1
|
Carmona-Berrio D, Adarve-Rengifo I, Marshall AG, Vue Z, Hall DD, Miller-Fleming TW, Actkins KV, Beasley HK, Almonacid PM, Barturen-Larrea P, Wells QS, Lopez MG, Garza-Lopez E, Dai DF, Shao J, Neikirk K, Billings FT, Curci JA, Cox NJ, Gama V, Hinton A, Gomez JA. SOX6 expression and aneurysms of the thoracic and abdominal aorta. iScience 2024; 27:110436. [PMID: 39262802 PMCID: PMC11388018 DOI: 10.1016/j.isci.2024.110436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/31/2024] [Accepted: 06/28/2024] [Indexed: 09/13/2024] Open
Abstract
Abdominal and thoracic aortic aneurysms (AAAs, TAAs) remain a major cause of deaths worldwide, in part due to the lack of reliable prognostic markers or early warning signs. Sox6 has been found to regulate renin controlling blood pressure. We hypothesized that Sox6 may serve as an important regulator of the mechanisms contributing to hypertension-induced aortic aneurysms. Phenotype and laboratory-wide association scans in a clinical cohort found that SOX6 gene expression is associated with aortic aneurysm in subjects of European ancestry. Sox6 and tumor necrosis factor alpha (TNF-α) expression were upregulated in aortic tissues from patients affected by either AAA or TAA. In Sox6 knockout mice with angiotensin-II-induced AAA, we found that Sox6 plays critical role in the development and progression of AAA. Our data support a regulatory role of SOX6 in the development of hypertension-induced AAA, suggesting that Sox6 may be a therapeutic target for the treatment of aortic aneurysms.
Collapse
Affiliation(s)
- David Carmona-Berrio
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Isabel Adarve-Rengifo
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Duane D Hall
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tyne W Miller-Fleming
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ky'Era V Actkins
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Paula M Almonacid
- Department of Economics, EAFIT University, Medellín, Antioquia, Columbia
| | - Pierina Barturen-Larrea
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Quinn S Wells
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marcos G Lopez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Dao-Fu Dai
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA 52242, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Frederic T Billings
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John A Curci
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vivian Gama
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jose A Gomez
- Department of Medicine / Clinical Pharmacology Division. Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Dong Y, Wang T, Wu H. Tertiary lymphoid structures in autoimmune diseases. Front Immunol 2024; 14:1322035. [PMID: 38259436 PMCID: PMC10800951 DOI: 10.3389/fimmu.2023.1322035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized lymphoid-like aggregations in non-lymphoid tissues. Tissues with chronic and persistent inflammation infiltration may drive and form ectopic germinal center-like structures, which are very common in autoimmune diseases, chronic infections, and tumor microenvironments. However, the mechanisms governing the formation of TLSs are still being explored. At present, it is not clear whether the formation of TLSs is associated with local uncontrolled immune inflammatory responses. While TLSs suggest a good prognosis in tumors, the opposite is true in autoimmune diseases. This review article will discuss the current views on initiating and maintaining TLSs and the potential therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Loste A, Clément M, Delbosc S, Guedj K, Sénémaud J, Gaston AT, Morvan M, Even G, Gautier G, Eggel A, Arock M, Procopio E, Deschildre C, Louedec L, Michel JB, Deschamps L, Castier Y, Coscas R, Alsac JM, Launay P, Caligiuri G, Nicoletti A, Le Borgne M. Involvement of an IgE/Mast cell/B cell amplification loop in abdominal aortic aneurysm progression. PLoS One 2023; 18:e0295408. [PMID: 38055674 DOI: 10.1371/journal.pone.0295408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
AIMS IgE type immunoglobulins and their specific effector cells, mast cells (MCs), are associated with abdominal aortic aneurysm (AAA) progression. In parallel, immunoglobulin-producing B cells, organised in tertiary lymphoid organs (TLOs) within the aortic wall, have also been linked to aneurysmal progression. We aimed at investigating the potential role and mechanism linking local MCs, TLO B cells, and IgE production in aneurysmal progression. METHODS AND RESULTS Through histological assays conducted on human surgical samples from AAA patients, we uncovered that activated MCs were enriched at sites of unhealed haematomas, due to subclinical aortic wall fissuring, in close proximity to adventitial IgE+ TLO B cells. Remarkably, in vitro the IgEs deriving from these samples enhanced MC production of IL-4, a cytokine which favors IgE class-switching and production by B cells. Finally, the role of MCs in aneurysmal progression was further analysed in vivo in ApoE-/- mice subjected to angiotensin II infusion aneurysm model, through MC-specific depletion after the establishment of dissecting aneurysms. MC-specific depletion improved intramural haematoma healing and reduced aneurysmal progression. CONCLUSIONS Our data suggest that MC located close to aortic wall fissures are activated by adventitial TLO B cell-produced IgEs and participate to their own activation by providing support for further IgE synthesis through IL-4 production. By preventing prompt repair of aortic subclinical fissures, such a runaway MC activation loop could precipitate aneurysmal progression, suggesting that MC-targeting treatments may represent an interesting adjunctive therapy for reducing AAA progression.
