1
|
Wang P, Luo L, Chen J. Her4.3 + radial glial cells maintain the brain vascular network through activation of Wnt signaling. J Biol Chem 2024; 300:107570. [PMID: 39019216 PMCID: PMC11342778 DOI: 10.1016/j.jbc.2024.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024] Open
Abstract
During vascular development, radial glial cells (RGCs) regulate vascular patterning in the trunk and contribute to the early differentiation of the blood-brain barrier. Ablation of RGCs results in excessive sprouting vessels or the absence of bilateral vertebral arteries. However, interactions of RGCs with later brain vascular networks after pattern formation remain unknown. Here, we generated a her4.3 transgenic line to label RGCs and applied the metronidazole/nitroreductase system to ablate her4.3+ RGCs. The ablation of her4.3+ RGCs led to the collapse of the cerebral vascular network, disruption of the blood-brain barrier, and downregulation of Wnt signaling. The inhibition of Wnt signaling resulted in the collapse of cerebral vasculature, similar to that caused by her4.3+ RGC ablation. The defects in the maintenance of brain vasculature resulting from the absence of her4.3+ RGCs were partially rescued by the activation of Wnt signaling or overexpression of Wnt7aa or Wnt7bb. Together, our study suggests that her4.3+ RGCs maintain the cerebral vascular network through Wnt signaling.
Collapse
Affiliation(s)
- Pengcheng Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China; Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingying Chen
- Department of Anaesthesia of Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Ganesan M, Christyraj JRSS, Venkatachalam S, Yesudhason BV, Sathyaraj WV, Christyraj JDS. Understanding the process of angiogenesis in regenerating earthworm. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00782-2. [PMID: 37468693 DOI: 10.1007/s11626-023-00782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Developing blood vessels from the existing vasculature is vital for the growth of the organism, as well as for systematic wound healing and the repair process. In this study, we investigated the role of angiogenesis during the regeneration process in the earthworm, Eudrilus eugeniae, animal model. Briefly, the morphological examination of blood vessels in juvenile and mature worms is documented, along with the development of new blood vessels in regenerating blastema. However, in vivo and in vitro experiments with juvenile worms revealed that geraniol retards blastemal regeneration growth with undeveloped blood vessels, as compared to the control. The results of qRT-PCR, western blotting, and immunohistochemistry confirmed a reduced expression of VEGFR2 and WNT5A in the day 3 regenerating blastema of geraniol-treated worms, as compared to the control. We conclude that geraniol acts as a potent natural inhibitor of angiogenesis, thereby retarding the regeneration process in earthworms. In addition, for studying angiogenesis and screening effective angiogenesis inhibitors as drug candidates, the earthworm is an ambient animal model system.
Collapse
Affiliation(s)
- Mijithra Ganesan
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Saravanakumar Venkatachalam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Vieira JR, Shah B, Dupraz S, Paredes I, Himmels P, Schermann G, Adler H, Motta A, Gärtner L, Navarro-Aragall A, Ioannou E, Dyukova E, Bonnavion R, Fischer A, Bonanomi D, Bradke F, Ruhrberg C, Ruiz de Almodóvar C. Endothelial PlexinD1 signaling instructs spinal cord vascularization and motor neuron development. Neuron 2022; 110:4074-4089.e6. [PMID: 36549270 PMCID: PMC9796814 DOI: 10.1016/j.neuron.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/04/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
How the vascular and neural compartment cooperate to achieve such a complex and highly specialized structure as the central nervous system is still unclear. Here, we reveal a crosstalk between motor neurons (MNs) and endothelial cells (ECs), necessary for the coordinated development of MNs. By analyzing cell-to-cell interaction profiles of the mouse developing spinal cord, we uncovered semaphorin 3C (Sema3C) and PlexinD1 as a communication axis between MNs and ECs. Using cell-specific knockout mice and in vitro assays, we demonstrate that removal of Sema3C in MNs, or its receptor PlexinD1 in ECs, results in premature and aberrant vascularization of MN columns. Those vascular defects impair MN axon exit from the spinal cord. Impaired PlexinD1 signaling in ECs also causes MN maturation defects at later stages. This study highlights the importance of a timely and spatially controlled communication between MNs and ECs for proper spinal cord development.
