1
|
Chang SH, Chang YM, Chen HY, Shaw FZ, Shyu BC. Time-course analysis of frontal gene expression profiles in the rat model of posttraumatic stress disorder and a comparison with the conditioned fear model. Neurobiol Stress 2023; 27:100569. [PMID: 37771408 PMCID: PMC10522909 DOI: 10.1016/j.ynstr.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex disorder that involves physiological, emotional, and cognitive dysregulation that may occur after exposure to a life-threatening event. In contrast with the condition of learned fear with resilience to extinction, abnormal fear with impaired fear extinction and exaggeration are considered crucial factors for the pathological development of PTSD. The prefrontal cortex (mPFC) is considered a critical region of top-down control in fear regulation, which involves the modulation of fear expression and extinction. The pathological course of PTSD is usually chronic and persistent; a number of studies have indicated temporal progression in gene expression and phenotypes may be involved in PTSD pathology. In the current study, we use a well-established modified single-prolonged stress (SPS&FS) rat model to feature PTSD-like phenotypes and compared it with a footshock fear conditioning model (FS model); we collected the frontal tissue after extreme stress exposure or fear conditioning and extracted RNA for transcriptome-level gene sequencing. We compared the genetic profiling of the mPFC at early (<2 h after solely FS or SPS&FS exposure) and late (7 days after solely FS or SPS&FS exposure) stages in these two models. First, we identified temporal differences in the expressional patterns between these two models and found pathways such as protein synthesis factor eukaryotic initiation factor 2 (EIF2), transcription factor NF-E2-related factor 2 (NRF2)-mediated oxidative stress response, and acute phase responding signaling enriched in the early stage in both models with significant p-values. Furthermore, in the late stage, the sirtuin signaling pathway was enriched in both models; other pathways such as STAT3, cAMP, lipid metabolism, Gα signaling, and increased fear were especially enriched in the late stage of the SPS&FS model. However, pathways such as VDR/RXR, GP6, and PPAR signaling were activated significantly in the FS model's late stage. Last, the network analysis revealed the temporal dynamics of psychological disorder, the endocrine system, and also genes related to increased fear in the two models. This study could help elucidate the genetic temporal alteration and stage-specific pathways in these two models, as well as a better understanding of the transcriptome-level differences between them.
Collapse
Affiliation(s)
- Shao-Han Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Yuan Chen
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Chang SH, Chen HY, Shaw FZ, Shyu BC. Early- and late-phase changes of brain activity and early-phase neuromodulation in the posttraumatic stress disorder rat model. Neurobiol Stress 2023; 26:100554. [PMID: 37576348 PMCID: PMC10415797 DOI: 10.1016/j.ynstr.2023.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex syndrome that may occur after life-threatening events. Fear memory abnormalities may play vital roles in the pathogenesis of PTSD. Previous work has found that fear memories are not rigid; the retrieval of fear memories may change over time. Furthermore, prior studies suggest that theta wave (4 Hz) activity is highly correlated with fear expression in an animal model. However, the relationship between pathological fear memory and potential brain wave features in PTSD remains largely uncharacterized. Here, we hypothesized that after traumatic stress exposure, the longitudinal dynamics of abnormal fears in PTSD animal models could be reflected by the measurement of local field potentials (LFPs). Using a well-established modified single-prolonged stress and footshock (SPS & FS) PTSD rat model, animals were restrained for 2 h and subsequently subjected to 20 min of forced swimming, then exposed to diethyl ether until they lost consciousness and placed in a conditioning chamber for fear conditioning. To characterize the temporal changes, we characterized freezing behavior brain wave features during the conditioning chamber re-exposure in the early (10 and 30 min; 2, 4, and 6 h) and late (day 1, 3, 7, and 14) phases after traumatic stress exposure. Our results indicate that SPS & FS rats showed co-morbid PTSD phenotypes including significantly higher levels of anxiety-, depression-, and anhedonia-like behaviors, and impaired fear extinction. Delta wave (0.5-4 Hz) suppression in the medial prefrontal cortex, amygdala, and ventral hippocampus occurred 10 and 30 min after traumatic stress, followed by continuous delta wave activity from 2 h to day 14, correlating with fear levels. tDCS reduced delta activity and alleviated PTSD-like phenotypes in the SPS & FS group. In this study, profiling abnormal fears with brain wave correlates may improve our understanding of time-dependent pathological fear memory retrieval in PTSD and facilitate the development of effective intervention strategies.
