expression in the pancreatic islets. Our top 20 secreted proteins were screened in 170 children including 100 newly diagnosed T1D, and 50 type 2 diabetes (T2D) and 20 age-matched healthy children. With 6 proteins showing significance, we further conducted a validation study using the second independent set of 400 samples from children including 200 newly diagnosed with T1D, 100 T2D, and 100 age-matched controls. RESULTS We identified 2 serum proteins that were significantly changed in T1D vs both control and T2D, and 5 serum proteins were significantly changed both in T1D and T2D vs control. Serum osteopontin (OPN) levels were uniquely higher in T1D (T1D vs controls, P = 1.29E-13 ~ 9.38E-7, T1D vs T2D, P = 2.65E-8 ~ 1.58E-7) with no difference between T2D and healthy control individuals. Serum interleukin 1 receptor antagonist (IL-1RA) levels were lower in T1D compared both with T2D (P = 3.36E-9~0.0236) and healthy participants (P = 1.09E-79 ~ 2.00E-12). CONCLUSION Our results suggest that OPN and IL1-RA could be candidates for useful biomarkers for T1D in children.
Collapse
Affiliation(s)
- Xiaofan Jia
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Kyoko Toda
- Biomedical Research Center, Kitasato Institute Hospital, Kitasato University, Tokyo 108-8642, Japan
| | - Ling He
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Dongmei Miao
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Satoru Yamada
- Diabetes Center, Kitasato Institute Hospital, Kitasato University, Tokyo 108-8642, Japan
| | - Liping Yu
- Liping Yu, MD, Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct, Aurora, CO 80045, USA.
| | - Keiichi Kodama
- Correspondence: Keiichi Kodama, MD, Health Promotion Team, ORIX Group Health Insurance Society, ORIX Corp, 2-4-1 Hamamatsuchou, Minato-ku, Tokyo 105-6135, Japan.
| |
Collapse
|
10
|
Yasar F, Sheridan MS, Hansmann UHE. Interconversion between Serum Amyloid A Native and Fibril Conformations. ACS OMEGA 2022; 7:12186-12192. [PMID: 35449919 PMCID: PMC9016813 DOI: 10.1021/acsomega.2c00566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of serum amyloid A (SAA) can lead to a form of amyloidosis where the fibrils are made of SAA fragments, most often SAA1-76. Using Replica Exchange with Tunneling, we study the conversion of a SAA1-76 chain between the folded conformation and a fibril conformation. We find that the basins in the free energy landscape corresponding to the two motifs are separated by barriers of only about 2-3 k B T. Crucial for the assembly into the fibril structure is the salt bridge 26E-34K that provides a scaffold for forming the fibril conformation.
Collapse
Affiliation(s)
| | - Miranda S. Sheridan
- Department of Chemistry &
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H. E. Hansmann
- Department of Chemistry &
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
11
|
Gao J, Ulvik A, McCann A, Ueland PM, Meyer K. Microheterogeneity and preanalytical stability of protein biomarkers of inflammation and renal function. Talanta 2021; 223:121774. [PMID: 33303176 DOI: 10.1016/j.talanta.2020.121774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 02/01/2023]
Abstract
Protein biomarker microheterogeneity has attracted increasing attention in epidemiological and clinical research studies. Knowledge concerning the preanalytical stability of proteins is paramount to assess the biological significance of their proteoforms. We investigated the stability of the inflammatory markers C-reactive protein (CRP), serum amyloid A (SAA), and calprotectin (S100A8/9), and the renal function marker, cystatin C (CnC). In total 16 proteoforms were quantified by immuno-MALDI-TOF MS in EDTA plasma and serum samples from 15 healthy volunteers. Prior to analysis blood samples were stored at either room temperature from 1 h up to 8 days, or underwent up to 9 consecutive freeze/thaw cycles. Pearson's correlation coefficient and t-test, intra-class correlation coefficient (ICC), and Autoregressive Integrated Moving-Average (ARIMA) models were used to investigate the stability of proteoform concentrations and distributions in blood. Plasma and serum concentrations of CRP and SAA proteoforms were highly stable during room temperature exposure and repeated freeze/thaw cycles, demonstrating excellent reproducibility (ICC > 0.75), no serial dependency in ARIMA models, and stable distribution of proteoforms. Stability analyses for proteoforms of S100A8/9 and CnC identified only minor preanalytical changes in concentrations and distributions, and none of the proteoforms were produced during prolonged exposure to room temperature or repeated freezing/thawing. The four proteins and their proteoforms are stable during sub-optimal sample handling, and represent robust biomarker candidates for future biobank studies aimed at investigating the microheterogeneity of SAA, S100A8/9, and CnC in relation to inflammation, renal dysfunction and various clinical outcomes.
