1
|
Gilbert JA, Hartmann EM. The indoors microbiome and human health. Nat Rev Microbiol 2024; 22:742-755. [PMID: 39030408 DOI: 10.1038/s41579-024-01077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/21/2024]
Abstract
Indoor environments serve as habitat for humans and are replete with various reservoirs and niches for microorganisms. Microorganisms enter indoor spaces with their human and non-human hosts, as well as via exchange with outdoor sources, such as ventilation and plumbing. Once inside, many microorganisms do not survive, especially on dry, barren surfaces. Even reduced, this microbial biomass has critical implications for the health of human occupants. As urbanization escalates, exploring the intersection of the indoor environment with the human microbiome and health is increasingly vital. The indoor microbiome, a complex ecosystem of microorganisms influenced by human activities and environmental factors, plays a pivotal role in modulating infectious diseases and fostering healthy immune development. Recent advancements in microbiome research shed light on this unique ecological system, highlighting the need for innovative approaches in creating health-promoting living spaces. In this Review, we explore the microbial ecology of built environments - places where humans spend most of their lives - and its implications for immune, endocrine and neurological health. We further propose strategies to harness the indoor microbiome for better health outcomes.
Collapse
Affiliation(s)
- Jack A Gilbert
- Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Pulmonary Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
2
|
Ricchezze G, Buratti E, De Micco F, Cingolani M, Scendoni R. Medico-Legal Applications of the Human Microbiome and Critical Issues Due to Environmental Transfer: A Review. Microorganisms 2024; 12:2424. [PMID: 39770627 PMCID: PMC11677503 DOI: 10.3390/microorganisms12122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Microbiome has recently seen an increase in its forensic applications. It could be employed to identify a suspect when DNA is not available; it can be used to establish postmortem interval (PMI). Furthermore, it could prove to be fundamental in cases of sexual assault. One of the most interesting aspects to study is how microbiomes are transferred. The aim of this review is to analyze the existing literature focusing on the potential transfer of microbiome from humans to environment. Searches on PubMed, Scopus, and Web of Science identified a total of 348 articles. Furthermore, from the bibliographies of the included articles, an additional publication was selected, in accordance with the established inclusion and exclusion criteria. This study has shown the potential of utilizing microbiomes as trace evidence, particularly in connecting individuals to specific environments or objects. However, the variability and dynamics of microbial transfer and persistence need to be carefully addressed.
Collapse
Affiliation(s)
- Giulia Ricchezze
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| | - Erika Buratti
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| | - Francesco De Micco
- Research Unit of Bioethics and Humanities, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy;
| | - Mariano Cingolani
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| | - Roberto Scendoni
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| |
Collapse
|
3
|
Yang Q, Zhang M, Tu Z, Sun Y, Zhao B, Cheng Z, Chen L, Zhong Z, Ye Y, Xia Y. Department-specific patterns of bacterial communities and antibiotic resistance in hospital indoor environments. Appl Microbiol Biotechnol 2024; 108:487. [PMID: 39412549 PMCID: PMC11485044 DOI: 10.1007/s00253-024-13326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The hospital indoor environment has a crucial impact on the microbial exposures that humans encounter. Resistance to antibiotics is a mechanism used by bacteria to develop resilience in indoor environments, and the widespread use of antibiotics has led to changes in the ecological function of resistance genes and their acquisition by pathogens. By integrating the 16S rRNA Illumina sequencing and high-throughput-quantitative PCR approaches with water and air dust samples across seven departments in Peking University Shenzhen Hospital, China, this study yields intriguing findings regarding the department-specific variations, correlations and source tracing of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) within the hospital indoor environment. A notable observation was the pivotal role played by seasonal variations in shaping the bacterial composition across the entire hospital indoor environment. Another department-specific finding was the correlation between ARGs and MGEs abundance, which was evident in the overall hospital indoor environment, but not found in the blood test room, ophthalmology, and gynecology departments. Notably, as an important source of bacteria and ARGs/MGEs for the blood test room, the gynecology department also presented a close link between bacterial communities and the presence of ARGs/MGEs. Additionally, the results reiterate the importance of surveillance and monitoring of antibiotic resistance, specifically in Legionella spp. in man-made water systems, and highlight the significance of understanding genetic elements like Tp614 involved in gene transfer and recombination, and their impact on antimicrobial treatment efficacy. KEY POINTS: • The department-specific variations, correlations and source tracing of bacteria, ARGs, and MGEs were uncovered in the hospital's indoor environment. • Although each department exhibited consistent seasonal impacts on bacterial compositions, the co-occurrence between the presence of ARGs and MGEs was exclusively evident in the emergency, surgery, pneumology and otolaryngology departments. • The gynecology department emerged as a crucial source of bacteria, ARGs and MGEs within the hospital. Additionally, it was found to exhibit a significant correlation between bacterial communities and the presence of ARGs and MGEs.