Collapse
Affiliation(s)
- José Ricardo Vieira
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Sebastian Dupraz
- Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Isidora Paredes
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Géza Schermann
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heike Adler
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Alessia Motta
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Lea Gärtner
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Ariadna Navarro-Aragall
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Elena Ioannou
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Elena Dyukova
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Remy Bonnavion
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Division Vascular Signaling and Cancer, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dario Bonanomi
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
4
|
Bautch VL, Mukouyama YS. The Beauty and Complexity of Blood Vessel Patterning. Cold Spring Harb Perspect Med 2022; 12:a041167. [PMID: 35379659 PMCID: PMC9619359 DOI: 10.1101/cshperspect.a041167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review highlights new concepts in vascular patterning in the last 10 years, with emphasis on its beauty and complexity. Endothelial cell signaling pathways that respond to molecular or mechanical signals are described, and examples of vascular patterning that use these pathways in brain, skin, heart, and kidney are highlighted. The pathological consequences of patterning loss are discussed in the context of arteriovenous malformations (AVMs), and prospects for the next 10 years presented.
Collapse
Affiliation(s)
- Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci 2022; 79:372. [PMID: 35726097 PMCID: PMC9209386 DOI: 10.1007/s00018-022-04403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Dynamic brain activity requires timely communications between the brain parenchyma and circulating blood. Brain-blood communication is facilitated by intricate networks of brain vasculature, which display striking heterogeneity in structure and function. This vascular cell heterogeneity in the brain is fundamental to mediating diverse brain functions and has long been recognized. However, the molecular basis of this biological phenomenon has only recently begun to be elucidated. Over the past century, various animal species and in vitro systems have contributed to the accumulation of our fundamental and phylogenetic knowledge about brain vasculature, collectively advancing this research field. Historically, dye tracer and microscopic observations have provided valuable insights into the anatomical and functional properties of vasculature across the brain, and these techniques remain an important approach. Additionally, recent advances in molecular genetics and omics technologies have revealed significant molecular heterogeneity within brain endothelial and perivascular cell types. The combination of these conventional and modern approaches has enabled us to identify phenotypic differences between healthy and abnormal conditions at the single-cell level. Accordingly, our understanding of brain vascular cell states during physiological, pathological, and aging processes has rapidly expanded. In this review, we summarize major historical advances and current knowledge on blood endothelial cell heterogeneity in the brain, and discuss important unsolved questions in the field.
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Luke D Buck
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Keerti P Vajrala
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.,Kansas City University College of Osteopathic Medicine, Kansas City, MO 64106, USA
| | - Rachael E Quick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Olivia A Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| |
Collapse
|
6
|
Sakai D, Sugawara T, Kurokawa T, Murakami Y, Tomosugi M, Masuta H, Sakata-Haga H, Hatta T, Shoji H. Hif1α-dependent hypoxia signaling contributes to the survival of deep-layer neurons and cortex formation in a mouse model. Mol Brain 2022; 15:28. [PMID: 35361248 PMCID: PMC8973788 DOI: 10.1186/s13041-022-00911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Hypoxia-inducible factor 1 α (Hif1α) plays a crucial role in brain development. To study the function of Hif1α in early brain development, we generated neuroepithelial cell-specific Hif1α-knockout mice. Hif1α-knockout mice died soon after birth; these mice exhibited an abnormal head shape, indicating the presence of brain defects. Morphological analysis revealed that Hif1α ablation reduced the overall size of the brain, especially affecting the telencephalon. Neuronal apoptosis predominantly occurred in deep-layer neurons, consequently the alignment of cortical layers was severely disorganized in Hif1α knockout mice. Furthermore, we demonstrated that Vegf signaling contributes to the survival of deep-layer neurons as a downstream effector of Hif1α-dependent hypoxia signaling. Taken together, our findings demonstrate that Hif1α plays a critical role in the early stages of telencephalon development.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Biology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| | - Takeru Sugawara
- Department of Medical Life Systems, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Tomonori Kurokawa
- Department of Medical Life Systems, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Osaka, Hirakata, 573-1010, Japan
| | - Mitsuhiro Tomosugi
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroko Masuta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
7
|
Skylar-Scott MA, Huang JY, Lu A, Ng AHM, Duenki T, Liu S, Nam LL, Damaraju S, Church GM, Lewis JA. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nat Biomed Eng 2022; 6:449-462. [PMID: 35332307 DOI: 10.1038/s41551-022-00856-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
The generation of organoids and tissues with programmable cellular complexity, architecture and function would benefit from the simultaneous differentiation of human induced pluripotent stem cells (hiPSCs) into divergent cell types. Yet differentiation protocols for the overexpression of specific transcription factors typically produce a single cell type. Here we show that patterned organoids and bioprinted tissues with controlled composition and organization can be generated by simultaneously co-differentiating hiPSCs into distinct cell types via the forced overexpression of transcription factors, independently of culture-media composition. Specifically, we used such orthogonally induced differentiation to generate endothelial cells and neurons from hiPSCs in a one-pot system containing either neural or endothelial stem-cell-specifying media, and to produce vascularized and patterned cortical organoids within days by aggregating inducible-transcription-factor and wild-type hiPSCs into randomly pooled or multicore-shell embryoid bodies. Moreover, by leveraging multimaterial bioprinting of hiPSC inks without extracellular matrix, we generated patterned neural tissues with layered regions composed of neural stem cells, endothelium and neurons. Orthogonally induced differentiation of stem cells may facilitate the fabrication of engineered tissues for biomedical applications.
