1
|
Zhen J, Wang ZB, Ni BJ, Ismail S, El-Baz A, Cui Z, Ni SQ. Synergistic Integration of Anammox and Endogenous Denitrification Processes for the Simultaneous Carbon, Nitrogen, and Phosphorus Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10632-10643. [PMID: 38817146 DOI: 10.1021/acs.est.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The feasibility of a synergistic endogenous partial denitrification-phosphorus removal coupled anammox (SEPD-PR/A) system was investigated in a modified anaerobic baffled reactor (mABR) for synchronous carbon, nitrogen, and phosphorus removal. The mABR comprising four identical compartments (i.e., C1-C4) was inoculated with precultured denitrifying glycogen-accumulating organisms (DGAOs), denitrifying polyphosphate-accumulating organisms, and anammox bacteria. After 136 days of operation, the chemical oxygen demand (COD), total nitrogen, and phosphorus removal efficiencies reached 88.6 ± 1.0, 97.2 ± 1.5, and 89.1 ± 4.2%, respectively. Network-based analysis revealed that the biofilmed community demonstrated stable nutrient removal performance under oligotrophic conditions in C4. The metagenome-assembled genomes (MAGs) such as MAG106, MAG127, MAG52, and MAG37 annotated as denitrifying phosphorus-accumulating organisms (DPAOs) and MAG146 as a DGAO were dominated in C1 and C2 and contributed to 89.2% of COD consumption. MAG54 and MAG16 annotated as Candidatus_Brocadia (total relative abundance of 16.5% in C3 and 4.3% in C4) were responsible for 74.4% of the total nitrogen removal through the anammox-mediated pathway. Functional gene analysis based on metagenomic sequencing confirmed that different compartments of the mABR were capable of performing distinct functions with specific advantageous microbial groups, facilitating targeted nutrient removal. Additionally, under oligotrophic conditions, the activity of the anammox bacteria-related genes of hzs was higher compared to that of hdh. Thus, an innovative method for the treatment of low-strength municipal and nitrate-containing wastewaters without aeration was presented, mediated by an anammox process with less land area and excellent quality effluent.
Collapse
Affiliation(s)
- Jianyuan Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhi-Bin Wang
- School of Life Sciences, Shandong University, Jinan 250100, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Sherif Ismail
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Thappeta Y, Cañas-Duarte SJ, Kallem T, Fragasso A, Xiang Y, Gray W, Lee C, Cegelski L, Jacobs-Wagner C. Glycogen phase separation drives macromolecular rearrangement and asymmetric division in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590186. [PMID: 38659787 PMCID: PMC11042326 DOI: 10.1101/2024.04.19.590186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bacteria often experience nutrient limitation in nature and the laboratory. While exponential and stationary growth phases are well characterized in the model bacterium Escherichia coli, little is known about what transpires inside individual cells during the transition between these two phases. Through quantitative cell imaging, we found that the position of nucleoids and cell division sites becomes increasingly asymmetric during transition phase. These asymmetries were coupled with spatial reorganization of proteins, ribosomes, and RNAs to nucleoid-centric localizations. Results from live-cell imaging experiments, complemented with genetic and 13C whole-cell nuclear magnetic resonance spectroscopy studies, show that preferential accumulation of the storage polymer glycogen at the old cell pole leads to the observed rearrangements and asymmetric divisions. In vitro experiments suggest that these phenotypes are likely due to the propensity of glycogen to phase separate in crowded environments, as glycogen condensates exclude fluorescent proteins under physiological crowding conditions. Glycogen-associated differences in cell sizes between strains and future daughter cells suggest that glycogen phase separation allows cells to store large glucose reserves without counting them as cytoplasmic space.