Collapse
Affiliation(s)
- Jie Gao
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway.
| | - Arve Ulvik
- Bevital AS, Jonas Lies veg 87, Laboratory building, 5021, Bergen, Norway
| | - Adrian McCann
- Bevital AS, Jonas Lies veg 87, Laboratory building, 5021, Bergen, Norway
| | - Per Magne Ueland
- Bevital AS, Jonas Lies veg 87, Laboratory building, 5021, Bergen, Norway
| | - Klaus Meyer
- Bevital AS, Jonas Lies veg 87, Laboratory building, 5021, Bergen, Norway
| |
Collapse
|
12
|
Mass Spectrometric Identification of Proteins Enhanced by the Atomic Force Microscopy Immobilization Surface. Int J Mol Sci 2021; 22:ijms22010431. [PMID: 33406706 PMCID: PMC7795915 DOI: 10.3390/ijms22010431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
An approach to highly-sensitive mass spectrometry detection of proteins after surface-enhanced concentrating has been elaborated. The approach is based on a combination of mass spectrometry and atomic force microscopy to detect target proteins. (1) Background: For this purpose, a technique for preliminary preparation of molecular relief surfaces formed as a result of a chemical or biospecific concentration of proteins from solution was developed and tested on several types of chip surfaces. (2) Methods: mass spectrometric identification of proteins using trailing detectors: ion trap, time of flight, orbital trap, and triple quadrupole. We used the electrospray type of ionization and matrix-assisted laser desorption/ionization. (3) Results: It is shown that when using locally functionalized atomically smooth surfaces, the sensitivity of the mass spectrometric method increases by two orders of magnitude as compared with measurements in solution. Conclusions: It has been demonstrated that the effective concentration of target proteins on specially prepared surfaces increases the concentration sensitivity of mass spectrometric detectors—time-of-flight, ion trap, triple quadrupole, and orbital ion trap in the concentration range from up to 10−15 M.
Collapse
|
13
|
Tsypin M, Asmellash S, Meyer K, Touchet B, Roder H. Extending the information content of the MALDI analysis of biological fluids via multi-million shot analysis. PLoS One 2019; 14:e0226012. [PMID: 31815946 PMCID: PMC6901224 DOI: 10.1371/journal.pone.0226012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Reliable measurements of the protein content of biological fluids like serum or plasma can provide valuable input for the development of personalized medicine tests. Standard MALDI analysis typically only shows high abundance proteins, which limits its utility for test development. It also exhibits reproducibility issues with respect to quantitative measurements. In this paper we show how the sensitivity of MALDI profiling of intact proteins in unfractionated human serum can be substantially increased by exposing a sample to many more laser shots than are commonly used. Analytical reproducibility is also improved. METHODS To assess what is theoretically achievable we utilized spectra from the same samples obtained over many years and combined them to generate MALDI spectral averages of up to 100,000,000 shots for a single sample, and up to 8,000,000 shots for a set of 40 different serum samples. Spectral attributes, such as number of peaks and spectral noise of such averaged spectra were investigated together with analytical reproducibility as a function of the number of shots. We confirmed that results were similar on MALDI instruments from different manufacturers. RESULTS We observed an expected decrease of noise, roughly proportional to the square root of the number of shots, over the whole investigated range of the number of shots (5 orders of magnitude), resulting in an increase in the number of reliably detected peaks. The reproducibility of the amplitude of these peaks, measured by CV and concordance analysis also improves with very similar dependence on shot number, reaching median CVs below 2% for shot numbers > 4 million. Measures of analytical information content and association with biological processes increase with increasing number of shots. CONCLUSIONS We demonstrate that substantially increasing the number of laser shots in a MALDI-TOF analysis leads to more informative and reliable data on the protein content of unfractionated serum. This approach has already been used in the development of clinical tests in oncology.
