1
|
Karyagina AS, Grishin AV, Kudinova AG, Bulygina IN, Koudan EV, Orlova PA, Datsenko VP, Zhulina AV, Grunina TM, Poponova MS, Krivozubov MS, Gromova MS, Strukova NV, Generalova MS, Nikitin KE, Shchetinin IV, Luchnikov LO, Zaitseva SV, Kirsanova MA, Statnik ES, Senatov FS, Lunin VG, Gromov AV. Dual-Functional Implant Based on Gellan-Xanthan Hydrogel with Diopside, BMP-2 and Lysostaphin for Bone Defect Repair and Control of Staphylococcal Infection. Macromol Biosci 2024:e2400205. [PMID: 39140453 DOI: 10.1002/mabi.202400205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Indexed: 08/15/2024]
Abstract
A new dual-functional implant based on gellan-xanthan hydrogel with calcium-magnesium silicate ceramic diopside and recombinant lysostaphin and bone morphogenetic protein 2 (BMP-2)-ray is developed. In this composite, BMP-2 is immobilized on microparticles of diopside while lysostaphin is mixed directly into the hydrogel, providing sustained release of BMP-2 to allow gradual bone formation and rapid release of lysostaphin to eliminate infection immediately after implantation. Introduction of diopside of up to 3% (w/v) has a negligible effect on the mechanical properties of the hydrogel but provides a high sorption capacity for BMP-2. The hydrogels show good biocompatibility and antibacterial activity. Lysostaphin released from the implants over a 3 h period efficiently kills planktonic cells and completely destroys 24 h pre-formed biofilms of Staphylococcus aureus. Furthermore, in vivo experiments in a mouse model of critically-sized cranial defects infected with S. aureus show a complete lack of osteogenesis when implants contain only BMP-2, whereas, in the presence of lysostaphin, complete closure of the defect with newly formed mineralized bone tissue is observed. Thus, the new implantable gellan-xanthan hydrogel with diopside and recombinant lysostaphin and BMP-2 shows both osteogenic and antibacterial properties and represents a promising material for the treatment and/or prevention of osteomyelitis after bone trauma.
Collapse
Affiliation(s)
- Anna S Karyagina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Alexander V Grishin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alina G Kudinova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Inna N Bulygina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Elizaveta V Koudan
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Polina A Orlova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Vera P Datsenko
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Anna V Zhulina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Tatyana M Grunina
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Maria S Poponova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Mikhail S Krivozubov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Gromova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Natalia V Strukova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Maria S Generalova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Kirill E Nikitin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| | - Igor V Shchetinin
- Material Science Department, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Lev O Luchnikov
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Svetlana V Zaitseva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | | | - Eugene S Statnik
- "LUCh" Laboratory, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Fedor S Senatov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- Institute of Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Vladimir G Lunin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alexander V Gromov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
2
|
Jaekel C, Windolf CD, Bieler D, Oezel L, Seiler LF, Lakomek FN, Beyersdorf C, Mertens J, Steuwe A, Windolf J, Grassmann JP. Efficacy of lysostaphin-coated titanium plates on implant-associated MRSA osteitis in minipigs. Eur J Trauma Emerg Surg 2024; 50:887-895. [PMID: 38265442 PMCID: PMC11249774 DOI: 10.1007/s00068-024-02448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE The growing incidence of implant-associated infections (IAIs) caused by biofilm-forming Staphylococcus aureus in combination with an increasing resistance to antibiotics requires new therapeutic strategies. Lysostaphin has been shown to eliminate this biofilm. Own studies confirm the effectiveness in a murine model. The current study characterizes the effects of lysostaphin-coated plates in an IAI minipig model. METHODS The femur of 30 minipigs was stabilized with a five-hole plate, a bone defect was created, and in 20 cases methicillin-resistant Staphylococcus aureus was applied. Ten animals served as control group. After 14 days, local debridement, lavage, and plate exchange (seven-hole plate) were performed. Ten of the infected minipigs received an uncoated plate and 10 a lysostaphin-coated plate. On day 84, the minipigs were again lavaged, followed by euthanasia. Bacterial load was quantified by colony-forming units (CFU). Immunological response was determined by neutrophils, as well as interleukins. Fracture healing was assessed radiologically. RESULTS CFU showed significant difference between infected minipigs with an uncoated plate and minipigs with a lysostaphin-coated plate (p = 0.0411). The infection-related excessive callus formation and calcification was significantly greater in the infected animals with an uncoated plate than in animals with a lysostaphin-coated plate (p = 0.0164/p = 0.0033). The analysis of polymorphonuclear neutrophils and interleukins did not reveal any pioneering findings. CONCLUSION This study confirms the minipig model for examining IAI. Furthermore, coating of plates using lysostaphin could be a promising tool in the therapeutic strategies of IAI. Future studies should focus on coating technology of implants and on translation into a clinical model.
Collapse
Affiliation(s)
- Carina Jaekel
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Ceylan D Windolf
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Dan Bieler
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Trauma Surgery and Orthopedics, Reconstructive Surgery, Hand Surgery and Burn Medicine, German Armed Forces Central Hospital Koblenz, Koblenz, Germany
| | - Lisa Oezel
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lars F Seiler
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Felix N Lakomek
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christoph Beyersdorf
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jann Mertens
- Department of Trauma Surgery, Orthopaedics and Hand Surgery, Städtisches Klinikum Solingen, Solingen, Germany
| | - Andrea Steuwe
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joachim Windolf
- Department of Orthopaedics and Trauma Surgery, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jan P Grassmann
- Department of Trauma, Hand and Reconstructive Surgery, Klinikum Osnabrück GmbH, Osnabrück, Germany
| |
Collapse
|
3
|
Li B, Thebault P, Labat B, Ladam G, Alt V, Rupp M, Brochausen C, Jantsch J, Ip M, Zhang N, Cheung WH, Leung SYS, Wong RMY. Implants coating strategies for antibacterial treatment in fracture and defect models: A systematic review of animal studies. J Orthop Translat 2024; 45:24-35. [PMID: 38495742 PMCID: PMC10943307 DOI: 10.1016/j.jot.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 03/19/2024] Open
Abstract
Objective Fracture-related infection (FRI) remains a major concern in orthopaedic trauma. Functionalizing implants with antibacterial coatings are a promising strategy in mitigating FRI. Numerous implant coatings have been reported but the preventive and therapeutic effects vary. This systematic review aimed to provide a comprehensive overview of current implant coating strategies to prevent and treat FRI in animal fracture and bone defect models. Methods A literature search was performed in three databases: PubMed, Web of Science and Embase, with predetermined keywords and criteria up to 28 February 2023. Preclinical studies on implant coatings in animal fracture or defect models that assessed antibacterial and bone healing effects were included. Results A total of 14 studies were included in this systematic review, seven of which used fracture models and seven used defect models. Passive coatings with bacteria adhesion resistance were investigated in two studies. Active coatings with bactericidal effects were investigated in 12 studies, four of which used metal ions including Ag+ and Cu2+; five studies used antibiotics including chlorhexidine, tigecycline, vancomycin, and gentamicin sulfate; and the other three studies used natural antibacterial materials including chitosan, antimicrobial peptides, and lysostaphin. Overall, these implant coatings exhibited promising efficacy in antibacterial effects and bone formation. Conclusion Antibacterial coating strategies reduced bacterial infections in animal models and favored bone healing in vivo. Future studies of implant coatings should focus on optimal biocompatibility, antibacterial effects against multi-drug resistant bacteria and polymicrobial infections, and osseointegration and osteogenesis promotion especially in osteoporotic bone by constructing multi-functional coatings for FRI therapy. The translational potential of this paper The clinical treatment of FRI is complex and challenging. This review summarizes novel orthopaedic implant coating strategies applied to FRI in preclinical studies, and offers a perspective on the future development of orthopaedic implant coatings, which can potentially contribute to alternative strategies in clinical practice.
Collapse
Affiliation(s)
- Baoqi Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pascal Thebault
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Béatrice Labat
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Guy Ladam
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | | | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Kudinova A, Grishin A, Grunina T, Poponova M, Bulygina I, Gromova M, Choudhary R, Senatov F, Karyagina A. Antibacterial and Anti-Biofilm Properties of Diopside Powder Loaded with Lysostaphin. Pathogens 2023; 12:pathogens12020177. [PMID: 36839449 PMCID: PMC9959908 DOI: 10.3390/pathogens12020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Diopside-based ceramic is a perspective biocompatible material with numerous potential applications in the field of bone prosthetics. Implantable devices and materials are often prone to colonization and biofilm formation by pathogens such as Staphylococcus aureus, which in the case of bone grafting leads to osteomyelitis, an infectious bone and bone marrow injury. To lower the risk of bacterial colonization, implanted materials can be impregnated with antimicrobials. In this work, we loaded the antibacterial enzyme lysostaphin on diopside powder and studied the antibacterial and antibiofilm properties of such material to probe the utility of this approach for diopside-based prosthetic materials. METHODS Diopside powder was synthesized by the solid-state method, lysostaphin was loaded on diopside by adsorption, the release of lysostaphin from diopside was monitored by ELISA, and antibacterial and anti-biofilm activity was assessed by standard microbiological procedures. RESULTS AND CONCLUSIONS Lysostaphin released from diopside powder showed high antibacterial activity against planktonic bacteria and effectively destroyed 24-h staphylococcal biofilms. Diopside-based materials possess a potential for the development of antibacterial bone grafting materials.