Collapse
Affiliation(s)
- Mark A Skylar-Scott
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Basic Science and Engineering Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, USA.
| | - Jeremy Y Huang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aric Lu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.,Biological Engineering Division, Draper Laboratory, Cambridge, MA, USA
| | - Alex H M Ng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tomoya Duenki
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Songlei Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lucy L Nam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Sarita Damaraju
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Lewis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| |
Collapse
|
8
|
Vieira JR, Shah B, Ruiz de Almodovar C. Cellular and Molecular Mechanisms of Spinal Cord Vascularization. Front Physiol 2020; 11:599897. [PMID: 33424624 PMCID: PMC7793711 DOI: 10.3389/fphys.2020.599897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
During embryonic central nervous system (CNS) development, the neural and the vascular systems communicate with each other in order to give rise to a fully functional and mature CNS. The initial avascular CNS becomes vascularized by blood vessel sprouting from different vascular plexus in a highly stereotypical and controlled manner. This process is similar across different regions of the CNS. In particular for the developing spinal cord (SC), blood vessel ingression occurs from a perineural vascular plexus during embryonic development. In this review, we provide an updated and comprehensive description of the cellular and molecular mechanisms behind this stereotypical and controlled patterning of blood vessels in the developing embryonic SC, identified using different animal models. We discuss how signals derived from neural progenitors and differentiated neurons guide the SC growing vasculature. Lastly, we provide a perspective of how the molecular mechanisms identified during development could be used to better understand pathological situations.
Collapse
Affiliation(s)
- Jose Ricardo Vieira
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Watanabe C, Imaizumi T, Kawai H, Suda K, Honma Y, Ichihashi M, Ema M, Mizutani KI. Aging of the Vascular System and Neural Diseases. Front Aging Neurosci 2020; 12:557384. [PMID: 33132896 PMCID: PMC7550630 DOI: 10.3389/fnagi.2020.557384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrates have acquired complex high-order functions facilitated by the dispersion of vascular and neural networks to every corner of the body. Blood vessels deliver oxygen and nutrients to all cells and provide essential transport systems for removing waste products. For these functions, tissue vascularization must be spatiotemporally appropriate. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. Each capillary network is critical for maintaining proper brain function because age-related and disease-related impairment of cognitive function is associated with the loss or diminishment of brain capillaries. This review article highlights how structural and functional alterations in the brain vessels may change with age and neurogenerative diseases. Capillaries are also responsible for filtering toxic byproducts, providing an appropriate vascular environment for neuronal function. Accumulation of amyloid β is a key event in Alzheimer’s disease pathogenesis. Recent studies have focused on associations reported between Alzheimer’s disease and vascular aging. Furthermore, the glymphatic system and meningeal lymphatic systems contribute to a functional unit for clearance of amyloid β from the brain from the central nervous system into the cervical lymph nodes. This review article will also focus on recent advances in stem cell therapies that aim at repopulation or regeneration of a degenerating vascular system for neural diseases.