Collapse
Affiliation(s)
- Shao-Han Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Huan-Yuan Chen
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Stekic A, Zeljkovic M, Zaric Kontic M, Mihajlovic K, Adzic M, Stevanovic I, Ninkovic M, Grkovic I, Ilic TV, Nedeljkovic N, Dragic M. Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model. Front Aging Neurosci 2022; 14:889983. [PMID: 35656538 PMCID: PMC9152158 DOI: 10.3389/fnagi.2022.889983] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration implies progressive neuronal loss and neuroinflammation further contributing to pathology progression. It is a feature of many neurological disorders, most common being Alzheimer’s disease (AD). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive stimulation which modulates excitability of stimulated brain areas through magnetic pulses. Numerous studies indicated beneficial effect of rTMS in several neurological diseases, including AD, however, exact mechanism are yet to be elucidated. We aimed to evaluate the effect of intermittent theta burst stimulation (iTBS), an rTMS paradigm, on behavioral, neurochemical and molecular level in trimethyltin (TMT)-induced Alzheimer’s-like disease model. TMT acts as a neurotoxic agent targeting hippocampus causing cognitive impairment and neuroinflammation, replicating behavioral and molecular aspects of AD. Male Wistar rats were divided into four experimental groups–controls, rats subjected to a single dose of TMT (8 mg/kg), TMT rats subjected to iTBS two times per day for 15 days and TMT sham group. After 3 weeks, we examined exploratory behavior and memory, histopathological and changes on molecular level. TMT-treated rats exhibited severe and cognitive deficit. iTBS-treated animals showed improved cognition. iTBS reduced TMT-induced inflammation and increased anti-inflammatory molecules. We examined PI3K/Akt/mTOR signaling pathway which is involved in regulation of apoptosis, cell growth and learning and memory. We found significant downregulation of phosphorylated forms of Akt and mTOR in TMT-intoxicated animals, which were reverted following iTBS stimulation. Application of iTBS produces beneficial effects on cognition in of rats with TMT-induced hippocampal neurodegeneration and that effect could be mediated via PI3K/Akt/mTOR signaling pathway, which could candidate this protocol as a potential therapeutic approach in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milica Zeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Ivana Grkovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milorad Dragic,
| |
Collapse
|
5
|
Kim HC, Lee W, Kunes J, Yoon K, Lee JE, Foley L, Kowsari K, Yoo SS. Transcranial focused ultrasound modulates cortical and thalamic motor activity in awake sheep. Sci Rep 2021; 11:19274. [PMID: 34588588 PMCID: PMC8481295 DOI: 10.1038/s41598-021-98920-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Transcranial application of pulsed low-intensity focused ultrasound (FUS) modulates the excitability of region-specific brain areas, and anesthetic confounders on brain activity warrant the evaluation of the technique in awake animals. We examined the neuromodulatory effects of FUS in unanesthetized sheep by developing a custom-fit headgear capable of reproducibly placing an acoustic focus on the unilateral motor cortex (M1) and corresponding thalamic area. The efferent responses to sonication, based on the acoustic parameters previously identified in anesthetized sheep, were measured using electromyography (EMG) from both hind limbs across three experimental conditions: on-target sonication, off-target sonication, and without sonication. Excitatory sonication yielded greater amplitude of EMG signals obtained from the hind limb contralateral to sonication than that from the ipsilateral limb. Spurious appearance of motion-related EMG signals limited the amount of analyzed data (~ 10% selection of acquired data) during excitatory sonication, and the averaged EMG response rates elicited by the M1 and thalamic stimulations were 7.5 ± 1.4% and 6.7 ± 1.5%, respectively. Suppressive sonication, while sheep walked on the treadmill, temporarily reduced the EMG amplitude from the limb contralateral to sonication. No significant change was found in the EMG amplitudes during the off-target sonication. Behavioral observation throughout the study and histological analysis showed no sign of brain tissue damage caused by the acoustic stimulation. Marginal response rates observed during excitatory sonication call for technical refinement to reduce motion artifacts during EMG acquisitions as well as acoustic aberration correction schemes to improve spatial accuracy of sonication. Yet, our results indicate that low-intensity FUS modulated the excitability of regional brain tissues reversibly and safely in awake sheep, supporting its potential in theragnostic applications.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jennifer Kunes