Collapse
Affiliation(s)
- Alexia Loste
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marc Clément
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Sandrine Delbosc
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Kevin Guedj
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Jean Sénémaud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
- Department of Vascular and Thoracic Surgery, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Anh-Thu Gaston
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marion Morvan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Guillaume Even
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Grégory Gautier
- DHU FIRE, Paris, France
- INSERM UMRS 1149, Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Michel Arock
- Department of Biology and CNRS UMR8113, Ecole Normale Supérieure de Paris-Saclay, Saclay, France
| | - Emanuele Procopio
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Catherine Deschildre
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Liliane Louedec
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Jean-Baptiste Michel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Lydia Deschamps
- Department of Pathology, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Yves Castier
- INSERM UMRS 1149, Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Raphaël Coscas
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- Department of Vascular Surgery, AP-HP, Ambroise Paré University Hospital, Université Paris Cité, Boulogne-Billancourt, France
| | - Jean-Marc Alsac
- Department of Vascular Surgery, AP-HP, Hôpital Européen Georges Pompidou, Université Paris Cité, Paris, France
| | - Pierre Launay
- DHU FIRE, Paris, France
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
- Department of Cardiology, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marie Le Borgne
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| |
Collapse
|
4
|
Zhang Q, Wu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response. Front Immunol 2023; 13:1063711. [PMID: 36713409 PMCID: PMC9875059 DOI: 10.3389/fimmu.2022.1063711] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates that form at sites of chronic inflammation, including cancers, in non-lymphoid tissues. Although the formation of TLSs is similar to that of secondary lymphoid organs, the pathogenic factors leading to TLS formation in cancerous tissues and the mechanisms underlying the role of these structures in the intra-tumoral adaptive antitumor immune response are not fully understood. The presence of TLSs may impact patient prognosis and treatment outcomes. This review examines the current understanding of TLSs in cancers, including their composition and formation as well as their potential to predict prognosis and therapeutic efficacy. We also summarize strategies to induce TLS formation for cancer treatment.
Collapse
Affiliation(s)
| | - Suhui Wu
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
5
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Oller J, Gabandé-Rodríguez E, Roldan-Montero R, Ruiz-Rodríguez MJ, Redondo JM, Martín-Ventura JL, Mittelbrunn M. Rewiring Vascular Metabolism Prevents Sudden Death due to Aortic Ruptures-Brief Report. Arterioscler Thromb Vasc Biol 2022; 42:462-469. [PMID: 35196876 DOI: 10.1161/atvbaha.121.317346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The goal of this study was to determine whether boosting mitochondrial respiration prevents the development of fatal aortic ruptures triggered by atherosclerosis and hypertension. METHODS Ang-II (angiotensin-II) was infused in ApoE (Apolipoprotein E)-deficient mice fed with a western diet to induce acute aortic aneurysms and lethal ruptures. RESULTS We found decreased mitochondrial respiration and mitochondrial proteins in vascular smooth muscle cells from murine and human aortic aneurysms. Boosting NAD levels with nicotinamide riboside reduced the development of aortic aneurysms and sudden death by aortic ruptures. CONCLUSIONS Targetable vascular metabolism is a new clinical strategy to prevent fatal aortic ruptures and sudden death in patients with aortic aneurysms.
Collapse
Affiliation(s)
- Jorge Oller
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain (J.O., E.G.-R., M.M.).,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G.-R., M.M.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.)
| | - Enrique Gabandé-Rodríguez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain (J.O., E.G.-R., M.M.).,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G.-R., M.M.)
| | - Raquel Roldan-Montero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.).,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain (R.R.-M., J.L.M.-V.)