Collapse
Affiliation(s)
- Chisato Watanabe
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan.,Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tsutomu Imaizumi
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Hiromi Kawai
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kazuma Suda
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yoichi Honma
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Masamitsu Ichihashi
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto, Japan
| | - Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
10
|
da Silva SM, Campos GD, Gomes FCA, Stipursky J. Radial Glia-endothelial Cells' Bidirectional Interactions Control Vascular Maturation and Astrocyte Differentiation: Impact for Blood-brain Barrier Formation. Curr Neurovasc Res 2020; 16:291-300. [PMID: 31633476 DOI: 10.2174/1567202616666191014120156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND In the developing cerebral cortex, Radial Glia (RG) multipotent neural stem cell, among other functions, differentiate into astrocytes and serve as a scaffold for blood vessel development. After some time, blood vessel Endothelial Cells (ECs) become associated with astrocytes to form the neurovascular Blood-Brain Barrier (BBB) unit. OBJECTIVE Since little is known about the mechanisms underlying bidirectional RG-ECs interactions in both vascular development and astrocyte differentiation, this study investigated the impact of interactions between RG and ECs mediated by secreted factors on EC maturation and gliogenesis control. METHODS First, we demonstrated that immature vasculature in the murine embryonic cerebral cortex physically interacts with Nestin positive RG neural stem cells in vivo. Isolated Microcapillary Brain Endothelial Cells (MBEC) treated with the conditioned medium from RG cultures (RG-CM) displayed decreased proliferation, reduction in the protein levels of the endothelial tip cell marker Delta-like 4 (Dll4), and decreased expression levels of the vascular permeability associated gene, plasmalemma vesicle-associated protein-1 (PLVAP1). These events were also accompanied by increased levels of the tight junction protein expression, zonula occludens-1 (ZO-1). RESULTS Finally, we demonstrated that isolated RG cells cultures treated with MBEC conditioned medium promoted the differentiation of astrocytes in a Vascular Endothelial Growth Factor-A (VEGF-A) dependent manner. CONCLUSION These results suggest that the bidirectional interaction between RG and ECs is essential to induce vascular maturation and astrocyte generation, which may be an essential cell-cell communication mechanism to promote BBB establishment.
Collapse
Affiliation(s)
- Siqueira M da Silva
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-901, Brazil
| | - Gisbert D Campos
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-901, Brazil
| | - Flávia C A Gomes
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-901, Brazil
| | - Joice Stipursky
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-901, Brazil
| |
Collapse
|
11
|
Marcos AC, Siqueira M, Alvarez-Rosa L, Cascabulho CM, Waghabi MC, Barbosa HS, Adesse D, Stipursky J. Toxoplasma gondii infection impairs radial glia differentiation and its potential to modulate brain microvascular endothelial cell function in the cerebral cortex. Microvasc Res 2020; 131:104024. [PMID: 32502488 DOI: 10.1016/j.mvr.2020.104024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/30/2023]
Abstract
Congenital toxoplasmosis is a parasitic disease that occurs due vertical transmission of the protozoan Toxoplasma gondii (T. gondii) during pregnancy. The parasite crosses the placental barrier and reaches the developing brain, infecting progenitor, glial, neuronal and vascular cell types. Although the role of Radial glia (RG) neural stem cells in the development of the brain vasculature has been recently investigated, the impact of T. gondii infection in these events is not yet understood. Herein, we studied the role of T. gondii infection on RG cell function and its interaction with endothelial cells. By infecting isolated RG cultures with T. gondii tachyzoites, we observed a cytotoxic effect with reduced numbers of RG populations together with decrease neuronal and oligodendrocyte progenitor populations. Conditioned medium (CM) from RG control cultures increased ZO-1 protein levels and organization on endothelial bEnd.3 cells membranes, which was impaired by CM from infected RG, accompanied by decreased trans-endothelial electrical resistance (TEER). ELISA assays revealed reduced levels of anti-inflammatory cytokine TGF-β1 in CM from T. gondii-infected RG cells. Treatment with recombinant TGF-β1 concomitantly with CM from infected RG cultures led to restoration of ZO-1 staining in bEnd.3 cells. Congenital infection in Swiss Webster mice led to abnormalities in the cortical microvasculature in comparison to uninfected embryos. Our results suggest that infection of RG cells by T. gondii negatively modulates cytokine secretion, which might contribute to endothelial loss of barrier properties, thus leading to impairment of neurovascular interaction establishment.
Collapse
Affiliation(s)
| | - Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Liandra Alvarez-Rosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Cynthia M Cascabulho
- Laboratório de Inovação em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Mariana C Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Paredes I, Himmels P, Ruiz de Almodóvar C. Neurovascular Communication during CNS Development. Dev Cell 2018; 45:10-32. [PMID: 29634931 DOI: 10.1016/j.devcel.2018.01.023] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
A precise communication between the nervous and the vascular systems is crucial for proper formation and function of the central nervous system (CNS). Interestingly, this communication does not only occur by neural cells regulating the growth and properties of the vasculature, but new studies show that blood vessels actively control different neurodevelopmental processes. Here, we review the current knowledge on how neurons in particular influence growing blood vessels during CNS development and on how vessels participate in shaping the neural compartment. We also review the identified molecular mechanisms of this bidirectional communication.