Collapse
Affiliation(s)
- Yashna Thappeta
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Silvia J. Cañas-Duarte
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Till Kallem
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Alessio Fragasso
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yingjie Xiang
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - William Gray
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Cheyenne Lee
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | | | - Christine Jacobs-Wagner
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| |
Collapse
|
3
|
Zhao B, Yang Y, Zhao C, Zhang C, Zhang Z, Wang L, Wang S, Wang J. Exploration of the metabolic flexibility of glycogen accumulating organisms through metatranscriptome analysis and metabolic characterization. J Environ Sci (China) 2023; 126:234-248. [PMID: 36503752 DOI: 10.1016/j.jes.2022.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 06/17/2023]
Abstract
Glycogen accumulating organisms (GAOs) are closely related to the deterioration of enhanced biological phosphorus removal systems. However, the metabolic mechanisms that drive GAOs remain unclear. Here, the two-thirds supernatant of a reactor were decanted following the anaerobic period to enrich GAOs. Long-term monitoring demonstrated that the system was stable and exhibited typical characteristics of GAOs metabolism. Acetate was completely consumed after 60 min of the anaerobic phase. The level of glycogen decreased from 0.20 to 0.14 g/gSS during the anaerobic phase, whereas the level of glycogen significantly increased to 0.21g/gSS at the end of the aerobic period. Moreover, there was almost no phosphate release and absorption in the complete periods, thus confirming the successful construction of a GAOs enrichment system. Microbial community analysis demonstrated that Ca. Contendobacter was among the core functional genera and showed the highest activity among all of the communities. Furthermore, our study is the first to identify the involvement of the ethyl-malonyl-CoA pathway in the synthesis of polyhydroxyvalerate via croR, ccr, ecm, mcd, mch and mcl genes. The Embden-Meyerhof-Parnas (EMP) pathway was preferentially used via glgP. Furthermore, the glyoxylate cycle was the main source of ATP under anaerobic conditions, whereas the tricarboxylic acid cycle provided ATP under aerobic conditions. aceA and mdh appeared to be major modulators of the glyoxylate pathway for controlling energy flow. Collectively, our findings not only revealed the crucial metabolic mechanisms in a GAOs enrichment system but also provided insights into the potential application of Ca. Contendobacter for wastewater treatment.
Collapse
Affiliation(s)
- Bin Zhao
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Yanping Yang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China
| | - Chunchun Zhang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China
| | - Zhaohui Zhang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Liang Wang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China.
| |
Collapse
|
4
|
Esteban-Torres M, Ruiz L, Rossini V, Nally K, van Sinderen D. Intracellular glycogen accumulation by human gut commensals as a niche adaptation trait. Gut Microbes 2023; 15:2235067. [PMID: 37526383 PMCID: PMC10395257 DOI: 10.1080/19490976.2023.2235067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The human gut microbiota is a key contributor to host metabolism and physiology, thereby impacting in various ways on host health. This complex microbial community has developed many metabolic strategies to colonize, persist and survive in the gastrointestinal environment. In this regard, intracellular glycogen accumulation has been associated with important physiological functions in several bacterial species, including gut commensals. However, the role of glycogen storage in shaping the composition and functionality of the gut microbiota offers a novel perspective in gut microbiome research. Here, we review what is known about the enzymatic machinery and regulation of glycogen metabolism in selected enteric bacteria, while we also discuss its potential impact on colonization and adaptation to the gastrointestinal tract. Furthermore, we survey the presence of such glycogen biosynthesis pathways in gut metagenomic data to highlight the relevance of this metabolic trait in enhancing survival in the highly competitive and dynamic gut ecosystem.
Collapse
Affiliation(s)
- Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
- Functionality and Ecology of Benefitial Microbes (MicroHealth Group), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Kim HY, Davoodbasha M, Kim JW. Functional characterization of maltodextrin glucosidase for maltodextrin and glycogen metabolism in Vibrio vulnificus MO6-24/O. Arch Microbiol 2022; 204:668. [PMID: 36220932 DOI: 10.1007/s00203-022-03274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Glycogen is important for transmission of V. vulnificus undergoing disparate environments of nutrient-rich host and nutrient-limited marine environment. The malZ gene of V. vulnificus encoding a maltodextrin glucosidase was cloned and over-expressed in E. coli to investigate its roles in glycogen/maltodextrin metabolism in the pathogen. The malZ gene encoded a protein with a predicted molecular mass of 70 kDa. The optimal pH and temperature of MalZ was 7.0 and 37 °C, respectively. MalZ hydrolyzed maltodextrin to glucose and maltose most efficiently, while hydrolyzed other substrates such as starch, maltose, β-cyclomaltodextrin, and glycogen less efficiently. The activity was enhanced greatly by Mn2+. It also exhibited transglycosylation activity toward excessive maltotriose. The malZ knock-out mutant accumulated 2.3-5.6-fold less glycogen than the wild type when excessive maltodextrin or glucose was added to LB medium, while it accumulated more glycogen than the wild type (3.5-fold) in the presence of excessive maltose. Growth and glycogen accumulation of the mutant were retarded most significantly in the M63 minimal medium supplemented with 0.5% maltodextrin. Side chain length distributions of glycogen molecules were varied by the malZ mutation and types of the excessive carbon source. Based on the results, MalZ of V. vulnificus was likely to be involved in maltose/maltodextrin metabolism, thereby balancing synthesis of glycogen and energy generation in the cell. The bacterium seemed to have multiple and unique pathways for glycogen metabolism according to carbon sources.