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.).,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (M.J.R.-R., J.M.R.)
| | - Juan Miguel Redondo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.).,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (M.J.R.-R., J.M.R.)
| | - José Luís Martín-Ventura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (J.O., R.R.-M. M.J.R.-R., J.M.R., J.L.M.-V.).,Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain (R.R.-M., J.L.M.-V.)
| | - María Mittelbrunn
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain (J.O., E.G.-R., M.M.).,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G.-R., M.M.)
| |
Collapse
|
7
|
Cerro-Pardo I, Lindholt JS, Núñez E, Roldan-Montero R, Ortega-Villanueva L, Vegas-Dominguez C, Gomez-Guerrero C, Michel JB, Blanco-Colio LM, Vázquez J, Martín-Ventura JL. Combined Immunoglobulin Free Light Chains Are Novel Predictors of Cardiovascular Events in Patients With Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg 2022; 63:751-758. [DOI: 10.1016/j.ejvs.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
|
8
|
Epithelial-mesenchymal transition related genes in unruptured aneurysms identified through weighted gene coexpression network analysis. Sci Rep 2022; 12:225. [PMID: 34997174 PMCID: PMC8741966 DOI: 10.1038/s41598-021-04390-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
Intracranial aneurysm (IA) can cause fatal subarachnoid hemorrhage (SAH) after rupture, and identifying patients with unruptured IAs is essential for reducing SAH fatalities. The epithelial-mesenchymal transition (EMT) may be vital to IA progression. Here, identified key EMT-related genes in aneurysms and their pathogenic mechanisms via bioinformatic analysis. The GSE13353, GSE75436, and GSE54083 datasets from Gene Expression Omnibus were analyzed with limma to identify differentially expressed genes (DEGs) among unruptured aneurysms, ruptured aneurysms, and healthy samples. The results revealed that three EMT-related DEGs (ADIPOQ, WNT11, and CCL21) were shared among all groups. Coexpression modules and hub genes were identified via weighted gene co-expression network analysis, revealing two significant modules (red and green) and 14 EMT-related genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggested that cytokine interactions were closely related. Gene set enrichment analysis revealed that unruptured aneurysms were enriched for the terms "inflammatory response" and "vascular endothelial growth". Protein-protein interaction analysis identified seven key genes, which were evaluated with the GSE54083 dataset to determine their sensitivity and specificity. In the external validation set, we verified the differential expression of seven genes in unruptured aneurysms and normal samples. Together, these findings indicate that FN1, and SPARC may help distinguish normal patients from patients with asymptomatic IAs.
Collapse
|
9
|
Abstract
Ectopic lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are formed in numerous cancer types, and, with few exceptions, their presence is associated with superior prognosis and response to immunotherapy. In spite of their presumed importance, the triggers that lead to TLS formation in cancer tissue and the contribution of these structures to intratumoral immune responses remain incompletely understood. Here, we discuss the present knowledge on TLSs in cancer, focusing on (i) the drivers of TLS formation, (ii) the function and contribution of TLSs to the antitumor immune response, and (iii) the potential of TLSs as therapeutic targets in human cancers.
Collapse
Affiliation(s)
- Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
10
|
Identification of crucial genes involved in pathogenesis of regional weakening of the aortic wall. Hereditas 2021; 158:35. [PMID: 34852854 PMCID: PMC8638115 DOI: 10.1186/s41065-021-00200-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
Background The diameter of the abdominal aortic aneurysm (AAA) is the most commonly used parameter for the prediction of occurrence of AAA rupture. However, the most vulnerable region of the aortic wall may be different from the most dilated region of AAA under pressure. The present study is the first to use weighted gene coexpression network analysis (WGCNA) to detect the coexpressed genes that result in regional weakening of the aortic wall. Methods The GSE165470 raw microarray dataset was used in the present study. Differentially expressed genes (DEGs) were filtered using the “limma” R package. DEGs were assessed by Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. WGCNA was used to construct the coexpression networks in the samples with regional weakening of the AAA wall and in the control group to detect the gene modules. The hub genes were defined in the significant functional modules, and a hub differentially expressed gene (hDEG) coexpression network was constructed with the highest confidence based on protein–protein interactions (PPIs). Molecular compound detection (MCODE) was used to identify crucial genes in the hDEG coexpression network. Crucial genes in the hDEG coexpression network were validated using the GSE7084 and GSE57691 microarray gene expression datasets. Result A total of 350 DEGs were identified, including 62 upregulated and 288 downregulated DEGs. The pathways were involved in immune responses, vascular smooth muscle contraction and cell–matrix adhesion of DEGs in the samples with regional weakening in AAA. Antiquewhite3 was the most significant module and was used to identify downregulated hDEGs based on the result of the most significant modules negatively related to the trait of weakened aneurysm walls. Seven crucial genes were identified and validated: ACTG2, CALD1, LMOD1, MYH11, MYL9, MYLK, and TPM2. These crucial genes were associated with the mechanisms of AAA progression. Conclusion We identified crucial genes that may play a significant role in weakening of the AAA wall and may be potential targets for medical therapies and diagnostic biomarkers. Further studies are required to more comprehensively elucidate the functions of crucial genes in the pathogenesis of regional weakening in AAA. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00200-1.