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kyungho Yoon
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Ji Eun Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Lori Foley
- Translational Discovery Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Kavin Kowsari
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Zhou CH, Xue F, Xue SS, Sang HF, Liu L, Wang Y, Cai M, Zhang ZJ, Tan QR, Wang HN, Peng ZW. Electroacupuncture Pretreatment Ameliorates PTSD-Like Behaviors in Rats by Enhancing Hippocampal Neurogenesis via the Keap1/Nrf2 Antioxidant Signaling Pathway. Front Cell Neurosci 2019; 13:275. [PMID: 31293390 PMCID: PMC6598452 DOI: 10.3389/fncel.2019.00275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Electroacupuncture (EA) pretreatment is a clinically useful therapy for several brain disorders. However, whether and via which exact molecular mechanisms it ameliorates post-traumatic stress disorder (PTSD) remains unclear. In the present study, rats received EA stimulation for seven consecutive days before exposure to enhanced single prolonged stress (ESPS). Anxiety-like and fear learning behaviors; hippocampal neurogenesis; the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (keap1), and heme oxygenase 1 (HO-1); and the activity of AMP-activated kinase (AMPK) were evaluated at 14 days after ESPS. EA pretreatment improved hippocampal neurogenesis and ameliorated anxiety-like behaviors in ESPS-treated rats. EA pretreatment also increased the expression of Nrf2 and HO-1 and the activity of AMPK. Furthermore, Nrf2 knockdown by a short hairpin RNA affected anxiety-like behaviors and expression of neuroprotective markers (BDNF, DCX) in a manner similar to ESPS alone and dampened the neuroprotective effects of EA pretreatment. In contrast, Keap1 knockdown increased the expression of HO-1, improved hippocampal neurogenesis, and alleviated PTSD-like behaviors. Altogether, our results suggest that EA pretreatment ameliorates ESPS-induced anxiety-like behaviors and prevents hippocampal neurogenesis disruption in a rat model of PTSD possibly through regulation of the keap1/Nrf2 antioxidant defense pathway.
Collapse
Affiliation(s)
- Cui-Hong Zhou
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fen Xue
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shan-Shan Xue
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Han-Fei Sang
- Department of Anesthesiology, Xiang'an Hospital, Xiamen, China
| | - Ling Liu
- Institution of Neuroscience, Fourth Military Medical University, Xi'an, China
| | - Ying Wang
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Cai
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qing-Rong Tan
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua-Ning Wang
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng-Wu Peng
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Gouveia FV, Gidyk DC, Giacobbe P, Ng E, Meng Y, Davidson B, Abrahao A, Lipsman N, Hamani C. Neuromodulation Strategies in Post-Traumatic Stress Disorder: From Preclinical Models to Clinical Applications. Brain Sci 2019; 9:brainsci9020045. [PMID: 30791469 PMCID: PMC6406551 DOI: 10.3390/brainsci9020045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/02/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is an often debilitating disease with a lifetime prevalence rate between 5⁻8%. In war veterans, these numbers are even higher, reaching approximately 10% to 25%. Although most patients benefit from the use of medications and psychotherapy, approximately 20% to 30% do not have an adequate response to conventional treatments. Neuromodulation strategies have been investigated for various psychiatric disorders with promising results, and may represent an important treatment option for individuals with difficult-to-treat forms of PTSD. We review the relevant neurocircuitry and preclinical stimulation studies in models of fear and anxiety, as well as clinical data on the use of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and deep brain stimulation (DBS) for the treatment of PTSD.
Collapse
Affiliation(s)
| | - Darryl C Gidyk
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada.
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada.
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Enoch Ng
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Benjamin Davidson
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Agessandro Abrahao
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada.