Collapse
Affiliation(s)
- Maxim Tsypin
- Biodesix Inc., Boulder, Colorado, United States of America
| | | | - Krista Meyer
- Biodesix Inc., Boulder, Colorado, United States of America
| | | | - Heinrich Roder
- Biodesix Inc., Boulder, Colorado, United States of America
| |
Collapse
|
14
|
Gouwy M, De Buck M, Abouelasrar Salama S, Vandooren J, Knoops S, Pörtner N, Vanbrabant L, Berghmans N, Opdenakker G, Proost P, Van Damme J, Struyf S. Matrix Metalloproteinase-9-Generated COOH-, but Not NH 2-Terminal Fragments of Serum Amyloid A1 Retain Potentiating Activity in Neutrophil Migration to CXCL8, With Loss of Direct Chemotactic and Cytokine-Inducing Capacity. Front Immunol 2018; 9:1081. [PMID: 29915572 PMCID: PMC5994419 DOI: 10.3389/fimmu.2018.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A1 (SAA1) is a prototypic acute phase protein, induced to extremely high levels by physical insults, including inflammation and infection. Human SAA and its NH2-terminal part have been studied extensively in the context of amyloidosis. By contrast, little is known about COOH-terminal fragments of SAA. Intact SAA1 chemoattracts leukocytes via the G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPR2). In addition to direct leukocyte activation, SAA1 induces chemokine production by signaling through toll-like receptor 2. We recently discovered that these induced chemokines synergize with intact SAA1 to chemoattract leukocytes in vitro and in vivo. Gelatinase B or matrix metalloproteinase-9 (MMP-9) is also induced by SAA1 during infection and inflammation and processes many substrates in the immune system. We demonstrate here that MMP-9 rapidly cleaves SAA1 at a known consensus sequence that is also present in gelatins. Processing of SAA1 by MMP-9 at an accessible loop between two alpha helices yielded predominantly three COOH-terminal fragments: SAA1(52–104), SAA1(57–104), and SAA1(58–104), with a relative molecular mass of 5,884.4, 5,327.3, and 5,256.3, respectively. To investigate the effect of proteolytic processing on the biological activity of SAA1, we chemically synthesized the COOH-terminal SAA fragments SAA1(52–104) and SAA1(58–104) and the complementary NH2-terminal peptide SAA1(1–51). In contrast to intact SAA1, the synthesized SAA1 peptides did not induce interleukin-8/CXCL8 in monocytes or fibroblasts. Moreover, these fragments possessed no direct chemotactic activity for neutrophils, as observed for intact SAA1. However, comparable to intact SAA1, SAA1(58–104) cooperated with CXCL8 in neutrophil activation and migration, whereas SAA1(1–51) lacked this potentiating activity. This cooperative interaction between the COOH-terminal SAA1 fragment and CXCL8 in neutrophil chemotaxis was mediated by FPR2. Hence, proteolytic cleavage of SAA1 by MMP-9 fine tunes the inflammatory capacity of this acute phase protein in that only the synergistic interactions with chemokines remain to prolong the duration of inflammation.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Top-down mass spectrometric immunoassay for human insulin and its therapeutic analogs. J Proteomics 2018; 175:27-33. [DOI: 10.1016/j.jprot.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023]
|
16
|
Gao J, Meyer K, Borucki K, Ueland PM. Multiplex Immuno-MALDI-TOF MS for Targeted Quantification of Protein Biomarkers and Their Proteoforms Related to Inflammation and Renal Dysfunction. Anal Chem 2018; 90:3366-3373. [DOI: 10.1021/acs.analchem.7b04975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Gao
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Klaus Meyer
- Bevital AS, Jonas Lies veg 87, Laboratory Building, Ninth Floor, 5021 Bergen, Norway
| | - Katrin Borucki
- Institute for Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44 , 39120 Magdeburg, Germany
| | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
17
|
Nedelkov D. Mass Spectrometric Studies of Apolipoprotein Proteoforms and Their Role in Lipid Metabolism and Type 2 Diabetes. Proteomes 2017; 5:E27. [PMID: 29036931 PMCID: PMC5748562 DOI: 10.3390/proteomes5040027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Apolipoproteins function as structural components of lipoprotein particles, cofactors for enzymes, and ligands for cell-surface receptors. Most of the apoliporoteins exhibit proteoforms, arising from single nucleotide polymorphisms (SNPs) and post-translational modifications such as glycosylation, oxidation, and sequence truncations. Reviewed here are recent studies correlating apolipoproteins proteoforms with the specific clinical measures of lipid metabolism and cardiometabolic risk. Targeted mass spectrometric immunoassays toward apolipoproteins A-I, A-II, and C-III were applied on large cross-sectional and longitudinal clinical cohorts. Several correlations were observed, including greater apolipoprotein A-I and A-II oxidation in patients with diabetes and cardiovascular disease, and a divergent apoC-III proteoforms association with plasma triglycerides, indicating significant differences in the metabolism of the individual apoC-III proteoforms. These are the first studies of their kind, correlating specific proteoforms with clinical measures in order to determine their utility as potential clinical biomarkers for disease diagnosis, risk stratification, and therapy decisions. Such studies provide the impetus for the further development and clinical translation of MS-based protein tests.
Collapse
|
18
|
Nedelkov D. Human proteoforms as new targets for clinical mass spectrometry protein tests. Expert Rev Proteomics 2017; 14:691-699. [DOI: 10.1080/14789450.2017.1362337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
[Serum amyloid A protein in blistering skin disease and peripheral circulatory disturbance]. Nihon Ronen Igakkai Zasshi 2017; 54:191-194. [PMID: 28592740 DOI: 10.3143/geriatrics.54.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
20
|
Affiliation(s)
- Dobrin Nedelkov
- Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
21
|
Trenchevska O, Koska J, Sinari S, Yassine H, Reaven PD, Billheimer DD, Nelson RW, Nedelkov D. Association of Cystatin C Proteoforms with Estimated Glomerular Filtration Rate. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2016; 1:27-31. [PMID: 36778895 PMCID: PMC9913891 DOI: 10.1016/j.clinms.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Background Cystatin C (CysC), a marker for chronic kidney disease, exists as three sequence proteoforms, in addition to the wild-type sequence: one contains hydroxyproline at position 3 (3Pro-OH), the two others have truncated sequences (des-S and des-SSP). Here, we examine correlations between each of these CysC proteoforms and estimated glomerular filtration rate (eGFR), a diagnostic criterion for chronic kidney disease (CKD). Methods CysC proteoform concentrations were determined from the plasma of 297 diabetes patients at a baseline time point and nine-months later, using a mass spectrometric immunoassay, and were correlated with eGFR calculations. Results In all samples, 3Pro-OH was the most abundant CysC proteoform, followed by the wild-type proteoform. Least abundant were the truncated CysC proteoforms, des-S and des-SSP, although they demonstrated stronger negative correlation with eGFR than the 3Pro-OH and wild-type proteoforms. The des-SSP truncated proteoform exhibited negative predictive value for eGFR. Conclusions The truncated CysC proteoforms show potential for clinical and prognostic utility in CKD staging. This could be useful in populations where current methods do not provide satisfactory solutions.