Collapse
|
11
|
Clément M, Lareyre F, Loste A, Sannier A, Burel-Vandenbos F, Massiot N, Carboni J, Jean-Baptiste E, Caligiuri G, Nicoletti A, Raffort J. Vascular Remodeling and Immune Cell Infiltration in Splenic Artery Aneurysms. Angiology 2020; 72:539-549. [PMID: 32851875 DOI: 10.1177/0003319720952290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rupture of splenic artery aneurysms (SAAs) is associated with a high mortality rate. The aim of this study was to identify the features of SAAs. Tissue sections from SAAs were compared to nonaneurysmal splenic arteries using various stains. The presence of intraluminal thrombus (ILT), vascular smooth muscle cells (VSMCs), cluster of differentiation (CD)-68+ phagocytes, myeloperoxidase+ neutrophils, CD3+, and CD20+ adaptive immune cells were studied using immunofluorescence microscopy. Analysis of SAAs revealed the presence of atherosclerotic lesions, calcifications, and ILT. Splenic artery aneurysms were characterized by a profound vascular remodeling with a dramatic loss of VSMCs, elastin degradation, adventitial fibrosis associated with enhanced apoptosis, and increased matrix metalloproteinase 9 expression. We observed an infiltration of immune cells comprising macrophages, neutrophils, T, and B cells. The T and B cells were found in the adventitial layer of SAAs, but their organization into tertiary lymphoid organs was halted. We failed to detect germinal centers even in the most organized T/B cell follicles and these lymphoid clusters lacked lymphoid stromal cells. This detailed histopathological characterization of the vascular remodeling during SAA showed that lymphoid neogenesis was incomplete, suggesting that critical mediators of their development must be missing.
Collapse
Affiliation(s)
- Marc Clément
- Université de Paris, LVTS, 121283INSERM U1148, Paris, France
| | - Fabien Lareyre
- Department of Vascular Surgery, 26992University Hospital of Nice, France.,Department of Vascular Surgery, University Hospital of Antibes-Juan-les-Pins, France.,439710Université Côte d'Azur, CHU, INSERM U1065, C3M, Nice, France
| | - Alexia Loste
- Université de Paris, LVTS, 121283INSERM U1148, Paris, France
| | - Aurélie Sannier
- Université de Paris, LVTS, 121283INSERM U1148, Paris, France
| | | | - Nicolas Massiot
- Department of Vascular Surgery, 26992University Hospital of Nice, France
| | - Joseph Carboni
- Department of Vascular Surgery, 26992University Hospital of Nice, France
| | - Elixène Jean-Baptiste
- Department of Vascular Surgery, 26992University Hospital of Nice, France.,439710Université Côte d'Azur, CHU, INSERM U1065, C3M, Nice, France
| | | | | | - Juliette Raffort
- 439710Université Côte d'Azur, CHU, INSERM U1065, C3M, Nice, France.,Clinical Chemistry Laboratory, 121283University Hospital of Nice, France
| |
Collapse
|
12
|
Antonioli L, Fornai M, Pellegrini C, Masi S, Puxeddu I, Blandizzi C. Ectopic Lymphoid Organs and Immune-Mediated Diseases: Molecular Basis for Pharmacological Approaches. Trends Mol Med 2020; 26:1021-1033. [PMID: 32600794 DOI: 10.1016/j.molmed.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is the result a persistent increase in the expression of several proinflammatory pathways with impaired inflammatory resolution. Ectopic lymphoid organs (ELOs), untypical lymphoid annexes, emerge during chronic inflammation and contribute to the physiopathology of chronic inflammatory disorders. This review discusses the pathophysiological role of ELOs in the progression of immune-mediated inflammatory diseases (IMIDs), including multiple sclerosis (MS), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), atherosclerosis, and Sjögren syndrome (SSj). The molecular pathways underlying the emergence of ELOs are of interest for the development of novel pharmacological approaches for the management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Ilaria Puxeddu
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
13
|