Collapse
Affiliation(s)
- Hye-Young Kim
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, South Korea
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.,Research Center for Bio Material and Process Development, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jung-Wan Kim
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, South Korea. .,Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea. .,Research Center for Bio Material and Process Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
6
|
Han AR, Kim H, Park JT, Kim JW. Characterization of a cold-adapted debranching enzyme and its role in glycogen metabolism and virulence of Vibrio vulnificus MO6-24/O. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:375-386. [PMID: 35157220 DOI: 10.1007/s12275-022-1507-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus MO6-24/O has three genes annotated as debranching enzymes or pullulanase genes. Among them, the gene encoded by VVMO6_03032 (vvde1) shares a higher similarity at the amino acid sequence level to the glycogen debranching enzymes, AmyX of Bacillus subtilis (40.5%) and GlgX of Escherichia coli (55.5%), than those encoded by the other two genes. The vvde1 gene encoded a protein with a molecular mass of 75.56 kDa and purified Vvde1 efficiently hydrolyzed glycogen and pullulan to shorter chains of maltodextrin and maltotriose (G3), respectively. However, it hydrolyzed amylopectin and soluble starch far less efficiently, and β-cyclodextrin (β-CD) only rarely. The optimal pH and temperature of Vvde1 was 6.5 and 25°C, respectively. Vvde1 was a cold-adapted debranching enzyme with more than 60% residual activity at 5°C. It could maintain stability for 2 days at 25°C and 1 day at 35°C, but it destabilized drastically at 40°C. The Vvde1 activity was inhibited considerably by Cu2+, Hg2+, and Zn2+, while it was slightly enhanced by Co2+, Ca2+, Ni2+, and Fe2+. The vvde1 knock-out mutant accumulated more glycogen than the wild-type in media supplemented with 1.0% maltodextrin; however, the side chain length distribution of glycogen was similar to that of the wild-type except G3, which was much more abundant in the mutant. Therefore, Vvde1 seemed to debranch glycogen with the degree of polymerization 3 (DP3) as the specific target branch length. Virulence of the pathogen against Caenorhabditis elegans was attenuated significantly by the vvde1 mutation. These results suggest that Vvde1 might be a unique glycogen debranching enzyme that is involved in both glycogen utilization and shaping of glycogen molecules, and contributes toward virulence of the pathogen.
Collapse
Affiliation(s)
- Ah-Reum Han
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, 22102, Republic of Korea
| | - Haeyoung Kim
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, 22102, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jung-Wan Kim
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, 22102, Republic of Korea. .,Division of Bioengineering, Incheon National University, Incheon, 22102, Republic of Korea.
| |
Collapse
|
7
|
Boya BR, Kumar P, Lee JH, Lee J. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms 2021; 9:microorganisms9102156. [PMID: 34683477 PMCID: PMC8537960 DOI: 10.3390/microorganisms9102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophanase encoded by the gene tnaA is a pyridoxal phosphate-dependent enzyme that catalyses the conversion of tryptophan to indole, which is commonly used as an intra- and interspecies signalling molecule, particularly by microbes. However, the production of indole is rare in eukaryotic organisms. A nucleotide and protein database search revealed tnaA is commonly reported in various Gram-negative bacteria, but that only a few Gram-positive bacteria and archaea possess the gene. The presence of tnaA in eukaryotes, particularly protozoans and marine organisms, demonstrates the importance of this gene in the animal kingdom. Here, we document the distribution of tnaA and its acquisition and expansion among different taxonomic groups, many of which are usually categorized as non-indole producers. This study provides an opportunity to understand the intriguing role played by tnaA, and its distribution among various types of organisms.