Collapse
Affiliation(s)
| | - Juraj Koska
- Department of Medicine, Phoenix Veteran Affairs Medical Center, Phoenix, AZ, USA
| | - Shripad Sinari
- Biostatics Consulting Lab, University of Arizona, Tucson, AZ, USA
| | - Hussein Yassine
- Department of Medicine, University of Southern California, Los Angeles, USA
| | - Peter D. Reaven
- Department of Medicine, Phoenix Veteran Affairs Medical Center, Phoenix, AZ, USA
| | | | | | - Dobrin Nedelkov
- The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
22
|
Jannone JM, Grigg JI, Aguirre LM, Jones EM. Electrostatic Interactions at N- and C-Termini Determine Fibril Polymorphism in Serum Amyloid A Fragments. J Phys Chem B 2016; 120:10258-10268. [PMID: 27632709 DOI: 10.1021/acs.jpcb.6b07672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid polymorphism presents a challenge to physical theories of amyloid formation and stability. The amyloidogenic protein serum amyloid A (SAA) exhibits complex and unexplained structural polymorphism in its N-terminal fragments: the N-terminal 11-residue peptide (SAA1-11) forms left-handed helical fibrils, while extension by one residue (SAA1-12) produces a rare right-handed amyloid. In this study, we use a combination of vibrational spectroscopy and ultramicroscopy to examine fibrils of these peptides and their terminally acetylated and amidated variants, in an effort to uncover the physical basis for this effect. Raman spectroscopy and atomic force microscopy provide evidence that SAA1-12 forms a β-helical fibril architecture, while SAA1-11 forms more typical stacked β-sheets. Importantly, N-terminal acetylation blocks fibril formation by SAA1-12 with no effect on SAA1-11, while C-terminal amidation has nearly the opposite effect. Together, these data suggest distinct electrostatic interactions at the N- and C-termini stabilize the two fibril structures; we propose model fibril structures in which C-terminal extension changes the favored intermolecular interaction between peptide monomers from an Arg1-C-terminus charge pair to an N-terminus-C-terminus charge pair. This model suggests a general mechanism for charge-mediated amyloid polymorphism and may inform strategies for design of peptide-based nanomaterials stabilized by engineered intermolecular contacts.
Collapse
Affiliation(s)
- Justine M Jannone
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| | - James I Grigg
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| | - Lauren M Aguirre
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| | - Eric M Jones
- Department of Chemistry and Biochemistry, California Polytechnic State University San Luis Obispo, California 93407 United States
| |
Collapse
|
23
|
Mass spectrometric immunoassays for discovery, screening and quantification of clinically relevant proteoforms. Bioanalysis 2016; 8:1623-1633. [PMID: 27396364 DOI: 10.4155/bio-2016-0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human proteins can exist as multiple proteoforms with potential diagnostic or prognostic significance. MS top-down approaches are ideally suited for proteoforms identification because there is no prerequisite for a priori knowledge of the specific proteoform. One such top-down approach, termed mass spectrometric immunoassay utilizes antibody-derivatized microcolumns for rapid and contained proteoforms isolation and detection via MALDI-TOF MS. The mass spectrometric immunoassay can also provide quantitative measurement of the proteoforms through inclusion of an internal reference standard into the analytical sample, serving as normalizer for all sample processing and data acquisition steps. Reviewed here are recent developments and results from the application of mass spectrometric immunoassays for discovery of clinical correlations of specific proteoforms for the protein biomarkers RANTES, retinol binding protein, serum amyloid A and apolipoprotein C-III.
Collapse
|
24
|
Azizkhanian I, Trenchevska O, Bashawri Y, Hu J, Koska J, Reaven PD, Nelson RW, Nedelkov D, Yassine HN. Posttranslational modifications of apolipoprotein A-II proteoforms in type 2 diabetes. J Clin Lipidol 2016; 10:808-815. [PMID: 27578111 PMCID: PMC5195850 DOI: 10.1016/j.jacl.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Apolipoprotein A-II (apoA-II) is the second most abundant protein in high-density lipoprotein particles. However, it exists in plasma in multiple forms. The effect of diabetes on apoA-II proteoforms is not known. OBJECTIVE Our objective was to characterize plasma apoA-II proteoforms in participants with and without type 2 diabetes. METHODS Using a novel mass spectrometric immunoassay, the relative abundance of apoA-II proteoforms was examined in plasma of 30 participants with type 2 diabetes and 25 participants without diabetes. RESULTS Six apoA-II proteoforms (monomer, truncated TQ monomer, truncated Q monomer, dimer, truncated Q dimer, and truncated 2Qs dimer) and their oxidized proteoforms were identified. The ratios of oxidized monomer and all oxidized proteoforms to the native apoA-II were significantly greater in the diabetic group (P = .004 and P = .005, respectively) compared with the nondiabetic group. CONCLUSION The relative abundance of oxidized apoA-II is significantly increased in type 2 diabetes.