Collapse
Affiliation(s)
- Qing Yang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihao Tu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuhong Sun
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenfeng Zhong
- Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian, Shenzhen, 518036, Guangdong, China
| | - Yuhui Ye
- Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian, Shenzhen, 518036, Guangdong, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Chou YA, Wang ZY, Chang HC, Liu YC, Su PF, Huang YT, Yang CT, Lai CH. Indoor CO 2 monitoring in a surgical intensive care unit under visitation restrictions during the COVID-19 pandemic. Front Med (Lausanne) 2023; 10:1052452. [PMID: 37521349 PMCID: PMC10375033 DOI: 10.3389/fmed.2023.1052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background Indoor CO2 concentration is an important metric of indoor air quality (IAQ). The dynamic temporal pattern of CO2 levels in intensive care units (ICUs), where healthcare providers experience high cognitive load and occupant numbers are frequently changing, has not been comprehensively characterized. Objective We attempted to describe the dynamic change in CO2 levels in the ICU using an Internet of Things-based (IoT-based) monitoring system. Specifically, given that the COVID-19 pandemic makes hospital visitation restrictions necessary worldwide, this study aimed to appraise the impact of visitation restrictions on CO2 levels in the ICU. Methods Since February 2020, an IoT-based intelligent indoor environment monitoring system has been implemented in a 24-bed university hospital ICU, which is symmetrically divided into areas A and B. One sensor was placed at the workstation of each area for continuous monitoring. The data of CO2 and other pollutants (e.g., PM2.5) measured under standard and restricted visitation policies during the COVID-19 pandemic were retrieved for analysis. Additionally, the CO2 levels were compared between workdays and non-working days and between areas A and B. Results The median CO2 level (interquartile range [IQR]) was 616 (524-682) ppm, and only 979 (0.34%) data points obtained in area A during standard visitation were ≥ 1,000 ppm. The CO2 concentrations were significantly lower during restricted visitation (median [IQR]: 576 [556-596] ppm) than during standard visitation (628 [602-663] ppm; p < 0.001). The PM2.5 concentrations were significantly lower during restricted visitation (median [IQR]: 1 [0-1] μg/m3) than during standard visitation (2 [1-3] μg/m3; p < 0.001). The daily CO2 and PM2.5 levels were relatively low at night and elevated as the occupant number increased during clinical handover and visitation. The CO2 concentrations were significantly higher in area A (median [IQR]: 681 [653-712] ppm) than in area B (524 [504-547] ppm; p < 0.001). The CO2 concentrations were significantly lower on non-working days (median [IQR]: 606 [587-671] ppm) than on workdays (583 [573-600] ppm; p < 0.001). Conclusion Our study suggests that visitation restrictions during the COVID-19 pandemic may affect CO2 levels in the ICU. Implantation of the IoT-based IAQ sensing network system may facilitate the monitoring of indoor CO2 levels.