Collapse
Affiliation(s)
- Alina Kudinova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Alexander Grishin
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
- Correspondence: (A.G.); (A.K.)
| | - Tatiana Grunina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia
| | - Maria Poponova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Inna Bulygina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Maria Gromova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
| | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Kipsala Street 6A, LV-1048 Riga, Latvia
| | - Fedor Senatov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Anna Karyagina
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098 Moscow, Russia
- Center for Biomedical Engineering, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: (A.G.); (A.K.)
| |
Collapse
|
5
|
Dao A, O'Donohue AK, Vasiljevski E, Bobyn J, Little D, Schindeler A. Murine models of orthopedic infection featuring Staphylococcus aureus biofilm. J Bone Jt Infect 2023; 8:81-89. [PMID: 37123502 PMCID: PMC10134754 DOI: 10.5194/jbji-8-81-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/04/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Osteomyelitis remains a major clinical challenge. Many published rodent fracture infection models are costly compared with murine models for rapid screening and proof-of-concept studies. We aimed to develop a dependable and cost-effective murine bone infection model that mimics bacterial bone infections associated with biofilm and metal implants. Methods: Tibial drilled hole (TDH) and needle insertion surgery (NIS) infection models were compared in C57BL/6 mice (female, N = 150 ). Metal pins were inserted selectively into the medullary canal adjacent to the defect sites on the metaphysis. Free Staphylococcus aureus (ATCC 12600) or biofilm suspension (ATCC 25923) was locally inoculated. Animals were monitored for physiological or radiographic evidence of infection without prophylactic antibiotics for up to 14 d. At the end point, bone swabs, soft-tissue biopsies, and metal pins were taken for cultures. X-ray and micro-CT scans were performed along with histology analysis. Results: TDH and NIS both achieved a 100 % infection rate in tibiae when a metal implant was present with injection of free bacteria. In the absence of an implant, inoculation with a bacterial biofilm still induced a 40 %-50 % infection rate. In contrast, freely suspended bacteria and no implant consistently showed lower or negligible infection rates. Micro-CT analysis confirmed that biofilm infection caused local bone loss even without a metal implant as a nidus. Although a metal surface permissive for biofilm formation is impermeable to create progressive bone infections in animal models, the metal implant can be dismissed if a bacterial biofilm is used. Conclusion: These models have a high potential utility for modeling surgery-related osteomyelitis, with NIS being simpler to perform than TDH.
Collapse
Affiliation(s)
- Aiken Dao
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
- Bioengineering & Molecular Medicine Laboratory, the Westmead Institute
for Medical Research, Westmead, NSW, Australia
| | - Alexandra K. O'Donohue
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
- Bioengineering & Molecular Medicine Laboratory, the Westmead Institute
for Medical Research, Westmead, NSW, Australia
| | - Emily R. Vasiljevski
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
| | - Justin D. Bobyn
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
| | - David G. Little
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
- Bioengineering & Molecular Medicine Laboratory, the Westmead Institute
for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
6
|
Zha J, Li J, Su Z, Akimbekov N, Wu X. Lysostaphin: Engineering and Potentiation toward Better Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11441-11457. [PMID: 36082619 DOI: 10.1021/acs.jafc.2c03459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysostaphin is a potent bacteriolytic enzyme with endopeptidase activity against the common pathogen Staphylococcus aureus. By digesting the pentaglycine crossbridge in the cell wall peptidoglycan of S. aureus including the methicillin-resistant strains, lysostaphin initiates rapid lysis of planktonic and sessile cells (biofilms) and has great potential for use in agriculture, food industries, and pharmaceutical industries. In the past few decades, there have been tremendous efforts in potentiating lysostaphin for better applications in these fields, including engineering of the enzyme for higher potency and lower immunogenicity with longer-lasting effects, formulation and immobilization of the enzyme for higher stability and better durability, and recombinant expression for low-cost industrial production and in situ biocontrol. These achievements are extensively reviewed in this article focusing on applications in disease control, food preservation, surface decontamination, and pathogen detection. In addition, some basic properties of lysostaphin that have been controversial and only elucidated recently are summarized, including the substrate-binding properties, the number of zinc-binding sites, the substrate range, and the cleavage site in the pentaglycine crossbridge. Resistance to lysostaphin is also highlighted with a focus on various mechanisms. This article is concluded with a discussion on the limitations and future perspectives for the actual applications of lysostaphin.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingyuan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nuraly Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Sandhu AK, Yang Y, Li WW. In Vivo Antibacterial Efficacy of Antimicrobial Peptides Modified Metallic Implants─Systematic Review and Meta-Analysis. ACS Biomater Sci Eng 2022; 8:1749-1762. [PMID: 35412810 PMCID: PMC9171719 DOI: 10.1021/acsbiomaterials.1c01307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biomaterial-associated infection is difficult to detect and brings consequences that can lead to morbidity and mortality. Bacteria can adhere to the implant surface, grow, and form biofilms. Antimicrobial peptides (AMPs) can target and kill bacterial cells using a plethora of mechanisms of action such as rupturing the cell membrane by creating pores via depolarization with their cationic and amphipathic nature. AMPs can thus be coated onto metal implants to prevent microbial cell adhesion and growth. The aim of this systematic review was to determine the potential clinical applications of AMP-modified implants through in vivo induced infection models. Following a database search recently up to 22 January 2022 using PubMed, Web of Science and Cochrane databases, and abstract/title screening using the PRISMA framework, 24 studies remained, of which 18 were used in the random effects meta-analysis of standardized mean differences (SMD) to get effect sizes. Quality of studies was assessed using SYRCLE's risk of bias tool. The data from these 18 studies showed that AMPs carry antibacterial effects, and the meta-analysis confirmed the favorited antibacterial efficacy of AMP-coated groups over controls (SMD -1.74, 95%CI [-2.26, -1.26], p < 0.00001). Subgroup analysis showed that the differences in effect size are random, and high heterogeneity values suggested the same. HHC36 and vancomycin were the most common AMPs for surface modification and Staphylococcus aureus, the most tested bacterium in vivo. Covalent binding with polymer brush coating and physical layer-by-layer incorporation of AMPs were recognized as key methods of incorporation to achieve desired densities. The use of fusion peptides seemed admirable to incorporate additional benefits such as osteointegration and wound healing and possibly targeting more microbe strains. Further investigation into the incorporation methods, AMP activity against different bacterial strains, and the number of AMPs used for metal implant surface modification is needed to progress toward potential clinical application.
Collapse
Affiliation(s)
- Amrit Kaur Sandhu
- School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, United Kingdom
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, United Kingdom
| | - Wen-Wu Li
- School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, United Kingdom
| |
Collapse
|
8
|
Plate-associated localized osteitis in mini-pig by biofilm-forming Methicillin-resistant Staphylococcus aureus (MRSA): establishment of a novel experimental model. Eur J Trauma Emerg Surg 2022; 48:3279-3285. [PMID: 35201371 PMCID: PMC9360133 DOI: 10.1007/s00068-022-01894-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The increasing number of implant-associated infections during trauma and orthopedic surgery caused by biofilm-forming Staphylococcus aureus in combination with an increasing resistance of conventional antibiotics requires new therapeutic strategies. One possibility could be testing for different therapeutic strategies with differently coated plates. Therefore, a clinically realistic model is required. The pig offers the best comparability to the human situation, thus it was chosen for this model. The present study characterizes a novel model of a standardized low-grade acute osteitis with bone defect in the femur in mini-pigs, which is stabilized by a titanium locking plate to enable further studies with various coatings. METHODS A bone defect was performed on the femur of 7 Aachen mini-pigs and infected with Methicillin-resistant S. aureus (MRSA ATCC 33592). The defect zone was stabilized with a titanium plate. After 14 days, a plate change, wound debridement and lavage were performed. Finally, after 42 days, the animals were lavaged and debrided again, followed by euthanasia. The fracture healing was evaluated radiologically and histologically. RESULTS A local osteitis with radiologically visible lysis of the bone could be established. The unchanged high Colony-forming Units (CFU) in lavage, the significant differences in Interleukin (IL)-6 in blood compared to lavage and the lack of increase in Alkaline Phosphates (ALP) in serum over the entire observation period show the constant local infection. CONCLUSION The study shows the successful induction of local osteitis with lysis of the bone and the lack of enzymatic activity to mineralize the bone. Therefore, this standardized mini-pig model can be used in further clinical studies, to investigate various coated implants, bone healing, biofilm formation and immune response in implant-associated osteitis.
Collapse
|
9
|
Rai A, Ferrão R, Palma P, Patricio T, Parreira P, Anes E, Tonda-Turo C, Martins C, Alves N, Ferreira L. Antimicrobial peptide-based materials: opportunities and challenges. J Mater Chem B 2022; 10:2384-2429. [DOI: 10.1039/d1tb02617h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multifunctional properties of antimicrobial peptides (AMPs) make them attractive candidates for the treatment of various diseases. AMPs are considered alternatives to antibiotics due to the rising number of multidrug-resistant...