Collapse
Affiliation(s)
- Ida Azizkhanian
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Yara Bashawri
- Department of Medicine, University of Southern California, Los Angeles, CA, USA; King Fahad Medical City, Riyadh, Saudi Arabia
| | - Jiaqi Hu
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juraj Koska
- Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ, USA
| | - Peter D Reaven
- Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ, USA
| | | | | | - Hussein N Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Trenchevska O, Yassine HN, Borges CR, Nelson RW, Nedelkov D. Development of quantitative mass spectrometric immunoassay for serum amyloid A. Biomarkers 2016; 21:743-751. [PMID: 27308834 DOI: 10.1080/1354750x.2016.1201533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Proteins can exist as multiple proteoforms in vivo that can have important roles in physiological and pathological states. METHODS We present the development and characterization of mass spectrometric immunoassay (MSIA) for quantitative determination of serum amyloid A (SAA) proteoforms. RESULTS Intra- and inter-day precision revealed CVs <10%. Against existing SAA ELISA, the developed MSIA showed good correlation according to the Altman-Bland plot. Individual concentrations of the SAA proteoforms across a cohort of 170 samples revealed 7 diverse SAA polymorphic types and 12 different proteoforms. CONCLUSION The new SAA MSIA enables parallel analysis of SAA polymorphisms and quantification of all expressed SAA proteoforms, in a high-throughput and time-efficient manner.
Collapse
Affiliation(s)
| | - Hussein N Yassine
- b Department of Medicine , University of Southern California , Los Angeles , CA , USA
| | - Chad R Borges
- a The Biodesign Institute, Arizona State University , Tempe , AZ , USA
| | - Randall W Nelson
- a The Biodesign Institute, Arizona State University , Tempe , AZ , USA
| | - Dobrin Nedelkov
- a The Biodesign Institute, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
26
|
Yassine HN, Trenchevska O, Dong Z, Bashawri Y, Koska J, Reaven PD, Nelson RW, Nedelkov D. The association of plasma cystatin C proteoforms with diabetic chronic kidney disease. Proteome Sci 2016; 14:7. [PMID: 27019641 PMCID: PMC4807542 DOI: 10.1186/s12953-016-0096-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Cystatin C (CysC) is an endogenous cysteine protease inhibitor that can be used to assess the progression of kidney function. Recent studies demonstrate that CysC is a more specific indicator of glomerular filtration rate (GFR) than creatinine. CysC in plasma exists in multiple proteoforms. The goal of this study was to clarify the association of native CysC, CysC missing N-terminal Serine (CysC des-S), and CysC without three N-terminal residues (CysC des-SSP) with diabetic chronic kidney disease (CKD). Results Using mass spectrometric immunoassay, the plasma concentrations of native CysC and the two CysC truncation proteoforms were examined in 111 individuals from three groups: 33 non-diabetic controls, 34 participants with type 2 diabetes (DM) and without CKD and 44 participants with diabetic CKD. Native CysC concentrations were 1.4 fold greater in CKD compared to DM group (p = 0.02) and 1.5 fold greater in CKD compared to the control group (p = 0.001). CysC des-S concentrations were 1.55 fold greater in CKD compared to the DM group (p = 0.002) and 1.9 fold greater in CKD compared to the control group (p = 0.0002). CysC des-SSP concentrations were 1.8 fold greater in CKD compared to the DM group (p = 0.008) and 1.52 fold greater in CKD compared to the control group (p = 0.002). In addition, the concentrations of CysC proteoforms were greater in the setting of albuminuria. The truncated CysC proteoform concentrations were associated with estimated GFR independent of native CysC concentrations. Conclusion Our findings demonstrate a greater amount of CysC proteoforms in diabetic CKD. We therefore suggest assessing the role of cystatin C proteoforms in the progression of CKD. Electronic supplementary material The online version of this article (doi:10.1186/s12953-016-0096-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Olgica Trenchevska