Collapse
Affiliation(s)
- Ying-An Chou
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zheng-Yao Wang
- Department of Computer Science, Tunghai University, Taichung, Taiwan
- UniSmart Technology Co., Ltd., Taichung, Taiwan
| | - Hsiang-Ching Chang
- Department of Computer Science, Tunghai University, Taichung, Taiwan
- UniSmart Technology Co., Ltd., Taichung, Taiwan
| | - Yi-Chia Liu
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Fang Su
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Yen Ta Huang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Tung Yang
- Department of Computer Science, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Chao-Han Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
5
|
Yun S, Zhong S, Alavi HS, Alahi A, Licina D. Proxy methods for detection of inhalation exposure in simulated office environments. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:396-406. [PMID: 36347935 PMCID: PMC10234809 DOI: 10.1038/s41370-022-00495-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Modern health concerns related to air pollutant exposure in buildings have been exacerbated owing to several factors. Methods for assessing inhalation exposures indoors have been restricted to stationary air pollution measurements, typically assuming steady-state conditions. OBJECTIVE We aimed to examine the feasibility of several proxy methods for estimating inhalation exposure to CO2, PM2.5, and PM10 in simulated office environments. METHODS In a controlled climate chamber mimicking four different office setups, human participants performed a set of scripted sitting and standing office activities. Three proxy sensing techniques were examined: stationary indoor air quality (IAQ) monitoring, individual monitoring of physiological status by wearable wristband, human presence detection by Passive Infrared (PIR) sensors. A ground-truth of occupancy was obtained from video recordings of network cameras. The results were compared with the concurrent IAQ measurements in the breathing zone of a reference participant by means of multiple linear regression (MLR) analysis with a combination of different input parameters. RESULTS Segregating data onto sitting and standing activities could lead to improved accuracy of exposure estimation model for CO2 and PM by 9-60% during sitting activities, relative to combined activities. Stationary PM2.5 and PM10 monitors positioned at the ceiling-mounted ventilation exhaust in vicinity of the seated reference participant accurately estimated inhalation exposure (adjusted R² = 0.91 and R² = 0.87). Measurement at the front edge of the desk near abdomen showed a moderate accuracy (adjusted R² = 0.58) in estimating exposure to CO2. Combining different sensing techniques improved the CO2 exposure detection by twofold, whereas the improvement for PM exposure detection was small (~10%). SIGNIFICANCE This study contributes to broadening the knowledge of proxy methods for personal exposure estimation under dynamic occupancy profiles. The study recommendations on optimal monitor combination and placement could help stakeholders better understand spatial air pollutant gradients indoors which can ultimately improve control of IAQ.
Collapse
Affiliation(s)
- Seoyeon Yun
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fedérale de Lausanne, Lausanne, Switzerland.
| | - Sailin Zhong
- Human-IST Institute, Department of Informatics, University of Fribourg, Fribourg, Switzerland
| | - Hamed S Alavi
- Digital Interactions Lab, Institute of Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandre Alahi
- Visual Intelligence for Transportation, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fedérale de Lausanne, Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fedérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Sah GP, Kovalick G, Chopyk J, Kuo P, Huang L, Ghatbale P, Das P, Realegeno S, Knight R, Gilbert JA, Pride DT. Characterization of SARS-CoV-2 Distribution and Microbial Succession in a Clinical Microbiology Testing Facility during the SARS-CoV-2 Pandemic. Microbiol Spectr 2023; 11:e0450922. [PMID: 36916973 PMCID: PMC10100919 DOI: 10.1128/spectrum.04509-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/11/2023] [Indexed: 03/15/2023] Open
Abstract
The exchange of microbes between humans and the built environment is a dynamic process that has significant impact on health. Most studies exploring the microbiome of the built environment have been predicated on improving our understanding of pathogen emergence, persistence, and transmission. Previous studies have demonstrated that SARS-CoV-2 presence significantly correlates with the proportional abundance of specific bacteria on surfaces in the built environment. However, in these studies, SARS-CoV-2 originated from infected patients. Here, we perform a similar assessment for a clinical microbiology lab while staff were handling SARS-CoV-2 infected samples. The goal of this study was to understand the distribution and dynamics of microbial population on various surfaces within different sections of a clinical microbiology lab during a short period of 2020 Coronavirus disease (COVID-19) pandemic. We sampled floors, benches, and sinks in 3 sections (bacteriology, molecular microbiology, and COVID) of an active clinical microbiology lab over a 3-month period. Although floor samples harbored SARS-CoV-2, it was rarely identified on other surfaces, and bacterial diversity was significantly greater on floors than sinks and benches. The floors were primarily colonized by bacteria common to natural environments (e.g., soils), and benchtops harbored a greater proportion of human-associated microbes, including Staphylococcus and Streptococcus. Finally, we show that the microbial composition of these surfaces did not change over time and remained stable. Despite finding viruses on the floors, no lab-acquired infections were reported during the study period, which suggests that lab safety protocols and sanitation practices were sufficient to prevent pathogen exposures. IMPORTANCE For decades, diagnostic clinical laboratories have been an integral part of the health care systems that perform diagnostic tests on patient's specimens in bulk on a regular basis. Understanding their microbiota should assist in designing and implementing disinfection, and cleaning regime in more effective way. To our knowledge, there is a lack of information on the composition and dynamics of microbiota in the clinical laboratory environments, and, through this study, we have tried to fill that gap. This study has wider implications as understanding the makeup of microbes on various surfaces within clinical laboratories could help identify any pathogenic bacterial taxa that could have colonized these surfaces, and might act as a potential source of laboratory-acquired infections. Mapping the microbial community within these built environments may also be critical in assessing the reliability of laboratory safety and sanitation practices to lower any potential risk of exposures to health care workers.