Collapse
|
10
|
Kalelkar PP, Riddick M, García AJ. Biomaterial-based delivery of antimicrobial therapies for the treatment of bacterial infections. NATURE REVIEWS. MATERIALS 2022; 7:39-54. [PMID: 35330939 PMCID: PMC8938918 DOI: 10.1038/s41578-021-00362-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED The rise in antibiotic-resistant bacteria, including strains that are resistant to last-resort antibiotics, and the limited ability of antibiotics to eradicate biofilms, have necessitated the development of alternative antibacterial therapeutics. Antibacterial biomaterials, such as polycationic polymers, and biomaterial-assisted delivery of non-antibiotic therapeutics, such as bacteriophages, antimicrobial peptides and antimicrobial enzymes, have improved our ability to treat antibiotic-resistant and recurring infections. Biomaterials not only allow targeted delivery of multiple agents, but also sustained release at the infection site, thereby reducing potential systemic adverse effects. In this Review, we discuss biomaterial-based non-antibiotic antibacterial therapies for the treatment of community- and hospital-acquired infectious diseases, with a focus in in vivo results. We highlight the translational potential of different biomaterial-based strategies, and provide a perspective on the challenges associated with their clinical translation. Finally, we discuss the future scope of biomaterial-assisted antibacterial therapies. WEB SUMMARY The development of antibiotic tolerance and resistance has demanded the search for alternative antibacterial therapies. This Review discusses antibacterial biomaterials and biomaterial-assisted delivery of non-antibiotic therapeutics for the treatment of bacterial infectious diseases, with a focus on clinical translation.
Collapse
Affiliation(s)
- Pranav P. Kalelkar
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Milan Riddick
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- author to whom correspondence should be addressed:
| |
Collapse
|
11
|
An Enzybiotic Regimen for the Treatment of Methicillin-Resistant Staphylococcus aureus Orthopaedic Device-Related Infection. Antibiotics (Basel) 2021; 10:antibiotics10101186. [PMID: 34680767 PMCID: PMC8533017 DOI: 10.3390/antibiotics10101186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Orthopaedic device-related infection (ODRI) presents a significant challenge to the field of orthopaedic and trauma surgery. Despite extensive treatment involving surgical debridement and prolonged antibiotic therapy, outcomes remain poor. This is largely due to the unique abilities of Staphylococcus aureus, the most common causative agent of ODRI, to establish and protect itself within the host by forming biofilms on implanted devices and staphylococcal abscess communities (SACs). There is a need for novel antimicrobials that can readily target such features. Enzybiotics are a class of antimicrobial enzymes derived from bacteria and bacteriophages, which function by enzymatically degrading bacterial polymers essential to bacterial survival or biofilm formation. Here, we apply an enzybiotic-based combination regimen to a set of in vitro models as well as in a murine ODRI model to evaluate their usefulness in eradicating established S. aureus infection, compared to classical antibiotics. We show that two chimeric endolysins previously selected for their functional efficacy in human serum in combination with a polysaccharide depolymerase reduce bacterial CFU numbers 10,000-fold in a peg model and in an implant model of biofilm. The enzyme combination also completely eradicates S. aureus in a SAC in vitro model where classical antibiotics are ineffective. In an in vivo ODRI model in mice, the antibiofilm effects of this enzyme regimen are further enhanced when combined with a classical gentamicin/vancomycin treatment. In a mouse model of methicillin-resistant S. aureus (MRSA) ODRI following a fracture repair, a combined local enzybiotic/antibiotic treatment regimen showed a significant CFU reduction in the device and the surrounding soft tissue, as well as significant prevention of weight loss. These outcomes were superior to treatment with antibiotics alone. Overall, this study demonstrates that the addition of enzybiotics, which are distinguished by their extremely rapid killing efficacy and antibiofilm activities, can enhance the treatment of severe MRSA ODRI.
Collapse
|
12
|
Pusparajah P, Letchumanan V, Law JWF, Ab Mutalib NS, Ong YS, Goh BH, Tan LTH, Lee LH. Streptomyces sp.-A Treasure Trove of Weapons to Combat Methicillin-Resistant Staphylococcus aureus Biofilm Associated with Biomedical Devices. Int J Mol Sci 2021; 22:ijms22179360. [PMID: 34502269 PMCID: PMC8431294 DOI: 10.3390/ijms22179360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms formed by methicillin-resistant S. aureus (MRSA) are among the most frequent causes of biomedical device-related infection, which are difficult to treat and are often persistent and recurrent. Thus, new and effective antibiofilm agents are urgently needed. In this article, we review the most relevant literature of the recent years reporting on promising anti-MRSA biofilm agents derived from the genus Streptomyces bacteria, and discuss the potential contribution of these newly reported antibiofilm compounds to the current strategies in preventing biofilm formation and eradicating pre-existing biofilms of the clinically important pathogen MRSA. Many efforts are evidenced to address biofilm-related infections, and some novel strategies have been developed and demonstrated encouraging results in preclinical studies. Nevertheless, more in vivo studies with appropriate biofilm models and well-designed multicenter clinical trials are needed to assess the prospects of these strategies.
Collapse
Affiliation(s)
- Priyia Pusparajah
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbes and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (P.P.); (V.L.); (J.W.-F.L.); (N.-S.A.M.)
- Correspondence: (B.-H.G.); (L.T.-H.T.); (L.-H.L.)
| |
Collapse
|
13
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
14
|
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB. Staphylococcal Biofilms: Challenges and Novel Therapeutic Perspectives. Antibiotics (Basel) 2021; 10:131. [PMID: 33573022 PMCID: PMC7911828 DOI: 10.3390/antibiotics10020131] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococci, like Staphylococcus aureus and S. epidermidis, are common colonizers of the human microbiota. While being harmless in many cases, many virulence factors result in them being opportunistic pathogens and one of the major causes of hospital-acquired infections worldwide. One of these virulence factors is the ability to form biofilms-three-dimensional communities of microorganisms embedded in an extracellular polymeric matrix (EPS). The EPS is composed of polysaccharides, proteins and extracellular DNA, and is finely regulated in response to environmental conditions. This structured environment protects the embedded bacteria from the human immune system and decreases their susceptibility to antimicrobials, making infections caused by staphylococci particularly difficult to treat. With the rise of antibiotic-resistant staphylococci, together with difficulty in removing biofilms, there is a great need for new treatment strategies. The purpose of this review is to provide an overview of our current knowledge of the stages of biofilm development and what difficulties may arise when trying to eradicate staphylococcal biofilms. Furthermore, we look into promising targets and therapeutic methods, including bacteriocins and phage-derived antibiofilm approaches.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Lucía Fernández
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Pilar García
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (L.F.); (P.G.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, 1432 Ås, Norway; (C.K.); (D.M.A.); (M.T.M.)
| |
Collapse
|
15
|
Jayakumar J, Kumar VA, Biswas L, Biswas R. Therapeutic applications of lysostaphin against Staphylococcus aureus. J Appl Microbiol 2021; 131:1072-1082. [PMID: 33382154 DOI: 10.1111/jam.14985] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus, an opportunistic pathogen, causes diverse community and nosocomial-acquired human infections, including folliculitis, impetigo, sepsis, septic arthritis, endocarditis, osteomyelitis, implant-associated biofilm infections and contagious mastitis in cattle. In recent days, both methicillin-sensitive and methicillin-resistant S. aureus infections have increased. Highly effective anti-staphylococcal agents are urgently required. Lysostaphin is a 27 kDa zinc metallo antimicrobial lytic enzyme that is produced by Staphylococcus simulans biovar staphylolyticus and was first discovered in the 1960s. Lysostaphin is highly active against S. aureus strains irrespective of their drug-resistant patterns with a minimum inhibitory concentration of ranges between 0·001 and 0·064 μg ml-1 . Lysostaphin has activity against both dividing and non-dividing S. aureus cells; and can seep through the extracellular matrix to kill the biofilm embedded S. aureus. In spite of having excellent anti-staphylococcal activity, its clinical application is hindered because of its immunogenicity and reduced bio-availability. Extensive research with lysostaphin lead to the development of several engineered lysostaphin derivatives with reduced immunogenicity and increased serum half-life. Therapeutic efficacy of both native and engineered lysostaphin derivatives was studied by several research groups. This review provides an overview of the therapeutic applications of native and engineered lysostaphin derivatives developed to eradicate S. aureus infections.