Collapse
Affiliation(s)
- Isidora Paredes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Hyperbaric oxygen promotes neural stem cell proliferation by activating vascular endothelial growth factor/extracellular signal-regulated kinase signaling after traumatic brain injury. Neuroreport 2017; 28:1232-1238. [DOI: 10.1097/wnr.0000000000000901] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J. Radial Glia Cells Control Angiogenesis in the Developing Cerebral Cortex Through TGF-β1 Signaling. Mol Neurobiol 2017; 55:3660-3675. [PMID: 28523566 DOI: 10.1007/s12035-017-0557-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Neuroangiogenesis in the developing central nervous system is controlled by interactions between endothelial cells (ECs) and radial glia (RG) neural stem cells, although RG-derived molecules implicated in these events are not fully known. Here, we investigated the role of RG-secreted TGF-β1, in angiogenesis in the developing cerebral cortex. By isolation of murine microcapillary brain endothelial cells (MBECs), we demonstrate that conditioned medium from RG cultures (RG-CM) promoted MBEC migration and formation of vessel-like structures in vitro, in a TGF-β1-dependent manner. These events were followed by endothelial regulation of GPR124 and BAI-1 gene expression by RG-CM. Proteome profile of RG-CM identified angiogenesis-related molecules IGFBP2/3, osteopontin, endostatin, SDF1, fractalkine, TIMP1/4, Ang-1, pentraxin3, and Cyr61, some of them modulated by TGF-β1 induction. In vivo gain and loss of function assays targeting RG cells demonstrates a specific TGF-β1-dependent control of blood vessels branching in the cerebral cortex. Together, our results point to TGF-β1 signaling pathway as a potential mediator of the RG-EC interactions and shed light to the key role of RG in paving the brain vascular network.
Collapse
Affiliation(s)
- Michele Siqueira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Francis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diego Gisbert
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro - Centro de Ciências da Saúde, Bloco F, Sala F15, Ilha do Fundão, Rio de Janeiro, RJ, 21949-902, Brazil.
| |
Collapse
|
15
|
Himmels P, Paredes I, Adler H, Karakatsani A, Luck R, Marti HH, Ermakova O, Rempel E, Stoeckli ET, Ruiz de Almodóvar C. Motor neurons control blood vessel patterning in the developing spinal cord. Nat Commun 2017; 8:14583. [PMID: 28262664 PMCID: PMC5343469 DOI: 10.1038/ncomms14583] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
Formation of a precise vascular network within the central nervous system is of critical importance to assure delivery of oxygen and nutrients and for accurate functionality of neuronal networks. Vascularization of the spinal cord is a highly stereotypical process. However, the guidance cues controlling blood vessel patterning in this organ remain largely unknown. Here we describe a new neuro-vascular communication mechanism that controls vessel guidance in the developing spinal cord. We show that motor neuron columns remain avascular during a developmental time window, despite expressing high levels of the pro-angiogenic vascular endothelial growth factor (VEGF). We describe that motor neurons express the VEGF trapping receptor sFlt1 via a Neuropilin-1-dependent mechanism. Using a VEGF gain-of-function approach in mice and a motor neuron-specific sFlt1 loss-of-function approach in chicken, we show that motor neurons control blood vessel patterning by an autocrine mechanism that titrates motor neuron-derived VEGF via their own expression of sFlt1. The guidance cues regulating blood vessel patterning in the central nervous system remain unclear. Here, the authors show in mice and chicken developing spinal cord that motor neurons control blood vessel patterning by an autocrine mechanism titrating VEGF via the expression of its trapping receptor sFlt1.
Collapse
Affiliation(s)
- Patricia Himmels
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Isidora Paredes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Heike Adler
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Andromachi Karakatsani
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Robert Luck
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Olga Ermakova
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Eugen Rempel
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Esther T Stoeckli
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Matsuoka RL, Marass M, Avdesh A, Helker CS, Maischein HM, Grosse AS, Kaur H, Lawson ND, Herzog W, Stainier DY. Radial glia regulate vascular patterning around the developing spinal cord. eLife 2016; 5:20253. [PMID: 27852438 PMCID: PMC5123865 DOI: 10.7554/elife.20253] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs. DOI:http://dx.doi.org/10.7554/eLife.20253.001
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Avdesh Avdesh
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ann S Grosse
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Harmandeep Kaur
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Wiebke Herzog
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|