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada.
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
8
|
Ma S, Zhang M, Zhang S, Wang J, Zhou X, Guo G, Wang L, Wang M, Peng Z, Guo C, Zheng X, Zhou X, Wang J, Han Y. Characterisation of Lamp2-deficient rats for potential new animal model of Danon disease. Sci Rep 2018; 8:6932. [PMID: 29720683 PMCID: PMC5932014 DOI: 10.1038/s41598-018-24351-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Danon disease (DD) is caused by the absence or malfunction of lysosomal-associated membrane protein 2 (LAMP2). Although Lamp2-deficient mice and DD patients have similar characteristics, these mice have clear limitations and are clinically inconsistent. The aim of our paper is to outline the characteristics of Lamp2-deficient rats and to contrast this model with currently available DD mouse models. The baseline levels of some serum enzymes were elevated in Lamp2y/− rats along with hypercholesterolemia and hyperglycaemia at 8 weeks. Echocardiography showed that IVSd (1.500 ± 0.071 vs. 2.200 ± 1.147, P < 0.01) and LVPWd (1.575 ± 0.063 vs. 1.850 ± 0.029, P < 0.01) were significantly increased, and GCS (−13.20 ± 0.4814 vs. −6.954 ± 0.665) and GRS (21.42 ± 1.807 vs. 7.788 ± 1.140) were sharply decreased. Meanwhile, substantial myocyte disruption, hypertrophic muscle fibres, interstitial fibrosis and microvascular hyperplasia could be observed in the heart tissue. Lamp2y/− rats also displayed abnormal behaviours in the open field and fear conditioning tests. Notably, Lamp2y/− rats manifested other system dysfunctions, such as retinopathy, chronic kidney injury and sterility. Based on these results, Lamp2-deficient rats exhibited greater similarity to DD patients in terms of onset and multisystem lesions than did mouse models, and these rats could be used as a valuable animal model for DD.
Collapse
Affiliation(s)
- Shuoyi Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Shuai Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Division of Ultrasonography, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Lu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Min Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Zhengwu Peng
- Division of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Changcun Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaohong Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
9
|
Repetitive transcranial magnetic stimulation inhibits Sirt1/MAO-A signaling in the prefrontal cortex in a rat model of depression and cortex-derived astrocytes. Mol Cell Biochem 2017; 442:59-72. [PMID: 28948423 DOI: 10.1007/s11010-017-3193-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/09/2017] [Indexed: 02/06/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a useful monotherapy for depression or adjunctive therapy for resistant depression. However, the anti-depressive effects of different parameters and the underlying mechanisms remain unclear. Here, we aimed to assess the effect of rTMS with different parameters (1/5/10 Hz, 0.84/1.26 T) on the depressive-like behaviors, 5-hydroxytryptamine (5-HT), 5-HIAA (5-hydroxyindoleacetic acid) and DA and NE levels, and monoamine oxidase A (MAO-A) activity in chronic unpredictable stress-treated rats, along with the expression of sirtuin 1 (Sirt1) and MAO-A in the prefrontal cortex (PFC) and cortex-derived astrocytes from new-born rats. Moreover, the depressive-like behaviors were monitored following the transcranial injection of the Sirt1 inhibitor EX527 (1 mM) daily for 1 week. We found that rTMS treatment (5/10 Hz, 0.84/1.26 T) ameliorated depressive-like behaviors, increased 5-HT, DA and NE levels, decreased the 5-HIAA level and Sirt1 and MAO-A expression, and reduced MAO-A activity in the PFC. The depressive-like behaviors were also ameliorated after the transcranial injection of EX527. Importantly, rTMS (5/10 Hz, 0.84/1.26 T) inhibited Sirt1 and MAO-A expressions in astrocytes and Sirt1 knockdown with short hairpin RNA decreased MAO-A expression in astrocytes. These results suggest that the inhibition of Sirt1/MAO-A expression in astrocytes in the PFC may contribute to the different anti-depressive effects of rTMS with different parameters, and may also provide a novel insight into the mechanisms underlying major depressive disorder.