Collapse
|
8
|
Wang L, Wang M, Wise MJ, Liu Q, Yang T, Zhu Z, Li C, Tan X, Tang D, Wang W. Recent progress in the structure of glycogen serving as a durable energy reserve in bacteria. World J Microbiol Biotechnol 2020; 36:14. [PMID: 31897771 DOI: 10.1007/s11274-019-2795-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Glycogen is conventionally considered as a transient energy reserve that can be rapidly synthesized for glucose accumulation and mobilized for ATP production. However, this conception is not completely applicable to prokaryotes due to glycogen structural heterogeneity. A number of studies noticed that glycogen with small average chain length gc in bacteria has the potential to degrade slowly, which might prolong bacterial environment survival. This phenomenon was previously examined and later formulated as the durable energy storage mechanism hypothesis. Although recent research has been warming to the hypothesis, experimental validation is still missing at current stage. In this review, we summarized recent progress of the hypothesis, provided a supporting mathematical model, and explored the technical pitfalls that shall be avoided in glycogen study.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Mengmeng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Michael J Wise
- The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA, 6009, Australia
- Computer Science and Software Engineering, Faculty of Engineering and Mathematical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Ting Yang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Zuobin Zhu
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Chengcheng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xinle Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Wei Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
- The First Affiliated Hospital, Medical College of Shantou University, Shantou, 515041, Guangdong, China
- School of Public Health, Taishan Medical University, Tai'an, 271000, Shandong, China
| |
Collapse
|
9
|
Mahjoubi M, Aliyu H, Cappello S, Naifer M, Souissi Y, Cowan DA, Cherif A. The genome of Alcaligenes aquatilis strain BU33N: Insights into hydrocarbon degradation capacity. PLoS One 2019; 14:e0221574. [PMID: 31550268 PMCID: PMC6759156 DOI: 10.1371/journal.pone.0221574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/10/2019] [Indexed: 01/12/2023] Open
Abstract
Environmental contamination with hydrocarbons though natural and anthropogenic activities is a serious threat to biodiversity and human health. Microbial bioremediation is considered as the effective means of treating such contamination. This study describes a biosurfactant producing bacterium capable of utilizing crude oil and various hydrocarbons as the sole carbon source. Strain BU33N was isolated from hydrocarbon polluted sediments from the Bizerte coast (northern Tunisia) and was identified as Alcaligenes aquatilis on the basis of 16S rRNA gene sequence analysis. When grown on crude oil and phenanthrene as sole carbon and energy sources, isolate BU33N was able to degrade ~86%, ~56% and 70% of TERHc, n-alkanes and phenanthrene, respectively. The draft genome sequence of the A. aquatilis strain BU33N was assembled into one scaffold of 3,838,299 bp (G+C content of 56.1%). Annotation of the BU33N genome resulted in 3,506 protein-coding genes and 56 rRNA genes. A large repertoire of genes related to the metabolism of aromatic compounds including genes encoding enzymes involved in the complete degradation of benzoate were identified. Also genes associated with resistance to heavy metals such as copper tolerance and cobalt-zinc-cadmium resistance were identified in BU33N. This work provides insight into the genomic basis of biodegradation capabilities and bioremediation/detoxification potential of A. aquatilis BU33N.