Luo S, Zhu R, Yu T, Fan H, Hu Y, Mohanta SK, Hu D. Chronic Inflammation: A Common Promoter in Tertiary Lymphoid Organ Neogenesis. Front Immunol 2019; 10:2938. [PMID: 31921189 PMCID: PMC6930186 DOI: 10.3389/fimmu.2019.02938] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) frequently develop locally in adults in response to non-resolving inflammation. Chronic inflammation leads to the differentiation of stromal fibroblast cells toward lymphoid tissue organizer-like cells, which interact with lymphotoxin α1β2+ immune cells. The interaction initiates lymphoid neogenesis by recruiting immune cells to the site of inflammation and ultimately leads to the formation of TLOs. Mature TLOs harbor a segregated T-cell zone, B-cell follicles with an activated germinal center, follicular dendritic cells, and high endothelial venules, which architecturally resemble those in secondary lymphoid organs. Since CXCL13 and LTα1β2 play key roles in TLO neogenesis, they might constitute potential biomarkers of TLO activity. The well-developed TLOs actively regulate local immune responses and influence disease progression, and they are thereby regarded as the powerhouses of local immunity. In this review, we recapitulated the determinants for TLOs development, with great emphasis on the fundamental role of chronic inflammation and tissue-resident stromal cells for TLO neogenesis, hence offering guidance for therapeutic interventions in TLO-associated diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sarajo Kumar Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Guedj K, Abitbol Y, Cazals-Hatem D, Morvan M, Maggiori L, Panis Y, Bouhnik Y, Caligiuri G, Corcos O, Nicoletti A. Adipocytes orchestrate the formation of tertiary lymphoid organs in the creeping fat of Crohn's disease affected mesentery. J Autoimmun 2019; 103:102281. [PMID: 31171476 DOI: 10.1016/j.jaut.2019.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022]
Abstract
The formation of tertiary lymphoid organs (TLOs) is orchestrated by the stromal cells of tissues chronically submitted to inflammatory stimuli, in order to uphold specific adaptive immune responses. We have recently shown that the smooth muscle cells of the arterial wall orchestrate the formation of the TLOs associated with atherosclerosis in response to the local release of TNF-α. Observational studies have recently documented the presence of structures resembling TLOs the creeping fat that develops in the mesentery of patients with Crohn's disease (CD), an inflammatory condition combining a complex and as yet not elucidated infectious and autoimmune responses. We have performed a comprehensive analysis of the TLO structures in order to decipher the mechanism leading to their formation in the mesentery of CD patients, and assessed the effect of infectious and/or inflammatory inducers on the potential TLO-organizer functions of adipocytes. Quantitative analysis showed that both T and B memory cells, as well as plasma cells, are enriched in the CD-affected mesentery, as compared with tissue from control subjects. Immunohistochemistry revealed that these cells are concentrated within the creeping fat of CD patients, in the vicinity of transmural lesions; that T and B cells are compartmentalized in clearly distinct areas; that they are supplied by post-capillary high endothelial venules and drained by lymphatic vessels indicating that these nodules are fully mature TLOs. Organ culture showed that mesenteric tissue samples from CD patients contained greater amounts of adipocyte-derived chemokines and the use of the conditioned medium from these cultures in functional assays was able to actively recruit T and B lymphocytes. Finally, the production of chemokines involved in TLO formation by 3T3-L1 adipocytes was directly elicited by a combination of TNF-α and LPS in vitro. We therefore propose a mechanism in which mesenteric adipocyte, through their production of key chemokines in response to inflammatory/bacterial stimuli, may orchestrate the formation of functional TLOs developing in CD-affected mesentery.