Collapse
Affiliation(s)
- J Jayakumar
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - V A Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - L Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
16
|
Cheleuitte-Nieves CE, Diaz LL, Pardos de la Gandara M, Gonzalez A, Freiwald WA, de Lencastre HM, Tomasz A, Euler CW. Evaluation of Topical Lysostaphin as a Novel Treatment for Instrumented Rhesus Macaques ( Macaca mulatta) Infected with Methicillin-Resistant Staphylococcus aureus. Comp Med 2020; 70:335-347. [PMID: 32792040 PMCID: PMC7574217 DOI: 10.30802/aalas-cm-19-000102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Lytic enzymes are novel antimicrobial agents that degrade bacterial cell walls, resulting in cell rupture and death. We tested one enzyme, the bacteriocin lysostaphin, for treatment of nonhuman primates (Macaca mulatta) with persistent methicillinresistant Staphylococcus aureus (MRSA) infection of their cranial implant margins. The goal of this study was to determine if topical lysostaphin, either alone or as an adjunct therapy, could eliminate MRSA. Lysostaphin had in vitro lytic activity against all 4 previously identified NHP MRSA clones, as well as against 12 MRSA isolates of the same clonal type (MLST ST3862 and spa type t4167) before and after treatment, with no resistance discovered. In an in vivo pilot study, a 2-d application of lysostaphin alone reduced MRSA in the implant margins by 3-logs during treatment of one animal; however, MRSA titers had returned to control levels by 1 wk after treatment. In the main study, all animals (n = 4) received 10 d of systemic antibiotic treatment and both the animals and their environment (cages, equipment, room) underwent 5-d of decontamination. The experimental animals (n = 2) received 5 doses of topical lysostaphin (15 mg, every other day) applied onto their implant margins. Daily cultures showed that MRSA counts decreased significantly (≤ 25 colony-forming units/mL; P < 0.05). However, sampling of the cranial implant margin 7 d after last treatment showed that MRSA counts had returned to control levels. Our study suggests that lysostaphin, coupled with other treatment modalities, can decrease MRSA infection short-term but do not completely eradicate MRSA in the long-term. This reappearance of MRSA may be due to cross-contamination or reinfection from other infected areas, an inability of the treatment to reach all colonized areas, or insufficient dosing or length of treatment. Topical lysostaphin may be more useful clinically for superficial nonimplant associated wounds in which the lytic enzyme has better access to the infected tissue.
Collapse
Affiliation(s)
- Christopher E Cheleuitte-Nieves
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York; Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and Hospital for Special Surgery, New York, New York;,
| | - Leslie L Diaz
- Comparative Bioscience Center, The Rockefeller University, New York, New York
| | - Maria Pardos de la Gandara
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, New York; Present address: National Reference Centre for Escherichia coli, Shigella and Salmonella, Enteric Bacterial Pathogens Unit, Institut Pasteur, Paris, France
| | - Alejandra Gonzalez
- Laboratory of Neural Systems, The Rockefeller University, New York, New York
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, New York
| | - Hermínia M de Lencastre
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, New York; Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Alexander Tomasz
- Laboratory of Microbiology & Infectious Diseases, The Rockefeller University, New York, New York
| | - Chad W Euler
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, New York; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York; Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York
| |
Collapse
|
17
|
Cobb LH, McCabe EM, Priddy LB. Therapeutics and delivery vehicles for local treatment of osteomyelitis. J Orthop Res 2020; 38:2091-2103. [PMID: 32285973 PMCID: PMC8117475 DOI: 10.1002/jor.24689] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, or the infection of the bone, presents a major complication in orthopedics and may lead to prolonged hospital visits, implant failure, and in more extreme cases, amputation of affected limbs. Typical treatment for this disease involves surgical debridement followed by long-term, systemic antibiotic administration, which contributes to the development of antibiotic-resistant bacteria and has limited ability to eradicate challenging biofilm-forming pathogens including Staphylococcus aureus-the most common cause of osteomyelitis. Local delivery of high doses of antibiotics via traditional bone cement can reduce systemic side effects of an antibiotic. Nonetheless, growing concerns over burst release (then subtherapeutic dose) of antibiotics, along with microbial colonization of the nondegradable cement biomaterial, further exacerbate antibiotic resistance and highlight the need to engineer alternative antimicrobial therapeutics and local delivery vehicles with increased efficacy against, in particular, biofilm-forming, antibiotic-resistant bacteria. Furthermore, limited guidance exists regarding both standardized formulation protocols and validated assays to predict efficacy of a therapeutic against multiple strains of bacteria. Ideally, antimicrobial strategies would be highly specific while exhibiting a broad spectrum of bactericidal activity. With a focus on S. aureus infection, this review addresses the efficacy of novel therapeutics and local delivery vehicles, as alternatives to the traditional antibiotic regimens. The aim of this review is to discuss these components with regards to long bone osteomyelitis and to encourage positive directions for future research efforts.
Collapse
Affiliation(s)
- Leah H. Cobb
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Emily M. McCabe
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, USA,corresponding author: Contact: , (662) 325-5988, Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, USA 39762
| |
Collapse
|
18
|
De Maesschalck V, Gutiérrez D, Paeshuyse J, Lavigne R, Briers Y. Advanced engineering of third-generation lysins and formulation strategies for clinical applications. Crit Rev Microbiol 2020; 46:548-564. [PMID: 32886565 DOI: 10.1080/1040841x.2020.1809346] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the possible solutions for the current antibiotic resistance crisis may be found in (often bacteriophage-derived) peptidoglycan hydrolases. The first clinical trials of these natural enzymes, coined here as first-generation lysins, are currently ongoing. Moving beyond natural endolysins with protein engineering established the second generation of lysins. In second-generation lysins, the focus lies on improving antibacterial and biochemical properties such as antimicrobial activity and stability, as well as expanding their activities towards Gram-negative pathogens. However, solutions to particular key challenges regarding clinical applications are only beginning to emerge in the third generation of lysins, in which protein and biochemical engineering efforts focus on improving properties relevant under clinical conditions. In addition, increasingly advanced formulation strategies are developed to increase the bioavailability, antibacterial activity, and half-life, and to reduce pro-inflammatory responses. This review focuses on third-generation and advanced formulation strategies that are developed to treat infections, ranging from topical to systemic applications. Together, these efforts may fully unlock the potential of lysin therapy and will propel it as a true antibiotic alternative or supplement.
Collapse
Affiliation(s)
- Vincent De Maesschalck
- Department of Biosystems, KU Leuven, Leuven, Belgium.,Department of Biotechnology, Ghent University, Gent, Belgium
| | - Diana Gutiérrez
- Department of Biotechnology, Ghent University, Gent, Belgium
| | - Jan Paeshuyse
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Yves Briers
- Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
19
|
Tsikopoulos K, Sidiropoulos K, Kitridis D, Hassan A, Drago L, Mavrogenis A, McBride D. Is coating of titanium implants effective at preventing Staphylococcus aureus infections? A meta-analysis of animal model studies. INTERNATIONAL ORTHOPAEDICS 2020; 45:821-835. [PMID: 32761434 DOI: 10.1007/s00264-020-04660-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/11/2020] [Indexed: 12/25/2022]
Abstract
AIM OF THE STUDY To assess the effects of the available coating methods against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) biofilm development on titanium implants. METHODS We searched the MEDLINE, Embase, and CENTRAL databases until May 18, 2019, for studies that used animal models of infections to evaluate various titanium implant coating methods to prevent S. aureus infection. Twenty-seven studies were eligible for inclusion in qualitative synthesis. Of those, twenty-three were considered in pair-wise meta-analysis. In addition, subgroup analysis of implant protection strategies relative to uncoated controls was performed, and any adverse events stemming from the coating applications were reported. Quality assessment was performed using SYRCLE's risk of bias tool for animal studies. RESULTS Meta-analysis showed that active coating with antibiotics was favoured over uncoated controls (standardised mean differences [SMD] for MRSA and MSSA were - 2.71 [95% CI, - 4.24 to - 1.18], p = 0.0005, and - 2.5 [- 3.79 to - 1.22], p = 0.0001, respectively). Likewise, large effect sizes were demonstrated when a combination of active and conventional non-degradable passive coatings was compared with controls (SMDs for MRSA and MSSA were - 0.62 [95% CI, - 1.15 to - 0.08], p = 0.02, and - 1.93 [95% CI, - 2.87 to - 0.98], p < 0.001, respectively). DISCUSSION/CONCLUSION As a standalone prevention method, active titanium coating with antibiotics yielded promising results against both MSSA and MRSA. Combinations between active and non-degradable passive coatings, potentially allowing for sustained antimicrobial substance release, provided consistent hardware infection protection. Thus, we recommend that future research efforts focus on combined coating modalities against S. aureus biofilm infections in the presence of titanium implants. SYSTEMATIC REVIEW REGISTRATION CRD42019123462.
Collapse
Affiliation(s)
| | | | - Dimitrios Kitridis
- 1st Orthopaedic Department of Aristotle University, G. Papanikolaou General Hospital, Exohi, Thessaloniki, Greece
| | - Anas Hassan
- Orthopaedic Department, Lister Hospital, Stevenage, East and North Hertfordshire, UK
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology, Department of Biochemical Sciences for Health, University of Milan, Milan, Italy
| | - Andreas Mavrogenis
- Orthopaedic Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Donald McBride
- Orthopaedic Department, University Hospitals of North Midlands, Stoke-on-Trent, UK
| |
Collapse
|
20
|
Sosa BR, Niu Y, Turajane K, Staats K, Suhardi V, Carli A, Fischetti V, Bostrom M, Yang X. 2020 John Charnley Award: The antimicrobial potential of bacteriophage-derived lysin in a murine debridement, antibiotics, and implant retention model of prosthetic joint infection. Bone Joint J 2020; 102-B:3-10. [DOI: 10.1302/0301-620x.102b7.bjj-2019-1590.r1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aims Current treatments of prosthetic joint infection (PJI) are minimally effective against Staphylococcus aureus biofilm. A murine PJI model of debridement, antibiotics, and implant retention (DAIR) was used to test the hypothesis that PlySs2, a bacteriophage-derived lysin, can target S. aureus biofilm and address the unique challenges presented in this periprosthetic environment. Methods The ability of PlySs2 and vancomycin to kill biofilm and colony-forming units (CFUs) on orthopaedic implants were compared using in vitro models. An in vivo murine PJI model of DAIR was used to assess the efficacy of a combination of PlySs2 and vancomycin on periprosthetic bacterial load. Results PlySs2 treatment reduced 99% more CFUs and 75% more biofilm compared with vancomycin in vitro. A combination of PlySs2 and vancomycin in vivo reduced the number of CFUs on the surface of implants by 92% and in the periprosthetic tissue by 88%. Conclusion PlySs2 lysin was able to reduce biofilm, target planktonic bacteria, and work synergistically with vancomycin in our in vitro models. A combination of PlySs2 and vancomycin also reduced bacterial load in periprosthetic tissue and on the surface of implants in a murine model of DAIR treatment for established PJI. Cite this article: Bone Joint J 2020;102-B(7 Supple B):3–10.