- Molecular Biomarkers Laboratory, Biodesign Institute, Arizona State University, P.O. Box 876601, Tempe, AZ 85287-6601 USA
| | - Zhiwei Dong
- University of Southern California, Los Angeles, CA USA
| | - Yara Bashawri
- University of Southern California, Los Angeles, CA USA
| | - Juraj Koska
- Phoenix VA Health Care System, Phoenix, AZ USA
| | | | - Randall W Nelson
- Molecular Biomarkers Laboratory, Biodesign Institute, Arizona State University, P.O. Box 876601, Tempe, AZ 85287-6601 USA
| | - Dobrin Nedelkov
- Molecular Biomarkers Laboratory, Biodesign Institute, Arizona State University, P.O. Box 876601, Tempe, AZ 85287-6601 USA
| |
Collapse
|
27
|
Trenchevska O, Nelson RW, Nedelkov D. Mass Spectrometric Immunoassays in Characterization of Clinically Significant Proteoforms. Proteomes 2016; 4:proteomes4010013. [PMID: 28248223 PMCID: PMC5217360 DOI: 10.3390/proteomes4010013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023] Open
Abstract
Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner, by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric detection. MSIA has been used for qualitative and quantitative analysis of single and multiple proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions. This mini review offers an overview of the development and application of mass spectrometric immunoassays for clinical and population proteomics studies. Provided are examples of some recent developments, and also discussed are the trends and challenges in mass spectrometry-based immunoassays for the next-phase of clinical applications.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Randall W Nelson
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Dobrin Nedelkov
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
28
|
The Association of Human Apolipoprotein C-III Sialylation Proteoforms with Plasma Triglycerides. PLoS One 2015; 10:e0144138. [PMID: 26633899 PMCID: PMC4669142 DOI: 10.1371/journal.pone.0144138] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/14/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Apolipoprotein C-III (apoC-III) regulates triglyceride (TG) metabolism. In plasma, apoC-III exists in non-sialylated (apoC-III0a without glycosylation and apoC-III0b with glycosylation), monosialylated (apoC-III1) or disialylated (apoC-III2) proteoforms. Our aim was to clarify the relationship between apoC-III sialylation proteoforms with fasting plasma TG concentrations. Methods In 204 non-diabetic adolescent participants, the relative abundance of apoC-III plasma proteoforms was measured using mass spectrometric immunoassay. Results Compared with the healthy weight subgroup (n = 16), the ratios of apoC-III0a, apoC-III0b, and apoC-III1 to apoC-III2 were significantly greater in overweight (n = 33) and obese participants (n = 155). These ratios were positively correlated with BMI z-scores and negatively correlated with measures of insulin sensitivity (Si). The relationship of apoC-III1 / apoC-III2 with Si persisted after adjusting for BMI (p = 0.02). Fasting TG was correlated with the ratio of apoC-III0a / apoC-III2 (r = 0.47, p<0.001), apoC-III0b / apoC-III2 (r = 0.41, p<0.001), apoC-III1 / apoC-III2 (r = 0.43, p<0.001). By examining apoC-III concentrations, the association of apoC-III proteoforms with TG was driven by apoC-III0a (r = 0.57, p<0.001), apoC-III0b (r = 0.56. p<0.001) and apoC-III1 (r = 0.67, p<0.001), but not apoC-III2 (r = 0.006, p = 0.9) concentrations, indicating that apoC-III relationship with plasma TG differed in apoC-III2 compared with the other proteoforms. Conclusion We conclude that apoC-III0a, apoC-III0b, and apoC-III1, but not apoC- III2 appear to be under metabolic control and associate with fasting plasma TG. Measurement of apoC-III proteoforms can offer insights into the biology of TG metabolism in obesity.
Collapse
|