Collapse
Affiliation(s)
- Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Simone Cappello
- Istituto per l’Ambiente Marino Costiero (IAMC)-CNR of Messina. Sp. San Raineri, Messina, Italy
| | - Mohamed Naifer
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
| | - Yasmine Souissi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
- * E-mail:
| |
Collapse
|
10
|
Wang L, Liu Q, Hu J, Asenso J, Wise MJ, Wu X, Ma C, Chen X, Yang J, Tang D. Structure and Evolution of Glycogen Branching Enzyme N-Termini From Bacteria. Front Microbiol 2019; 9:3354. [PMID: 30692986 PMCID: PMC6339891 DOI: 10.3389/fmicb.2018.03354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 12/31/2018] [Indexed: 01/02/2023] Open
Abstract
In bacteria, glycogen plays important roles in carbon and energy storage. Its structure has recently been linked with bacterial environmental durability. Among the essential genes for bacterial glycogen metabolism, the glgB-encoded branching enzyme GBE plays an essential role in forming α-1,6-glycosidic branching points, and determines the unique branching patterns in glycogen. Previously, evolutionary analysis of a small sets of GBEs based on their N-terminal domain organization revealed that two types of GBEs might exist: (1) Type 1 GBE with both N1 and N2 (also known as CBM48) domains and (2) Type 2 GBE with only the N2 domain. In this study, we initially analyzed N-terminal domains of 169 manually reviewed bacterial GBEs based on hidden Markov models. A previously unreported group of GBEs (Type 3) with around 100 amino acids ahead of the N1 domains was identified. Phylogenetic analysis found clustered patterns of GBE types in certain bacterial phyla, with the shorter, Type 2 GBEs predominantly found in Gram-positive species, while the longer Type 1 GBEs are found in Gram-negative species. Several in vitro studies have linked N1 domain with transfer of short oligosaccharide chains during glycogen formation, which could lead to small and compact glycogen structures. Compact glycogen degrades more slowly and, as a result, may serve as a durable energy reserve, contributing to the enhanced environmental persistence for bacteria. We were therefore interested in classifying GBEs based on their N-terminal domain via large-scale sequence analysis. In addition, we set to understand the evolutionary patterns of different GBEs through phylogenetic analysis at species and sequence levels. Three-dimensional modeling of GBE N-termini was also performed for structural comparisons. A further study of 9,387 GBE sequences identified 147 GBEs that might belong to a possibly novel group of Type 3 GBE, most of which fall into the phylum of Actinobacteria. We also attempted to correlate glycogen average chain length (ACL) with GBE types. However, no significant conclusions were drawn due to limited data availability. In sum, our study systematically investigated bacterial GBEs in terms of domain organizations from evolutionary point of view, which provides guidance for further experimental study of GBE N-terminal functions in glycogen structure and bacterial physiology.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Junfeng Hu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - James Asenso
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Michael J Wise
- Computer Science and Software Engineering, University of Western Australia, Perth, WA, Australia.,The Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA, Australia
| | - Xiang Wu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Chao Ma
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Xiuqing Chen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Jianye Yang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Center for Experimental Animals, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Degli Esposti M. A Journey across Genomes Uncovers the Origin of Ubiquinone in Cyanobacteria. Genome Biol Evol 2018; 9:3039-3053. [PMID: 29106540 PMCID: PMC5714133 DOI: 10.1093/gbe/evx225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
Ubiquinone (Q) is an isoprenoid quinone that functions as membrane electron carrier in mitochondria and bacterial organisms belonging to the alpha, beta, and gamma class of proteobacteria. The biosynthesis of Q follows various biochemical steps catalyzed by diverse proteins that are, in general, homologous in mitochondria and bacteria. Nonorthologous proteins can also contribute to some biochemical steps as originally uncovered in Escherichia coli, which is the best studied organism for Q biosynthesis in prokaryotes. However, the origin of the biosynthetic pathway of Q has remained obscure. Here, I show by genome analysis that Q biosynthesis originated in cyanobacteria and then diversified in anaerobic alpha proteobacteria which have extant relatives in members of the Rhodospirillaceae family. Two distinct biochemical pathways diverged when ambient oxygen reached current levels on earth, one leading to the well-known series of Ubi genes found in E. coli, and the other containing CoQ proteins originally found in eukaryotes. Extant alpha proteobacteria show Q biosynthesis pathways that are more similar to that present in mitochondria than to that of E. coli. Hence, this work clarifies not only the origin but also the evolution of Q biosynthesis from bacteria to mitochondria.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Italian Institute of Technology, Genoa, Italy.,Center for Genomic Sciences, Universidad National Autonoma de Mexico Campus of Cuernavaca, Cuernavaca, Morelos, Mexico
| |
Collapse
|
12
|
Almagro G, Viale AM, Montero M, Muñoz FJ, Baroja-Fernández E, Mori H, Pozueta-Romero J. A cAMP/CRP-controlled mechanism for the incorporation of extracellular ADP-glucose in Escherichia coli involving NupC and NupG nucleoside transporters. Sci Rep 2018; 8:15509. [PMID: 30341391 PMCID: PMC6195507 DOI: 10.1038/s41598-018-33647-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022] Open
Abstract
ADP-glucose is the precursor of glycogen biosynthesis in bacteria, and a compound abundant in the starchy plant organs ingested by many mammals. Here we show that the enteric species Escherichia coli is capable of scavenging exogenous ADP-glucose for use as a glycosyl donor in glycogen biosynthesis and feed the adenine nucleotide pool. To unravel the molecular mechanisms involved in this process, we screened the E. coli single-gene deletion mutants of the Keio collection for glycogen content in ADP-glucose-containing culture medium. In comparison to wild-type (WT) cells, individual ∆nupC and ∆nupG mutants lacking the cAMP/CRP responsive inner-membrane nucleoside transporters NupC and NupG displayed reduced glycogen contents and slow ADP-glucose incorporation. In concordance, ∆cya and ∆crp mutants accumulated low levels of glycogen and slowly incorporated ADP-glucose. Two-thirds of the glycogen-excess mutants identified during screening lacked functions that underlie envelope biogenesis and integrity, including the RpoE specific RseA anti-sigma factor. These mutants exhibited higher ADP-glucose uptake than WT cells. The incorporation of either ∆crp, ∆nupG or ∆nupC null alleles sharply reduced the ADP-glucose incorporation and glycogen content initially witnessed in ∆rseA cells. Overall, the data showed that E. coli incorporates extracellular ADP-glucose through a cAMP/CRP-regulated process involving the NupC and NupG nucleoside transporters that is facilitated under envelope stress conditions.