Collapse
Affiliation(s)
| | - YingZhen Niu
- Hospital for Special Surgery, New York, New York, USA
- Hebei Medical University Third Affiliated Hospital, Department of Joint Surgery, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, China
| | | | - Kevin Staats
- Hospital for Special Surgery, Department of Orthopedics and Trauma Surgery, New York, New York, USA
- Medical University of Vienna, Department of Orthopedics and Trauma Surgery, Vienna, Austria
| | | | - Alberto Carli
- Hospital for Special Surgery, New York, New York, USA
| | | | | | - Xu Yang
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
21
|
Helbig L, Guehring T, Titze N, Nurjadi D, Sonntag R, Armbruster J, Wildemann B, Schmidmaier G, Gruetzner AP, Freischmidt H. A new sequential animal model for infection-related non-unions with segmental bone defect. BMC Musculoskelet Disord 2020; 21:329. [PMID: 32460740 PMCID: PMC7254709 DOI: 10.1186/s12891-020-03355-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The treatment of fracture-related infections (FRI) is still a challenge for orthopedic surgeons. The prevalence of FRI is particularly high in open fractures with extensive soft-tissue damage. This study aimed to develop a new two-step animal model for non-unions with segmental bone defects, which could be used to evaluate new innovative bone substitutes to improve the therapeutic options in humans with FRI and bone defects. METHODS After randomization to infected or non-infected groups, 30 Sprague-Dawley rats underwent a transverse osteotomy of the mid-shaft femur with a 5 mm defect. Additionally, the periosteum at the fracture zone was cauterized at both sides. After intramedullary inoculation with 103 CFU Staphylococcus aureus (infected group) or PBS (non-infected group), a fracture stabilization was done by intramedullary K-wires. After 5 weeks, the bone healing process was evaluated, and revision surgery was performed in order to obtain increased bone healing. The initial K-wires were removed, and debridement of the osteotomy-gap was done followed by a more stable re-osteosynthesis with an angle-stable plate. After further 8 weeks all rats were euthanized and the bone consolidation was tested biomechanically and the callus formation quantitatively by micro-CT analysis. RESULTS We developed and presented a new two-stage non-union animal model through a targeted S. aureus infection. After 5 weeks, all animals showed a non-union irrespective of assignment to the infected and non-infected group. Lane and Sandhu score showed a higher callus formation in the infected group. In all infected animals, the inoculated S. aureus strain was detected in the revision surgery. The second surgery did not improve bone healing, as shown by the Lane Sandhu score and in the μ-CT analysis. Similarly, biomechanical testing showed in both groups a significantly lower maximum torque as compared to the contralateral side (p < 0.0001). CONCLUSIONS We were able to successfully develop a new two-stage non-union animal model, which reflects a genuine clinical situation of an infection-related non-union model with segmental bone defects. This model could be used to evaluate various therapeutic anti-infectious and osteoinductive strategies in FRIs.
Collapse
Affiliation(s)
- Lars Helbig
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Thorsten Guehring
- Arcus Sportklinik Pforzheim, Rastatterstr. 17-19, 75179, Pforzheim, Germany
| | - Nadine Titze
- Unfallklinik Ludwigshafen, Klinik für Unfallchirurgie und Orthopädie, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Robert Sonntag
- Laboratory of Biomechanics and Implant Research, Clinic for Orthopedics and Trauma Surgery, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Jonas Armbruster
- Unfallklinik Ludwigshafen, Klinik für Unfallchirurgie und Orthopädie, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Britt Wildemann
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Universitätsklinikum Jena, 07747, Jena, Germany.,Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
| | - Gerhard Schmidmaier
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Alfred Paul Gruetzner
- Unfallklinik Ludwigshafen, Klinik für Unfallchirurgie und Orthopädie, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany
| | - Holger Freischmidt
- Unfallklinik Ludwigshafen, Klinik für Unfallchirurgie und Orthopädie, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany.
| |
Collapse
|
22
|
Wong RM, Li TK, Li J, Ho WT, Chow SKH, Leung SS, Cheung WH, Ip M. A systematic review on current osteosynthesis-associated infection animal fracture models. J Orthop Translat 2020; 23:8-20. [PMID: 32440511 PMCID: PMC7231979 DOI: 10.1016/j.jot.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Osteosynthesis-associated infection is a challenging complication post fracture fixation, burdening the patients and the orthopaedic surgeons alike. A clinically relevant animal model is critical in devising new therapeutic strategies. Our aim was to perform a systematic review to evaluate existing preclinical models and identify their applications in aspects of animal selection, bacterial induction, fracture fixation and complications. Methods A systematic literature research was conducted in PubMed and Embase up to February 2020. A total of 31 studies were included. Information on the animal, bacterial induction, fracture fixation, healing result and complications were extracted. Results Animals selected included murine (23), rabbit (6), ewe (1) and goat (1). Larger animals had enabled the use of human-sized implant, however small animals were more economical and easier in handling. Staphylococcus aureus (S. aureus) was the most frequently chosen bacteria for induction. Bacterial inoculation dose ranged from 102-8 CFU. Consistent and replicable infections were observed from 104 CFU in general. Methods of inoculation included injections of bacterial suspension (20), placement of foreign objects (8) and pretreatment of implants with established biofilm (3). Intramedullary implants (13), plates and screws (18) were used in most models. Radiological (29) and histological evaluations (24) in osseous healing were performed. Complications such as instability of fracture fixation (7), unexpected surgical death (5), sepsis (1) and persistent lameness (1) were encountered. Conclusion The most common animal model is the S. aureus infected open fracture internally fixated. Replicable infections were mainly from 104 CFU of bacteria. However, with the increase in antibiotic resistance, future directions should explore polymicrobial and antibiotic resistant strains, as these will no doubt play a major role in bone infection. Currently, there is also a lack of osteoporotic bone infection models and the pathophysiology is unexplored, which would be important with our aging population. The translational potential of this article This systematic review provides an updated overview and compares the currently available animal models of osteosynthesis-associated infections. A discussion on future research directions and suggestion of animal model settings were made, which is expected to advance the research in this field.
Collapse
Affiliation(s)
- Ronald M.Y. Wong
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Tsz-kiu Li
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Jie Li
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Wing-Tung Ho
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Simon K.-H. Chow
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | | | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
- Corresponding author. Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Margaret Ip
- Department of Microbiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Wang M, Fan E, Wu Y, Fu Z. Daptomycin-modified magnetic beads integrated with lysostaphin for selective analysis of Staphylococcus. J Pharm Biomed Anal 2019; 175:112785. [PMID: 31352170 DOI: 10.1016/j.jpba.2019.112785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/18/2022]
Abstract
An antibiotic-affinity method was developed for analyzing Staphylococcus on the basis of the strong binding capability of daptomycin towards Gram-positive bacteria cellular membrane, as well as the selective lytic action of lysostaphin towards Staphylococcus. Daptomycin-modified magnetic beads were adopted to enrich Staphylococcus from sample matrix. Afterwards lysostaphin was adopted to lyse Staphylococcus, which can hydrolyze pentaglycine cross-linkers of peptidoglycan composing the cellular wall of Staphylococcus. The concentration of Staphylococcus was quantified by collecting the bioluminescent signal of the released intracellular adenosine triphosphate of the enriched Staphylococcus. Staphylococcus aureus (S. aureus) was analyzed as a model bacterium to study the feasibility of the proof-of-principle work. For bioluminescent analysis of S. aureus with the developed method, the linear range was 5.0 × 102-5.0 × 106 colony forming units mL-1, and the limit of detection was 3.8 × 102 colony forming units mL-1. The analytical procedure consisting of bacterial enrichment, cell lysis and signal collection can be accomplished within 20 min. Some common Gram-positive bacteria and Gram-negative bacteria all indicated very low interference to the analysis of the target bacterium. It has been successfully used to analyze S. aureus in milk as well as physiological saline injection, indicating its application potential for real samples.