Collapse
|
10
|
rTMS Ameliorates PTSD Symptoms in Rats by Enhancing Glutamate Transmission and Synaptic Plasticity in the ACC via the PTEN/Akt Signalling Pathway. Mol Neurobiol 2017; 55:3946-3958. [PMID: 28550530 DOI: 10.1007/s12035-017-0602-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/04/2017] [Indexed: 02/02/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a novel physiological therapy that has been adopted to clinically treat psychiatric disorders. Our previous study indicated the potential therapeutic effect of rTMS on posttraumatic stress disorder (PTSD). However, the exact molecular mechanism is elusive. Currently, using the single prolonged stress (SPS) rat model for PTSD, we investigated the glutamatergic transmission and neural plasticity changes in the anterior cingulate cortex (ACC) after SPS induction and explored the protective effects and mechanism of rTMS treatment. We found that high-frequency rTMS (HrTMS, 15 Hz) treatment significantly relieved the impaired glutamatergic receptors in the ACC after SPS treatment by significantly increasing NMDAR and AMPAR expression. Simultaneously, HrTMS blocked inhibited neuronal phosphatase and tensin homologue on chromosome 10 (PTEN)/Akt signalling in the ACC after SPS treatment by decreasing PTEN expression and increasing Akt phosphorylation, which is critically involved in the regulation of memory and synaptic plasticity. The PTEN inhibitors bpV and small interfering RNA and the Akt inhibitor wortmannin were stereotaxically administered to the ACC after SPS treatment to advance the mechanistic study. Analysis by Western blot, double immunofluorescence, Golgi staining and behavioural tests demonstrated that the effects of rTMS on PTEN/Akt activation, glutamatergic receptor expression, neuronal synaptic plasticity and PTSD-related behaviours induced by SPS treatment were enhanced by PTEN inhibition and blocked by Akt inhibition in the ACC. Our study provides convincing evidence for the effectiveness of rTMS treatment on PTSD and suggests that its potential mechanism involves remodelling neuronal synaptic plasticity via the PTEN/Akt signalling pathway.
Collapse
|
11
|
Chu X, Zhou Y, Hu Z, Lou J, Song W, Li J, Liang X, Chen C, Wang S, Yang B, Chen L, Zhang X, Song J, Dong Y, Chen S, He L, Xie Q, Chen X, Li W. 24-hour-restraint stress induces long-term depressive-like phenotypes in mice. Sci Rep 2016; 6:32935. [PMID: 27609090 PMCID: PMC5016966 DOI: 10.1038/srep32935] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
There is an increasing risk of mental disorders, such as acute stress disorder (ASD), post-traumatic stress disorder (PTSD) and depression among survivors who were trapped in rubble during earthquake. Such long-term impaction of a single acute restraint stress has not been extensively explored. In this study, we subjected mice to 24-hour-restraint to simulate the trapping episode, and investigated the acute (2 days after the restraint) and long-term (35 days after the restraint) impacts. Surprisingly, we found that the mice displayed depression-like behaviors, decreased glucose uptake in brain and reduced adult hippocampal neurogenesis 35 days after the restraint. Differential expression profiling based on microarrays suggested that genes and pathways related to depression and other mental disorders were differentially expressed in both PFC and hippocampus. Furthermore, the depression-like phenotypes induced by 24-hour-restraint could be reversed by fluoxetine, a type of antidepressant drug. These findings demonstrated that a single severe stressful event could produce long-term depressive-like phenotypes. Moreover, the 24-hour-restraint stress mice could also be used for further studies on mood disorders.
Collapse
Affiliation(s)
- Xixia Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhiqiang Hu
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingyu Lou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jing Li
- Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Xiao Liang
- Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Chen Chen
- Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Shuai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Beimeng Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinjing Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yujie Dong
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shiqing Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingguo Xie
- Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China
| | - Xiaoping Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Wuxi Mental Health Center, 156 Qianrong Road, Wuxi 214151, Jiangsu, China
| |
Collapse
|
12
|
Behavioral changes over time in post-traumatic stress disorder: Insights from a rat model of single prolonged stress. Behav Processes 2016; 124:123-9. [DOI: 10.1016/j.beproc.2016.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/30/2015] [Accepted: 01/01/2016] [Indexed: 12/11/2022]
|