Collapse
Affiliation(s)
- Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC, UPNA, Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloa, Nafarroa, Spain
| | - Alejandro M Viale
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 521, 2000, Rosario, Argentina
| | - Manuel Montero
- Instituto de Agrobiotecnología (CSIC, UPNA, Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloa, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC, UPNA, Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloa, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC, UPNA, Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloa, Nafarroa, Spain
| | - Hirotada Mori
- Data Science Center, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0101, Japan
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC, UPNA, Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloa, Nafarroa, Spain.
| |
Collapse
|
13
|
Degli Esposti M, Martinez Romero E. The functional microbiome of arthropods. PLoS One 2017; 12:e0176573. [PMID: 28475624 PMCID: PMC5419562 DOI: 10.1371/journal.pone.0176573] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Many studies on the microbiome of animals have been reported but a comprehensive analysis is lacking. Here we present a meta-analysis on the microbiomes of arthropods and their terrestrial habitat, focusing on the functional profile of bacterial communities derived from metabolic traits that are essential for microbial life. We report a detailed analysis of probably the largest set of biochemically defined functional traits ever examined in microbiome studies. This work deals with the phylum proteobacteria, which is usually dominant in marine and terrestrial environments and covers all functions associated with microbiomes. The considerable variation in the distribution and abundance of proteobacteria in microbiomes has remained fundamentally unexplained. This analysis reveals discrete functional groups characteristic for adaptation to anaerobic conditions, which appear to be defined by environmental filtering of taxonomically related taxa. The biochemical diversification of the functional groups suggests an evolutionary trajectory in the structure of arthropods' microbiome, from metabolically versatile to specialized proteobacterial organisms that are adapted to complex environments such as the gut of social insects. Bacterial distribution in arthropods' microbiomes also shows taxonomic clusters that do not correspond to functional groups and may derive from other factors, including common contaminants of soil and reagents.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Italian Institute of Technology, Genoa, Italy
- Center for Genomic Sciences, UNAM Campus of Cuernavaca, Cuernavaca, Morelos, Mexico
- * E-mail:
| | | |
Collapse
|
14
|
Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development. PLoS One 2017; 12:e0175488. [PMID: 28407006 PMCID: PMC5391026 DOI: 10.1371/journal.pone.0175488] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/27/2017] [Indexed: 12/03/2022] Open
Abstract
The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley.