Collapse
Affiliation(s)
- Mengyao Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Enci Fan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yue Wu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
24
|
Croes M, van der Wal BCH, Vogely HC. Impact of Bacterial Infections on Osteogenesis: Evidence From In Vivo Studies. J Orthop Res 2019; 37:2067-2076. [PMID: 31329305 PMCID: PMC6771910 DOI: 10.1002/jor.24422] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
The clinical impact of bacterial infections on bone regeneration has been incompletely quantified and documented. As a result, controversy exists about the optimal treatment strategy to maximize healing of a contaminated defect. Animal models are extremely useful in this respect, as they can elucidate how a bacterial burden influences quantitative healing of various types of defects relative to non-infected controls. Moreover, they may demonstrate how antibacterial treatment and/or bone grafting techniques facilitate the osteogenic response in the harsh environment of a bacterial infection. Finally, it a well-known contradiction that osteomyelitis is characterized by uncontrolled bone remodeling and bone loss, but at the same time, it can be associated with excessive new bone apposition. Animal studies can provide a better understanding of how osteolytic and osteogenic responses are related to each other during infection. This review discusses the in vivo impact of bacterial infection on osteogenesis by addressing the following questions (i) How does osteomyelitis affect the radiographic bone appearance? (ii) What is the influence of bacterial infection on histological bone healing? (iii) How do bacterial infections affect quantitative bone healing? (iv) What is the effect of antibacterial treatment on the healing outcome during infection? (v) What is the efficacy of osteoinductive proteins in infected bones? (vi) What is the balance between the osteoclastic and osteoblastic response during bacterial infections? (vii) What is the mechanism of the observed pro-osteogenic response as observed in osteomyelitis? © 2019 The Authors. Journal of Orthopaedic Research© published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2067-2076, 2019.
Collapse
Affiliation(s)
- Michiel Croes
- Department of OrthopaedicsUniversity Medical Center UtrechtHeidelberglaan 1003508 GAUtrechtThe Netherlands
| | - Bart C. H. van der Wal
- Department of OrthopaedicsUniversity Medical Center UtrechtHeidelberglaan 1003508 GAUtrechtThe Netherlands
| | - H. Charles Vogely
- Department of OrthopaedicsUniversity Medical Center UtrechtHeidelberglaan 1003508 GAUtrechtThe Netherlands
| |
Collapse
|
25
|
Büren C, Hambüchen M, Windolf J, Lögters T, Windolf CD. Histological score for degrees of severity in an implant-associated infection model in mice. Arch Orthop Trauma Surg 2019; 139:1235-1244. [PMID: 31020411 DOI: 10.1007/s00402-019-03188-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Several scores were introduced to diagnose and to classify osteomyelitis in practice. Mouse models are often used to study the pathophysiology of bone infection and to test therapeutic strategies. Aim of the present study was to design a score to diagnose and quantify implant-associated infection in a murine experimental model. MATERIALS AND METHODS Four independent parameters were developed: existence of callus, consolidation of the fracture, structural changes of the medullary cavity and number of bacteria. The score was assessed in a standardized implant-associated mouse model with 35 BALB/c-mice. The left femur was osteotomized, fixed by a titanium locking plate and infection was induced by inoculation of Staphylococcus aureus into the fracture gap. For the sham group, the procedure was performed without inoculation of bacteria. The score was assessed on days 7, 14 and 28. Each item of the score showed lower values for the infection group compared to the controls after 4 weeks. RESULTS Regardless of the assessed time point, the overall total score was significantly higher in the control group compared to the infection group (p < 0.0001). Analysis revealed a sensitivity of 0.85, specificity of 1.0, negative predictive value of 0.67 and positive predictive value of 1.0. CONCLUSION The proposed score assessing severity of fracture-related infection in an implant-associated murine model was easy to access, feasible to diagnose and estimate bone healing and infection in a murine bone infection with a high sensitivity. Therefore, this score might be a useful tool to quantify infection-related changes after fracture in further future preclinical studies.
Collapse
Affiliation(s)
- Carina Büren
- Department for Trauma- and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Michael Hambüchen
- Department for Plastic and Aesthetic Surgery, Florence-Nightingale Hospital, Kreuzbergstraße 79, 40489, Düsseldorf, Germany
| | - Joachim Windolf
- Department for Trauma- and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Tim Lögters
- Department of Trauma-, Hand- and Orthopedic Surgery, St. Antonius Hospital Cologne, Schillerstraße 23, 50968, Cologne, Germany
| | - Ceylan Daniela Windolf
- Department for Trauma- and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
26
|
Production of Lysostaphin by Nonproprietary Method Utilizing a Promoter from Toxin–Antitoxin System. Mol Biotechnol 2019; 61:774-782. [DOI: 10.1007/s12033-019-00203-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Effect of antibiotic infused calcium sulfate/hydroxyapatite (CAS/HA) insets on implant-associated osteitis in a femur fracture model in mice. PLoS One 2019; 14:e0213590. [PMID: 30870491 PMCID: PMC6417783 DOI: 10.1371/journal.pone.0213590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Cerament (Bonesupport Holding, Lund, Sweden) is a bioresorbable synthetic bone substitute consisting of calcium sulfate and hydroxyapatite which is successfully used as a bone graft in bone defects or in delayed and non-unions after fractures. Besides, calcium sulfate/ hydroxyapatite (CAS/HA) could have, attributed to its composition and osteoinductive properties, have great importance in the treatment of bone infections with critical size defects (CSD). Aim of the study was to evaluate the effects of antibiotic infused CAS/HA on inflammation and bone healing in an implant-associated osteitis mice model. In a standardized murine model, the left femur of 72 BALB/c mice were osteotomized, generating a CSD (2,5 mm) with stabilization through a 6-hole titanium locking plate. Osteitis has been induced through inoculation of Staphylococcus aureus (SA) into the fracture gap. To analyze the effect of CAS/HA, following groups were generated with either CAS/HA, CAS/HA with gentamycin (CAS/ HA-G) or CAS/HA with vancomycin (CAS/HA-V) insets placed into the osteotomy. Debridément and lavages were progressed on day 7 and 42 to determine the local bacterial growth and the immune reaction. Fracture healing was quantified on day 7 and 42 by x-ray and bone healing markers from blood samples. Progression of infection was assessed by estimation of colony-forming units (CFU) and immune response was analyzed by determination of Interleukin (IL)– 6 and polymorphonuclear neutrophils (PMN) in lavage samples. Osteitis induced higher IL-6 and PMN-levels in the lavage samples on day 7. Both parameters showed a reduction in all groups on day 42. CAS/HA-V revealed a significant reduction of CFU and PMNs in lavage samples on day 42. A positive effect on bone healing could only be shown in non-infected mice. Whereas, application of mere CAS/HA in infected mice did show tendencies of bone destruction and lysis, independent of impregnation with antibiotics or not. Thus, application of CAS/HA in acute implant-associated infections is not recommended. In non-infectious environments or after infect-convalescence CAS/HA could albeit serve as a suggestive tool in trauma and orthopedic surgery.
Collapse
|
28
|
Abstract
Staphylococcus aureus is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.
Collapse
|
29
|
Pan C, Zhou Z, Yu X. Coatings as the useful drug delivery system for the prevention of implant-related infections. J Orthop Surg Res 2018; 13:220. [PMID: 30176886 PMCID: PMC6122451 DOI: 10.1186/s13018-018-0930-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Implant-related infections (IRIs) which led to a large amount of medical expenditure were caused by bacteria and fungi that involve the implants in the operation or in ward. Traditional treatments of IRIs were comprised of repeated radical debridement, replacement of internal fixators, and intravenous antibiotics. It needed a long time and numbers of surgeries to cure, which meant a catastrophe to patients. So how to prevent it was more important than to cure it. As an excellent local release system, coating is a good idea by its local drug infusion and barrier effect on resisting biofilms which were the main cause of IRIs. So in this review, materials used for coatings and evidences of prevention were elaborated.
Collapse
Affiliation(s)
- Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital East Campus, Shanghai University of Medicine and Health Sciences, Shanghai, 201306 China
| |
Collapse
|
30
|
Balasubramanian S, Skaf J, Holzgrabe U, Bharti R, Förstner KU, Ziebuhr W, Humeida UH, Abdelmohsen UR, Oelschlaeger TA. A New Bioactive Compound From the Marine Sponge-Derived Streptomyces sp. SBT348 Inhibits Staphylococcal Growth and Biofilm Formation. Front Microbiol 2018; 9:1473. [PMID: 30050506 PMCID: PMC6050364 DOI: 10.3389/fmicb.2018.01473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 μg/ml) and biofilm formation (sub-MIC range: 1.95–<31.25 μg/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.
Collapse
Affiliation(s)
| | - Joseph Skaf
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Richa Bharti
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ute H Humeida
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Usama R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tobias A Oelschlaeger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc Natl Acad Sci U S A 2018; 115:E4960-E4969. [PMID: 29760099 PMCID: PMC5984524 DOI: 10.1073/pnas.1801013115] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Orthopedic implant infections require long-term antibiotic therapy and surgical debridement to successfully retain the implant; however, therapeutic failure can lead to implant removal. Here an injectable PEG-based hydrogel that adheres to exposed tissue and fracture surfaces is engineered to deliver the antimicrobial enzyme lysostaphin to infected, implant-fixed, mouse femoral fractures. Lysostaphin encapsulation within the hydrogel enhances enzyme stability while providing enhanced antibiofilm activity and serving as a controlled delivery platform. In a preclinical animal model of orthopedic-implant infection, we show that lysostaphin-delivering hydrogels outperform prophylactic antibiotic therapy and soluble lysostaphin, by eradicating infection while promoting bone repair. Importantly, lysostaphin-delivering hydrogels are effective against antibiotic-resistant infections. This lysostaphin delivery platform could be highly effective at treating and preventing implant infections. Orthopedic implant infections are a significant clinical problem, with current therapies limited to surgical debridement and systemic antibiotic regimens. Lysostaphin is a bacteriolytic enzyme with high antistaphylococcal activity. We engineered a lysostaphin-delivering injectable PEG hydrogel to treat Staphylococcus aureus infections in bone fractures. The injectable hydrogel formulation adheres to exposed tissue and fracture surfaces, ensuring efficient, local delivery of lysostaphin. Lysostaphin encapsulation within this synthetic hydrogel maintained enzyme stability and activity. Lysostaphin-delivering hydrogels exhibited enhanced antibiofilm activity compared with soluble lysostaphin. Lysostaphin-delivering hydrogels eradicated S. aureus infection and outperformed prophylactic antibiotic and soluble lysostaphin therapy in a murine model of femur fracture. Analysis of the local inflammatory response to infections treated with lysostaphin-delivering hydrogels revealed indistinguishable differences in cytokine secretion profiles compared with uninfected fractures, demonstrating clearance of bacteria and associated inflammation. Importantly, infected fractures treated with lysostaphin-delivering hydrogels fully healed by 5 wk with bone formation and mechanical properties equivalent to those of uninfected fractures, whereas fractures treated without the hydrogel carrier were equivalent to untreated infections. Finally, lysostaphin-delivering hydrogels eliminate methicillin-resistant S. aureus infections, supporting this therapy as an alternative to antibiotics. These results indicate that lysostaphin-delivering hydrogels effectively eliminate orthopedic S. aureus infections while simultaneously supporting fracture repair.