Collapse
Affiliation(s)
- Govind Prasad Sah
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Grace Kovalick
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Jessica Chopyk
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Peiting Kuo
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Lina Huang
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Pooja Ghatbale
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Promi Das
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, California, USA
| | - Susan Realegeno
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, California, USA
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, California, USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, California, USA
- Scripps Institution of Oceanography and Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | - David T. Pride
- Department of Pathology, University of California San Diego, San Diego, California, USA
- Department of Medicine, University of California San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, California, USA
| |
Collapse
|
7
|
Wu Y, Liang M, Liang Q, Yang X, Sun Y. A distributed lag non-linear time-series study of ambient temperature and healthcare-associated infections in Hefei, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:258-267. [PMID: 34915779 DOI: 10.1080/09603123.2021.2017862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Little is known about the effects of temperature on healthcare-associated infections (HAIs). A distributed lag non-linear model was used to estimate the association between ambient temperature and HAIs in Hefei, China. In total, 9,592 HAIs were included. The effect of low temperature (-0.1°C, 2.5th percentile) was significant on the current day (RR = 1.108, 95%CI:1.003-1.222), and then appeared on the 4th day (RR = 1.045, 95%CI:1.007-1.084) and the 5th day (RR = 1.033, 95%CI:1.006-1.061). The cumulative lag effects of low temperature lasted from the 5th to 10th days (RR = 1.123-1.143), and a long-term cumulative lag effect was observed on the 14th day (RR = 1.157, 95%CI:1.001-1.338). The lag effect of high temperature (31.0°C, 97.5th percentile) was not statistically significant. However, the effects of temperatures on HAIs were not significant among gender or age subgroups. This study suggests that the low temperatures have acute and lag effects on HAIs in Hefei, China.
Collapse
Affiliation(s)
- Yile Wu
- Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qiwei Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Hospital infection Prevention and Control, Children's Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiyao Yang
- Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Center for Evidence-Based Practice, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Cruz-López F, Martínez-Meléndez A, Garza-González E. How Does Hospital Microbiota Contribute to Healthcare-Associated Infections? Microorganisms 2023; 11:microorganisms11010192. [PMID: 36677484 PMCID: PMC9867428 DOI: 10.3390/microorganisms11010192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Healthcare-associated infections (HAIs) are still a global public health concern, associated with high mortality and increased by the phenomenon of antimicrobial resistance. Causative agents of HAIs are commonly found in the hospital environment and are monitored in epidemiological surveillance programs; however, the hospital environment is a potential reservoir for pathogenic microbial strains where microorganisms may persist on medical equipment surfaces, on the environment surrounding patients, and on corporal surfaces of patients and healthcare workers (HCWs). The characterization of hospital microbiota may provide knowledge regarding the relatedness between commensal and pathogenic microorganisms, their role in HAIs development, and the environmental conditions that favor its proliferation. This information may contribute to the effective control of the dissemination of pathogens and to improve infection control programs. In this review, we describe evidence of the contribution of hospital microbiota to HAI development and the role of environmental factors, antimicrobial resistance, and virulence factors of the microbial community in persistence on hospital surfaces.