Collapse
|
15
|
Baslam M, Baroja-Fernández E, Ricarte-Bermejo A, Sánchez-López ÁM, Aranjuelo I, Bahaji A, Muñoz FJ, Almagro G, Pujol P, Galarza R, Teixidor P, Pozueta-Romero J. Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation and cycling in illuminated Arabidopsis leaves. PLoS One 2017; 12:e0171245. [PMID: 28152100 PMCID: PMC5289593 DOI: 10.1371/journal.pone.0171245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/17/2017] [Indexed: 11/20/2022] Open
Abstract
Although there is a great wealth of data supporting the occurrence of simultaneous synthesis and breakdown of storage carbohydrate in many organisms, previous 13CO2 pulse-chase based studies indicated that starch degradation does not operate in illuminated Arabidopsis leaves. Here we show that leaves of gwd, sex4, bam4, bam1/bam3 and amy3/isa3/lda starch breakdown mutants accumulate higher levels of starch than wild type (WT) leaves when cultured under continuous light (CL) conditions. We also show that leaves of CL grown dpe1 plants impaired in the plastidic disproportionating enzyme accumulate higher levels of maltotriose than WT leaves, the overall data providing evidence for the occurrence of extensive starch degradation in illuminated leaves. Moreover, we show that leaves of CL grown mex1/pglct plants impaired in the chloroplastic maltose and glucose transporters display a severe dwarf phenotype and accumulate high levels of maltose, strongly indicating that the MEX1 and pGlcT transporters are involved in the export of starch breakdown products to the cytosol to support growth during illumination. To investigate whether starch breakdown products can be recycled back to starch during illumination through a mechanism involving ADP-glucose pyrophosphorylase (AGP) we conducted kinetic analyses of the stable isotope carbon composition (δ13C) in starch of leaves of 13CO2 pulsed-chased WT and AGP lacking aps1 plants. Notably, the rate of increase of δ13C in starch of aps1 leaves during the pulse was exceedingly higher than that of WT leaves. Furthermore, δ13C decline in starch of aps1 leaves during the chase was much faster than that of WT leaves, which provides strong evidence for the occurrence of AGP-mediated cycling of starch breakdown products in illuminated Arabidopsis leaves.
Collapse
Affiliation(s)
- Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Adriana Ricarte-Bermejo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
| | - Pablo Pujol
- Servicio de Apoyo a la Investigación, Universidad Pública de Navarra, Campus de Arrosadia, Iruña, Nafarroa, Spain
| | - Regina Galarza
- Servicio de Apoyo a la Investigación, Universidad Pública de Navarra, Campus de Arrosadia, Iruña, Nafarroa, Spain
| | - Pilar Teixidor
- Centres Científics i Tecnològics, Universitat de Barcelona, C/ Lluís Solé I Sabarís 1–3, Barcelona, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra). Iruñako etorbidea 123, Mutiloabeti, Nafarroa, Spain
- * E-mail:
| |
Collapse
|
16
|
Pieretti I, Cociancich S, Bolot S, Carrère S, Morisset A, Rott P, Royer M. Full Genome Sequence Analysis of Two Isolates Reveals a Novel Xanthomonas Species Close to the Sugarcane Pathogen Xanthomonas albilineans. Genes (Basel) 2015; 6:714-33. [PMID: 26213974 PMCID: PMC4584326 DOI: 10.3390/genes6030714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/03/2015] [Accepted: 07/14/2015] [Indexed: 12/28/2022] Open
Abstract
Xanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS) locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS) of the Salmonella pathogenicity island-1 (SPI-1) family. We sequenced two X. albilineans-like strains isolated from unusual environments, i.e., from dew droplets on sugarcane leaves and from the wild grass Paspalum dilatatum, and compared these genomes sequences with those of two strains of X. albilineans and three of Xanthomonas sacchari. Average nucleotide identity (ANI) and multi-locus sequence analysis (MLSA) showed that both X. albilineans-like strains belong to a new species close to X. albilineans that we have named "Xanthomonas pseudalbilineans". X. albilineans and "X. pseudalbilineans" share many genomic features including (i) the lack of genes encoding a hypersensitive response and pathogenicity type 3 secretion system (Hrp-T3SS), and (ii) genome erosion that probably occurred in a common progenitor of both species. Our comparative analyses also revealed specific genomic features that may help X. albilineans interact with sugarcane, e.g., a PglA endoglucanase, three TonB-dependent transporters and a glycogen metabolism gene cluster. Other specific genomic features found in the "X. pseudalbilineans" genome may contribute to its fitness and specific ecological niche.
Collapse
Affiliation(s)
- Isabelle Pieretti
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Stéphane Cociancich
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Stéphanie Bolot
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
| | - Sébastien Carrère
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
| | - Alexandre Morisset
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Philippe Rott
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Monique Royer
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| |
Collapse
|
17
|
Park KH. Roles of Enzymes in Glycogen Metabolism and Degradation in Escherichia coli. J Appl Glycosci (1999) 2015. [DOI: 10.5458/jag.jag.jag-2015_005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Kwan-Hwa Park
- Department of Foodservice Management and Nutrition, Sangmyung University
- Department of Food Science and Biotechnology, Seoul National University
| |
Collapse
|