Collapse
|
32
|
Romanò CL, Morelli I, Romanò D, Meani E, Drago L. ICS classification system of infected osteosynthesis: Long-term results. Injury 2018; 49:564-569. [PMID: 29361293 DOI: 10.1016/j.injury.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/05/2018] [Indexed: 02/02/2023]
Abstract
The best treatment strategy for infected osteosyntheses is still debated. While hardware removal or eventually early device exchange may be necessary in most of the cases, temporary hardware retention until fracture healing can be a valid alternative option in others. Aim of the present study is to report the long-term results of 215 patients with infected osteosyntheses, treated according to the ICS (Infection, Callus, Stability) classification in two Italian hospitals. Patients classified as ICS Type 1 (N = 83) feature callus progression and hardware stability, in spite of the presence of infection; these patients were treated with suppressive antibiotic therapy coupled with local debridement in 18.1% of the cases, and no hardware removal until bone healing. Type 2 patients (N = 75) are characterized by the presence of infection and hardware stability, but no callus progression; these patients were treated as Type 1 patients, but with additional callus stimulation therapies. Type 3 patients (N = 57), showing infection, no callus progression and loss of hardware stability, underwent removal and exchange of the fixation device. Considering only the initial treatment, performed according to the ICS classification, at a minimum 5 years follow up, 89.3% achieved bone healing and 93.5% did not show infection recurrence. The ICS classification appears as a useful and reliable tool to help standardizing the decision-making process in treating infected osteosynthesis with the most conservative approach.
Collapse
Affiliation(s)
- Carlo L Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections, C.R.I.O Unit I.R.C.C.S. Galeazzi Orthopaedic Institute, Milan, Italy
| | - Ilaria Morelli
- Department of Reconstructive Surgery of Osteo-articular Infections, C.R.I.O Unit I.R.C.C.S. Galeazzi Orthopaedic Institute, Milan, Italy; Residency Program in Orthopaedics and Trauma, University of Milan, Italy.
| | - Delia Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections, C.R.I.O Unit I.R.C.C.S. Galeazzi Orthopaedic Institute, Milan, Italy
| | | | - Lorenzo Drago
- Clinical-Chemistry and Microbiology Lab, I.R.C.C.S. Galeazzi Orthopedic Institute, Milan - Laboratory of Clinical Microbiology, Department of Biomedical Sciences for Health, University of Milan, Italy
| |
Collapse
|
33
|
Effect of hyperbaric oxygen therapy (HBO) on implant-associated osteitis in a femur fracture model in mice. PLoS One 2018; 13:e0191594. [PMID: 29377928 PMCID: PMC5788341 DOI: 10.1371/journal.pone.0191594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
Hyperbaric oxygen therapy (HBO) is applied very successfully in treatment of various diseases such as chronic wounds. It has been already suggested as adjunctive treatment option for osteitis by immune- and fracture modulating effects. This study evaluates the importance of HBO in an early implant-associated localized osteitis caused by Staphylococcus aureus (SA) compared to the standard therapy. In a standardized murine model the left femur of 120 BALB/c mice were osteotomized and fixed by a titanium locking plate. Osteitis has been induced with a defined amount of SA into the fracture gap. Debridément and lavages were progressed on day 7, 14, 28 and 56 to determine the local bacterial growth and the immune reaction. Hyperbaric oxygen (2 ATA, 90%) was applied for 90 minutes on day 7 to 21 for those mice allocated to HBO therapy. To evaluate the effect of HBO therapy the following groups were analyzed: Two sham-groups (12 mice / group) with and without HBO therapy, two osteotomy groups (24 mice / group) with plate osteosynthesis of the femur with and without HBO therapy, and two osteotomy SA infection groups (24 mice / group) with and without HBO therapy. Fracture healing was also quantified on day 7, 14, 28 and 56 by a.p. x-ray and bone healing markers from blood samples. Progression of infection was assessed by estimation of colony-forming units (CFU) and immune response was analyzed by determination of polymorphonuclear neutrophils (PMN), Interleukin (IL) - 6, and the circulating free DNA (cfDNA) in lavage samples. Osteitis induced significantly higher IL-6, cfDNA- and PMN-levels in the lavage samples (on day 7 and 14, each p < 0.05). HBO-therapy did not have a significant influence on the CFU and immune response compared to the standard therapy (each p > 0.05). At the same time HBO-therapy was associated with a delayed bone healing assessed by x-ray radiography and a higher rate of non-union until day 28. In conclusion, osteitis led to significantly higher bacterial count and infection parameters. HBO-therapy neither had a beneficial influence on local infection nor on immune response or fracture healing compared to the standard therapy in an osteitis mouse model.
Collapse
|
34
|
Hathaway H, Ajuebor J, Stephens L, Coffey A, Potter U, Sutton JM, Jenkins ATA. Thermally triggered release of the bacteriophage endolysin CHAP K and the bacteriocin lysostaphin for the control of methicillin resistant Staphylococcus aureus (MRSA). J Control Release 2016; 245:108-115. [PMID: 27908758 PMCID: PMC5234552 DOI: 10.1016/j.jconrel.2016.11.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/19/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus infections of the skin and soft tissue pose a major concern to public health, largely owing to the steadily increasing prevalence of drug resistant isolates. As an alternative mode of treatment both bacteriophage endolysins and bacteriocins have been shown to possess antimicrobial efficacy against multiple species of bacteria including otherwise drug resistant strains. Despite this, the administration and exposure of such antimicrobials should be restricted until required in order to discourage the continued evolution of bacterial resistance, whilst maintaining the activity and stability of such proteinaceous structures. Utilising the increase in skin temperature during infection, the truncated bacteriophage endolysin CHAPK and the staphylococcal bacteriocin lysostaphin have been co-administered in a thermally triggered manner from Poly(N-isopropylacrylamide) (PNIPAM) nanoparticles. The thermoresponsive nature of the PNIPAM polymer has been employed in order to achieve the controlled expulsion of a synergistic enzybiotic cocktail consisting of CHAPK and lysostaphin. The point at which this occurs is modifiable, in this case corresponding to the threshold temperature associated with an infected wound. Consequently, bacterial lysis was observed at 37 °C, whilst growth was maintained at the uninfected skin temperature of 32 °C.
Collapse
Affiliation(s)
| | - Jude Ajuebor
- Department of Biological Sciences, Cork Institute of Technology, T12 P928, Ireland
| | - Liam Stephens
- Department of Chemistry, University of Bath, BA2 7AY, UK
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, T12 P928, Ireland
| | - Ursula Potter
- Microscopy and Analysis Suite, University of Bath, BA2 7AY, UK
| | - J Mark Sutton
- Technology Development Group, Public Health England, Porton Down, SP4 0JG, UK
| | | |
Collapse
|
35
|
Widodo A, Spratt D, Sousa V, Petrie A, Donos N. An in vitro study on disinfection of titanium surfaces. Clin Oral Implants Res 2016; 27:1227-1232. [PMID: 26863898 DOI: 10.1111/clr.12733] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of this in vitro study was to evaluate the efficacy of different methods used for the decontamination of titanium surfaces previously infected with a Staphylococcus aureus biofilm. MATERIALS AND METHODS S. aureus biofilms were grown on three different titanium surfaces (n = 114); polished, sandblasted large-grit acid-etched (SLA) and SLActive. The experimental groups were divided into six different disinfection modalities as follows: (i) rinsing with phosphate-buffered saline, (ii) rinsing with chlorhexidine digluconate 0.2% (CHX), (iii) application of photodynamic therapy (PDT), (iv) use of cotton pellet, (v) use of titanium brush (TiB) and (vi) the use of TiB and PDT. The decontamination effect of each modality was evaluated by microbial culture analysis and by scanning electron microscopy imaging. Two-way analysis of variance (ANOVA) and Bonferroni's post hoc comparisons were used to compare mean differences between colony-forming units per millilitre (CFU/ml) values, surfaces and treatments (P < 0.025). RESULTS This study demonstrated that the combination protocol (TiB and PDT) was the most effective in reducing S. aureus (P < 0.025) on polished (2.0 × 103 CFU/Disc) and SLA surface (6.9 × 103 CFU/Disc). On the SLActive surface, the combination treatment was not significantly different to the TiB group (1.0 × 105 CFU/Disc) or the PDT group (2.0 × 105 CFU/Disc). CONCLUSION The combined technique of TiB and PDT was shown to be an efficient method in reducing the number of S. aureus in both polished and rough titanium surfaces. These findings prompt further investigations in titanium decontamination techniques with a combination of TiB and PDT within a natural microcosm bacterial environment.