Collapse
Affiliation(s)
- Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza 66450, Nuevo León, Mexico
| | - Adrián Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Ciudad Universitaria, San Nicolás de los Garza 66450, Nuevo León, Mexico
| | - Elvira Garza-González
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina/Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Avenida Gonzalitos y Madero s/n, Colonia Mitras Centro, Monterrey 64460, Nuevo León, Mexico
- Correspondence:
| |
Collapse
|
9
|
Tozzo P, Delicati A, Caenazzo L. Human microbiome and microbiota identification for preventing and controlling healthcare-associated infections: A systematic review. Front Public Health 2022; 10:989496. [PMID: 36530685 PMCID: PMC9754121 DOI: 10.3389/fpubh.2022.989496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Objective This systematic review describes the role of the human microbiome and microbiota in healthcare-associated infections (HAIs). Studies on the microbiota of patients, healthcare environment (HE), medical equipment, or healthcare workers (HCW) and how it could be transmitted among the different subjects will be described in order to define alarming risk factors for HAIs spreading and to identify strategies for HAIs control or prevention. Methods This review was performed in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. After retrieval in databases, identification, and screening of available records, 36 published studies were considered eligible and included in the review. Results A multifaceted approach is required and the analyses of the many factors related to human microbiota, which can influence HAIs onset, could be of paramount importance in their prevention and control. In this review, we will focus mainly on the localization, transmission, and prevention of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) bacteria and Clostridium difficile which are the most common pathogens causing HAIs. Conclusions Healthcare workers' microbiota, patient's microbiota, environmental and medical equipment microbiota, ecosystem characteristics, ways of transmission, cleaning strategies, and the microbial resistome should be taken into account for future studies on more effective preventive and therapeutic strategies against HAIs.
Collapse
Affiliation(s)
- Pamela Tozzo
- Legal Medicine Unit, Laboratory of Forensic Genetics, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy,*Correspondence: Pamela Tozzo
| | - Arianna Delicati
- Legal Medicine Unit, Laboratory of Forensic Genetics, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Luciana Caenazzo
- Legal Medicine Unit, Laboratory of Forensic Genetics, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Airflow dynamics in an emergency department: A CFD simulation study to analyse COVID-19 dispersion. ALEXANDRIA ENGINEERING JOURNAL 2022; 61:3435-3445. [PMCID: PMC8397532 DOI: 10.1016/j.aej.2021.08.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/31/2021] [Accepted: 08/21/2021] [Indexed: 06/18/2023]
Abstract
Emergency departments (EDs) in hospitals are hotspots for highly transmissible infectious diseases and pose the most significant risk of viral infection spreading. With the recent COVID-19 outbreak, it became clear that emergency department design must evolve in order to be adequately prepared to handle the epidemic. The purpose of this research is to examine the design of the emergency department at a university hospital using a computational fluid dynamics (CFD) simulation based on the ANSYS CFX package. Turbulence Kinetic Energy and Velocity profiles were analyzed to determine which areas of the ED were most susceptible to virus spread. The analysis revealed that three critical areas of the emergency department, namely overnight patient beds, operating rooms, and resuscitation rooms, had significantly higher air velocity, dispersion, and mixing levels than the rest of the department's spaces. According to the two scenarios examined, the possibility of air transmission from these locations to neighboring areas becomes apparent, increasing the likelihood of transmitting the virus from these locations and infecting people in the adjacent areas, including patients and health care providers. Using the results of CFD simulations, a solution in the form of instructions for the arrangement of inlets and outlets, the separation of spaces, and the interior design of the spaces and hallways can be presented to the hospital administration. All of which can be implemented in the current design of the emergency department.