Collapse
Affiliation(s)
- Kevin Guedj
- Université de Paris, UMRS1148, INSERM, DHU Fire, Hôpital Bichat, 46 rue Henri Huchard, 75018, Paris, France; APHP, Department of Gastroenterology, IBD and Intestinal Failure, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Yaël Abitbol
- Université de Paris, UMRS1148, INSERM, DHU Fire, Hôpital Bichat, 46 rue Henri Huchard, 75018, Paris, France; APHP, Department of Gastroenterology, IBD and Intestinal Failure, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Dominique Cazals-Hatem
- APHP, Department of Pathology, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Marion Morvan
- Université de Paris, UMRS1148, INSERM, DHU Fire, Hôpital Bichat, 46 rue Henri Huchard, 75018, Paris, France
| | - Léon Maggiori
- APHP, Department of Colorectal Surgery, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France; DHU Unity - Paris 7 Diderot University, 5 rue Thomas Mann, 75013, Paris, France
| | - Yves Panis
- APHP, Department of Colorectal Surgery, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France; DHU Unity - Paris 7 Diderot University, 5 rue Thomas Mann, 75013, Paris, France
| | - Yoram Bouhnik
- DHU Unity - Paris 7 Diderot University, 5 rue Thomas Mann, 75013, Paris, France; APHP, Department of Gastroenterology, IBD and Intestinal Failure, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Giuseppina Caligiuri
- Université de Paris, UMRS1148, INSERM, DHU Fire, Hôpital Bichat, 46 rue Henri Huchard, 75018, Paris, France
| | - Olivier Corcos
- Université de Paris, UMRS1148, INSERM, DHU Fire, Hôpital Bichat, 46 rue Henri Huchard, 75018, Paris, France; DHU Unity - Paris 7 Diderot University, 5 rue Thomas Mann, 75013, Paris, France; APHP, Department of Gastroenterology, IBD and Intestinal Failure, Hôpital Beaujon, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Antonino Nicoletti
- Université de Paris, UMRS1148, INSERM, DHU Fire, Hôpital Bichat, 46 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
15
|
Du J, Flynn R, Paz K, Ren HG, Ogata Y, Zhang Q, Gafken PR, Storer BE, Roy NH, Burkhardt JK, Mathews W, Tolar J, Lee SJ, Blazar BR, Paczesny S. Murine chronic graft-versus-host disease proteome profiling discovers CCL15 as a novel biomarker in patients. Blood 2018; 131:1743-1754. [PMID: 29348127 PMCID: PMC5897867 DOI: 10.1182/blood-2017-08-800623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022] Open
Abstract
Improved diagnostic and treatment methods are needed for chronic graft-versus-host disease (cGVHD), the leading cause of late nonrelapse mortality (NRM) in long-term survivors of allogenic hematopoietic cell transplantation. Validated biomarkers that facilitate disease diagnosis and classification generally are lacking in cGVHD. Here, we conducted whole serum proteomics analysis of a well-established murine multiorgan system cGVHD model. We discovered 4 upregulated proteins during cGVHD that are targetable by genetic ablation or blocking antibodies, including the RAS and JUN kinase activator, CRKL, and CXCL7, CCL8, and CCL9 chemokines. Donor T cells lacking CRK/CRKL prevented the generation of cGVHD, germinal center reactions, and macrophage infiltration seen with wild-type T cells. Whereas antibody blockade of CCL8 or CXCL7 was ineffective in treating cGVHD, CCL9 blockade reversed cGVHD clinical manifestations, histopathological changes, and immunopathological hallmarks. Mechanistically, elevated CCL9 expression was present predominantly in vascular smooth muscle cells and uniquely seen in cGVHD mice. Plasma concentrations of CCL15, the human homolog of mouse CCL9, were elevated in a previously published cohort of 211 cGVHD patients compared with controls and associated with NRM. In a cohort of 792 patients, CCL15 measured at day +100 could not predict cGVHD occurring within the next 3 months with clinically relevant sensitivity/specificity. Our findings demonstrate for the first time the utility of preclinical proteomics screening to identify potential new targets for cGVHD and specifically CCL15 as a diagnosis marker for cGVHD. These data warrant prospective biomarker validation studies.
Collapse
Affiliation(s)
- Jing Du
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ryan Flynn
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Katelyn Paz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Hong-Gang Ren
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | - Barry E Storer
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia-Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia-Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wendy Mathews
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Stephanie J Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Sophie Paczesny
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
16
|
Radke J, Koll R, Preuße C, Pehl D, Todorova K, Schönemann C, Allenbach Y, Aronica E, de Visser M, Heppner FL, Weis J, Doostkam S, Maisonobe T, Benveniste O, Goebel HH, Stenzel W. Architectural B-cell organization in skeletal muscle identifies subtypes of dermatomyositis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018. [PMID: 29520367 PMCID: PMC5840889 DOI: 10.1212/nxi.0000000000000451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective To study the B-cell content, organization, and existence of distinct B-cell subpopulations in relation to the expression of type 1 interferon signature related genes in dermatomyositis (DM). Methods Evaluation of skeletal muscle biopsies from patients with adult DM (aDM) and juvenile DM (jDM) by histology, immunohistochemistry, electron microscopy, and quantitative reverse-transcription PCR. Results We defined 3 aDM subgroups—classic (containing occasional B cells without clusters), B-cell–rich, and follicle-like aDM—further elucidating IM B-lymphocyte maturation and immunity. The quantity of B cells and formation of ectopic lymphoid structures in a subset of patients with aDM were associated with a specific profile of cytokines and chemokines involved in lymphoid neogenesis. Levels of type 1 interferon signature related gene expression paralleled B-cell content and architectural organization and link B-cell immunity to the interferon type I signature. Conclusion These data corroborate the important role of B cells in DM, highlighting the direct link between humoral mechanisms as key players in B-cell immunity and the role of type I interferon–related immunity.