Collapse
Affiliation(s)
- Arifo Widodo
- Periodontology Unit, Department of Clinical Research, UCL Eastman Dental Institute, London, UK
| | - David Spratt
- Department of Microbial Diseases, UCL Eastman Dental Institute, London, UK
| | - Vanessa Sousa
- Periodontology Unit, Department of Clinical Research, UCL Eastman Dental Institute, London, UK.,Department of Microbial Diseases, UCL Eastman Dental Institute, London, UK
| | - Aviva Petrie
- Biostatistics Unit, UCL Eastman Dental Institute, London, UK.,Centre for Oral Clinical Research, Institute of Dentistry, Barts & The London School of Medicine & Dentistry, QMUL, London, UK
| | - Nikolaos Donos
- Periodontology Unit, Department of Clinical Research, UCL Eastman Dental Institute, London, UK.
| |
Collapse
|
36
|
Krakauer T, Pradhan K, Stiles BG. Staphylococcal Superantigens Spark Host-Mediated Danger Signals. Front Immunol 2016; 7:23. [PMID: 26870039 PMCID: PMC4735405 DOI: 10.3389/fimmu.2016.00023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/18/2016] [Indexed: 12/19/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) of Staphylococcus aureus, and related superantigenic toxins produced by myriad microbes, are potent stimulators of the immune system causing a variety of human diseases from transient food poisoning to lethal toxic shock. These protein toxins bind directly to specific Vβ regions of T-cell receptors (TCR) and major histocompatibility complex (MHC) class II on antigen-presenting cells, resulting in hyperactivation of T lymphocytes and monocytes/macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. Because of superantigen-induced T cells skewed toward TH1 helper cells, and the induction of proinflammatory cytokines, superantigens can exacerbate autoimmune diseases. Upon TCR/MHC ligation, pathways induced by superantigens include the mitogen-activated protein kinase cascades and cytokine receptor signaling, resulting in activation of NFκB and the phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Various mouse models exist to study SEB-induced shock including those with potentiating agents, transgenic mice and an “SEB-only” model. However, therapeutics to treat toxic shock remain elusive as host response genes central to pathogenesis of superantigens have only been identified recently. Gene profiling of a murine model for SEB-induced shock reveals novel molecules upregulated in multiple organs not previously associated with SEB-induced responses. The pivotal genes include intracellular DNA/RNA sensors, apoptosis/DNA damage-related molecules, immunoproteasome components, as well as antiviral and IFN-stimulated genes. The host-wide induction of these, and other, antimicrobial defense genes provide evidence that SEB elicits danger signals resulting in multi-organ damage and toxic shock. Ultimately, these discoveries might lead to novel therapeutics for various superantigen-based diseases.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Molecular Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick , Frederick, MD , USA
| | - Kisha Pradhan
- Biology Department, Wilson College , Chambersburg, PA , USA
| | | |
Collapse
|
37
|
Helbig L, Guehring T, Rosenberger S, Ivanova A, Kaeppler K, Fischer CA, Moghaddam A, Schmidmaier G. A new animal model for delayed osseous union secondary to osteitis. BMC Musculoskelet Disord 2015; 16:362. [PMID: 26585516 PMCID: PMC4653915 DOI: 10.1186/s12891-015-0816-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/12/2015] [Indexed: 12/03/2022] Open
Abstract
Background The treatment of infection-related delayed bone unions is still very challenging for the orthopedic surgeon. The prevalence of such infection-related types of osteitis is high in complex fractures, particularly in open fractures with extensive soft-tissue damage. The aim of this study was to develop a new animal model for delayed union due to osteitis. Methods After randomization to infected or non-infected groups 20 Sprague–Dawley rats underwent a transverse fracture of the midshaft tibia. After intramedullary inoculation with staphylococcus aureus (103 CFU) fracture stabilization was done by intramedullary titanium K-wires. After 5 weeks all rats were euthanized and underwent biomechanical testing to evaluate bone consolidation or delayed union, respectively. Micro-CT scans were additionally used to quantitatively evaluate the callus formation by the score of Lane and Sandhu. Blood samples were taken to analyze infectious disease markers (day 1, 14 and 35). Results Biomechanical testing showed a significant higher maximum torque in the non-infected group 5 weeks postoperatively compared with the infected group (p < 0.001). According to the Lane and Sandhu score a significantly higher callus formation was found in the non-infected group (p < 0.001). Similarly, the leucocyte count in the infected group was significantly higher than in the non-infected group (p < 0.05). Conclusions Here we have established a new animal model for delayed osseous union secondary to osteitis. The animal model appears to be appropriate for future experimental studies to test new therapeutic strategies in these difficult to treat bone healing complications.
Collapse
Affiliation(s)
- Lars Helbig
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Thorsten Guehring
- Klinik für Unfallchirurgie und Orthopädie, BG Unfallklinik Ludwigshafen, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Germany.
| | - Svenja Rosenberger
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Adriana Ivanova
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Kathrin Kaeppler
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Christian Alexander Fischer
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Arash Moghaddam
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Gerhard Schmidmaier
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
38
|
Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 2015; 13:1499-516. [PMID: 26646248 DOI: 10.1586/14787210.2015.1100533] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
S. aureus colonizes both artificial and tissue surfaces in humans causing chronic persistent infections that are difficult to cure. It is a notorious pathogen due to its antibiotic recalcitrance and phenotypic adaptability, both of which are facilitated by its ability to develop biofilms. S. aureus biofilms challenge conventional anti-infective approaches, most notably antibiotic therapy. Therefore there is an unmet need to develop and include parallel approaches that target S. aureus biofilm infections. This review discusses two broad anti-infective strategies: (1) preventative approaches (anti-biofilm surface coatings, the inclusion of biofilm-specific vaccine antigens); and (2) approaches aimed at eradicating established S. aureus biofilms, particularly those associated with implant infections. Advances in understanding the distinct nature of S. aureus biofilm development and pathogenesis have led to growing optimism in S. aureus biofilm targeted anti-infective strategies. Further research is needed however, to see the successful administration and validation of these approaches to the diverse types of infections caused by S. aureus biofilms from multiple clinical strains.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA
| | - Daniel J Wozniak
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA.,b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| | - Paul Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA.,d Department of Orthopedics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Department of Engineering Sciences, National Centre for Advanced Tribology at Southampton (nCATS) , University of Southampton , Southampton , UK
| | - Luanne Hall-Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
39
|
Haversath M, Hülsen T, Böge C, Tassemeier T, Landgraeber S, Herten M, Warwas S, Krauspe R, Jäger M. Osteogenic differentiation and proliferation of bone marrow-derived mesenchymal stromal cells on PDLLA + BMP-2-coated titanium alloy surfaces. J Biomed Mater Res A 2015; 104:145-54. [PMID: 26268470 DOI: 10.1002/jbm.a.35550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
RhBMP-2 is clinically applied to enhance bone healing and used in combination with titanium fixation implants. The purpose of this in vitro study was to compare the osteogenic differentiation and proliferation of hMSC on native polished versus sandblasted titanium surfaces (TS) and to test their behavior on pure poly-D,L-lactide (PDLLA) coated as well as PDLLA + rhBMP-2 coated TS. Furthermore, the release kinetics of PDLLA + rhBMP-2-coated TS was investigated. Human bone marrow cells were obtained from three different donors (A: male, 16 yrs; B: male, 27 yrs, C: male, 49 yrs) followed by density gradient centrifugation and flow cytometry with defined antigens. The cells were seeded on native polished and sandblasted TS, PDLLA-coated TS and PDLLA + rhBMP-2-coated TS. Osteogenic differentiation (ALP specific activity via ALP and BCA assay) and proliferation (LDH cytotoxicity assay) was examined on day 7 and 14 and release kinetics of rhBMP-2 was investigated on day 3, 7, 10, and 14. We found significant higher ALP specific activity and LDH activity on native polished compared to native sandblasted surfaces. PDLLA led to decreased ALP specific and LDH activity on both surface finishes. Additional rhBMP-2 slightly diminished this effect. RhBMP-2-release from coated TS decreased nearly exponentially with highest concentrations at the beginning of the cultivation period. The results of this in vitro study suggest that native TS stimulate hMSC significantly stronger toward osteogenic differentiation and proliferation than rhBMP-2 + PDLLA-layered TS in the first 14 days of cultivation. The PDLLA-layer seems to inhibit local hMSC differentiation and proliferation.
Collapse
Affiliation(s)
- Marcel Haversath
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Tobias Hülsen
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Carolin Böge
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Tjark Tassemeier
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Stefan Landgraeber
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Monika Herten
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Warwas
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| | - Rüdiger Krauspe
- Department of Orthopaedics, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Marcus Jäger
- Department of Orthopaedics and Trauma Surgery, University Duisburg-Essen, Essen, Germany
| |
Collapse
|