Collapse
|
11
|
Are There Bad ICU Rooms? Temporal Relationship between Patient and ICU Room Microbiome, and Influence on Vancomycin-Resistant Enterococcus Colonization. mSphere 2022; 7:e0100721. [PMID: 35107335 PMCID: PMC8809377 DOI: 10.1128/msphere.01007-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The gut microbiome of an individual can shape the local environmental surface microbiome. We sought to determine how the intensive care unit (ICU) patient gut microbiome shapes the ICU room surface microbiome, focusing on vancomycin-resistant Enterococcus (VRE), a common ICU pathogen. This was an ICU-based prospective cohort study. Rectal swabs were performed in adult ICU patients immediately at the time of ICU admission and environmental surface swabs were performed at five predetermined time points. All swabs underwent 16S rRNA gene sequencing and culture for VRE. 304 ICU patients and 24 ICU rooms were sampled (5 longitudinal samples per ICU room). Spatially adjacent ICU rooms were no more microbially similar than nonadjacent rooms. Microbial signatures within rooms diverged rapidly over time: in 14 days, ICU rooms were as similar to other ICU rooms as they were to their prior selves. This divergence over time was more pronounced in rooms with higher patient turnover. Examining VRE status by culture, patient VRE gut colonization had modest agreement with room surface VRE (kappa statistic 0.36). There were no ICU rooms that consistently cultured positive for VRE, including those that housed VRE positive patients. Individual ICU patients had a limited impact on ICU room surface microbiome, and rooms diverged similarly over time regardless of patients. Patient VRE gut colonization may have a modest influence on room surface VRE but there were no “bad rooms” that consistently cultured positive for VRE. These results may be useful in planning infection control measures. IMPORTANCE This study found that intensive care unit (ICU) room microbial signatures diverged from their baseline quickly: within 2 weeks, individual ICU rooms had lost distinguishing characteristics and were as similar to other ICU rooms as they were to their former selves. Patient turnover within rooms accelerated this drift. Patient gut colonization with vancomycin-resistant Enterococcus (VRE) was associated with ICU room surface contamination with VRE; again, within 2 weeks, this association was substantially diminished. These results provide dynamic information regarding how patients control the microbiota on local hospital room surfaces and may facilitate decision making for infection prevention and control measures targeting VRE or other organisms.
Collapse
|
12
|
Laurent MR, Frans J. Monitors to improve indoor air carbon dioxide concentrations in the hospital: A randomized crossover trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151349. [PMID: 34728206 PMCID: PMC8556868 DOI: 10.1016/j.scitotenv.2021.151349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/02/2021] [Accepted: 10/27/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Ventilation has emerged as an important strategy to reduce indoor aerosol transmission of coronavirus disease 2019. Indoor air carbon dioxide (CO2) concentrations are a surrogate measure of respiratory pathogen transmission risk. OBJECTIVES To determine whether CO2 monitors are necessary and effective to improve ventilation in hospitals. METHODS A randomized, placebo (sham)-controlled, crossover, open label trial. Between February and May 2021, we placed CO2 monitors in twelve double-bed patient rooms across two geriatric wards. Staff were instructed to open windows, increase the air exchange rate and reduce room crowding to maintain indoor air CO2 concentrations ≤800 parts per million (ppm). RESULTS CO2 levels increased during morning care and especially in rooms housing couples (rooming-in). The median (interquartile range, IQR) time/day with CO2 concentration > 800 ppm (primary outcome) was 110 min (IQR 47-207) at baseline, 82 min (IQR 12-226.5) during sham periods, 78 min (IQR 20-154) during intervention periods and 140 min (IQR 19.5-612.5) post-intervention. The intervention period only differed significantly from the post-intervention period (P = 0.02), mainly due to an imbalance in rooming-in. Significant but small differences were observed in secondary outcomes of time/day with CO2 concentrations > 1000 ppm and daily peak CO2 concentrations during the intervention vs. baseline and vs. the post-intervention period, but not vs. sham. Staff reported cold discomfort for patients as the main barrier towards increasing ventilation. DISCUSSION Indoor air CO2 concentrations in hospital rooms commonly peaked above recommended levels, especially during morning care and rooming-in. There are many possible barriers towards implementing CO2 monitors to improve ventilation in a real-world hospital setting. A paradigm shift in hospital infection control towards adequate ventilation is warranted. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04770597.