Collapse
Affiliation(s)
- Josefine Radke
- Author affiliations are provided at the end of the article
| | - Randi Koll
- Author affiliations are provided at the end of the article
| | - Corinna Preuße
- Author affiliations are provided at the end of the article
| | - Debora Pehl
- Author affiliations are provided at the end of the article
| | | | | | - Yves Allenbach
- Author affiliations are provided at the end of the article
| | | | | | | | - Joachim Weis
- Author affiliations are provided at the end of the article
| | | | | | | | | | - Werner Stenzel
- Author affiliations are provided at the end of the article
| |
Collapse
|
17
|
Kranich J, Krautler NJ. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Front Immunol 2016; 7:225. [PMID: 27446069 PMCID: PMC4914831 DOI: 10.3389/fimmu.2016.00225] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs.
Collapse
Affiliation(s)
- Jan Kranich
- Institute for Immunology, Ludwig Maximilian University Munich, Munich, Germany
| | | |
Collapse
|
18
|
Shalhoub J, Viiri LE, Cross AJ, Gregan SM, Allin DM, Astola N, Franklin IJ, Davies AH, Monaco C. Multi-analyte profiling in human carotid atherosclerosis uncovers pro-inflammatory macrophage programming in plaques. Thromb Haemost 2016; 115:1064-72. [PMID: 26763091 DOI: 10.1160/th15-08-0650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023]
Abstract
Molecular characterisation of vulnerable atherosclerosis is necessary for targeting functional imaging and plaque-stabilising therapeutics. Inflammation has been linked to atherogenesis and the development of high-risk plaques. We set to quantify cytokine, chemokine and matrix metalloproteinase (MMP) protein production in cells derived from carotid plaques to map the inflammatory milieu responsible for instability. Carotid endarterectomies from carefully characterised symptomatic (n=35) and asymptomatic (n=32) patients were enzymatically dissociated producing mixed cell type atheroma cell suspensions which were cultured for 24 hours. Supernatants were interrogated for 45 analytes using the Luminex 100 platform. Twenty-nine of the 45 analytes were reproducibly detectable in the majority of donors. The in vitro production of a specific network of mediators was found to be significantly higher in symptomatic than asymptomatic plaques, including: tumour necrosis factor α, interleukin (IL) 1β, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), CCL5, CCL20, CXCL9, matrix metalloproteinase (MMP)-3 and MMP-9. Ingenuity pathway analysis of differentially expressed analytes between symptomatic and asymptomatic patients identified a number of key biological pathways (p< 10(-25)). In conclusion, the carotid artery plaque culprit of ischaemic neurological symptoms is characterised by an inflammatory milieu favouring inflammatory cell recruitment and pro-inflammatory macrophage polarisation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Claudia Monaco
- Claudia Monaco, Professor of Cardiovascular Inflammation, Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK, Tel.: +44 1865 612 636, Fax: +44 1865 612 601, E-mail:
| |
Collapse
|
19
|
Le Borgne M, Caligiuri G, Nicoletti A. Once Upon a Time: The Adaptive Immune Response in Atherosclerosis--a Fairy Tale No More. Mol Med 2015; 21 Suppl 1:S13-8. [PMID: 26605642 DOI: 10.2119/molmed.2015.00027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 01/06/2023] Open
Abstract
Extensive research has been carried out to decipher the function of the adaptive immune response in atherosclerosis, with the expectation that it will pave the road for the design of immunomodulatory therapies that will prevent or reverse the progression of the disease. All this work has led to the concept that some T- and B-cell subsets are proatherogenic, whereas others are atheroprotective. In addition to the immune response occurring in the spleen and lymph nodes, it has been shown that lymphoid neo-genesis takes place in the adventitia of atherosclerotic vessels, leading to the formation of tertiary lymphoid organs where an adaptive immune response can be mounted. Whereas the mechanisms orchestrating the formation of these organs are becoming better understood, their impact on atherosclerosis progression remains unclear. Several potential therapeutic strategies against atherosclerosis, such as protective vaccination against atherosclerosis antigens or inhibiting the activation of proatherogenic B cells, have been proposed based on our improving knowledge of the role of the immune system in atherosclerosis. These strategies have shown success in preclinical studies, giving hope that they will lead to clinical applications.
Collapse
Affiliation(s)
- Marie Le Borgne
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire DHU FIRE, Paris, France
| | - Giuseppina Caligiuri
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire DHU FIRE, Paris, France
| | - Antonino Nicoletti
- Unité 1148, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Xavier Bichat, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire DHU FIRE, Paris, France
| |
Collapse
|
20
|
DeMelo EN, McDonald C, Saibil F, Marcon MA, Mahmud FH. Celiac Disease and Type 1 Diabetes in Adults: Is This a High-Risk Group for Screening? Can J Diabetes 2015; 39:513-9. [PMID: 26293006 DOI: 10.1016/j.jcjd.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/26/2015] [Accepted: 06/16/2015] [Indexed: 12/27/2022]
Abstract
The association between celiac disease (CD), an autoimmune condition involving intestinal inflammation related to gluten ingestion, and type 1 diabetes has long been recognized. CD prevalence rates 4 to 6 times greater in adults with type 1 diabetes than in the general population. Much of the existing literature focuses on important implications related to the impact of a gluten-free diet on short-term outcomes in metabolic control and quality of life. Canadian Diabetes Association guidelines recommend targeted CD screening in patients with type 1 diabetes who have classic symptoms, such as abdominal pain, bloating, diarrhea, unexplained weight loss or labile metabolic control; however, a significant proportion (40% to 60%) of patients may have mild or absent symptoms. Recent evidence suggests that adult patients with both conditions are at higher risk for diabetes microvascular comorbidities, increased mortality and impaired bone health if the CD is untreated. The purpose of this review is to describe the association between CD and type 1 diabetes and to summarize recent literature that evaluates risks in patients with both conditions.
Collapse
Affiliation(s)
- Emilia N DeMelo
- Division of Endocrinology, Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Charlotte McDonald
- Department of Medicine, Division of Endocrinology and Metabolism, St. Joseph's Health Care, University of Western Ontario, London, Ontario, Canada
| | - Fred Saibil
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Margaret A Marcon
- Division of Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Farid H Mahmud
- Division of Endocrinology, Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Dallaudiere B, Louedec L, Lenet MPJ, Pesquer L, Blaise E, Perozziello A, Michel JB, Moinard M, Meyer P, Serfaty JM. The molecular systemic and local effects of intra-tendinous injection of Platelet Rich Plasma in tendinosis: preliminary results on a rat model with ELISA method. Muscles Ligaments Tendons J 2015; 5:99-105. [PMID: 26261788 PMCID: PMC4496025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE the aim of our study was thus to quantify the effect of Platelet Rich Plasma (PRP) injection on systemic and local growth factors and to identify molecular markers in a rat model of patellar and Achilles tendinosis treated with PRP. MATERIAL AND METHOD twenty two rats were used for the study. Two healthy rats were used as control (T-). We induced tendinosis (T+) in 20 rats (80 tendons by injecting under ultrasonography (US) guidance Collagenase 1® (day 0 = D0, patellar=40 and Achilles=40). At D3, these 20 rats with tendinosis were separated in treatment by either PRP (PRPT+, n=28), physiological serum (PST+, n=28, control) US-guided intratendinous injection, or without no PRP or PS (T+, n=24, control of natural evolution of tendinopathy). Follow-up at D7, D13, D18 and D25 using serum sample and local tendon removal with ELISA technics and comparison between the 3 groups were performed. RESULTS during biological follow up, comparison of all serum samples of PRPT+, PST+ and T+ groups showed no significant modification of their biological markers at D7, D13, D18 and D25 (p>0.22). Comparison of immunological sample tendon markers of PRPT+, PST+ and T+ groups also showed no significant modification of markers at D7, D13, D18 and D25 (p>0.16) considering each biological marker and also all subgroups confounded. CONCLUSION our study strongly suggests that a single intratendinous US-guided injection of PRP in Achilles and patellar T+ doesn't increase biological markers such as growth factors compared to a control group in mid-term and long-term follow-up.
Collapse
Affiliation(s)
- Benjamin Dallaudiere
- Centre d’Imagerie Ostéo-articulaire, Clinique du Sport de Bordeaux-Mérignac, France
- Department of MSK Radiology Department, CHU Pellegrin, Bordeaux, France
| | - Liliane Louedec
- Department of MSK Radiology Department, CHU Pellegrin, Bordeaux, France
| | | | - Lionel Pesquer
- Department of MSK Radiology Department, CHU Pellegrin, Bordeaux, France
| | - Elvind Blaise
- Department of MSK Radiology Department, CHU Pellegrin, Bordeaux, France
| | - Anne Perozziello
- Department of MSK Radiology Department, CHU Pellegrin, Bordeaux, France
| | | | - Maryse Moinard
- Department of MSK Radiology Department, CHU Pellegrin, Bordeaux, France
| | - Philippe Meyer
- Department of MSK Radiology Department, CHU Pellegrin, Bordeaux, France
| | | |
Collapse
|