Collapse
Affiliation(s)
- Michaël R Laurent
- Geriatrics Department, Imelda Hospital, Bonheiden, Belgium; Geriatrics Department, University Hospitals Leuven, Leuven, Belgium.
| | - Johan Frans
- Department of Medical Microbiology, Imelda Hospital, Bonheiden, Belgium
| |
Collapse
|
13
|
Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research. SUSTAINABILITY 2022. [DOI: 10.3390/su14020967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adequate assessment and management of indoor air quality in healthcare facilities is of utmost importance for patient safety and occupational health purposes. This study aims to identify the recent trends of research on the topic through a systematic literature review following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology. A total of 171 articles published in the period 2015–2020 were selected and analyzed. Results show that there is a worldwide growing research interest in this subject, dispersed in a wide variety of scientific journals. A textometric analysis using the IRaMuTeQ software revealed four clusters of topics in the sampled articles: physicochemical pollutants, design and management of infrastructures, environmental control measures, and microbiological contamination. The studies focus mainly on hospital facilities, but there is also research interest in primary care centers and dental clinics. The majority of the analyzed articles (85%) report experimental data, with the most frequently measured parameters being related to environmental quality (temperature and relative humidity), microbiological load, CO2 and particulate matter. Non-compliance with the WHO guidelines for indoor air quality is frequently reported. This study provides an overview of the recent literature on this topic, identifying promising lines of research to improve indoor air quality in healthcare facilities.
Collapse
|
14
|
Walji SD, Bruder MR, Aucoin MG. Virus matrix interference on assessment of virucidal activity of high-touch surfaces designed to prevent hospital-acquired infections. Antimicrob Resist Infect Control 2021; 10:133. [PMID: 34507617 PMCID: PMC8431935 DOI: 10.1186/s13756-021-01001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives/purpose High-touch surfaces are a critical reservoir in the spread of nosocomial infections. Although disinfection and infection control protocols are well developed, they lack the ability to passively reduce the pathogenic load of high-touch surfaces. Copper and its alloys have been suggested as a surface that exhibit continuous biocidal effects. Antimicrobial studies on these surfaces are prevalent, while virucidal studies are not as well explored. The goal of this study was to first determine the virucidal activity of a copper–nickel–zinc alloy and to then examine the effect of soiling and virus preparation on virucidal activity. Methods A baculovirus vector was used as an easily quantifiable model of an infectious enveloped animal cell virus. Droplets containing virus were deposited on surfaces and allowed to stay wet using humidity control or were dried onto the surface. Virus was then recovered from the surface and assayed for infectivity. To examine how the composition of the droplet affected the survival of the virus, 3 different soiling conditions were tested. The first two were recommended by the United States Environmental Protection Agency and the third consisted of cell debris resulting from virus amplification. Results A copper–nickel–zinc alloy was shown to have strong virucidal effects for an enveloped virus. Copper, nickel, and zinc ions were all shown to leach from the alloy surface and are the likely cause of virucidal activity by this surface. Virucidal activity was achieved under moderate soiling but lost under high soiling generated by routine virus amplification procedures. The surface was able to repeatably inactivate dried virus droplets under moderate soiling conditions, but unable to do so for virus droplets kept wet using high humidity. Conclusion Ion leaching was associated with virucidal activity in both wet and dried virus conditions. Soiling protected the virus by quenching metal ions, and not by inhibiting leaching. The composition of the solution containing virus plays a critical role in evaluating the virucidal activity of surfaces and surface coatings.
Collapse
Affiliation(s)
- Sadru-Dean Walji
- Department of Chemical Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Mark R Bruder
- Department of Chemical Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
15
|
CFD Analyses: The Effect of Pressure Suction and Airflow Velocity on Coronavirus Dispersal. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hospital emergency departments (EDs) are hubs for highly transmissible infectious diseases, posing the highest risk of viral infection transmission. With the current COVID-19 outbreak, it has become clear that the ED design needs to be altered in order to be successful in containing the pandemic. The purpose of this study is to use a computational fluid dynamics (CFD) simulation to evaluate the ventilation system design for an emergency department at a university hospital. The kinetic energy and velocity patterns of turbulence were analyzed to determine which areas of the ED were most susceptible to viral transmission. Additionally, the impact of pressure suction on COVID-19 dispersion has been investigated. Three critical areas of the ED, overnight patient beds, surgical rooms, and resuscitation rooms, all had much higher air velocity, dispersion, and mixing levels than the rest of the department’s spaces, according to the simulation findings. Air transmission from these sites to adjacent regions is a possibility in the scenario studied, increasing the likelihood of the virus spreading from these locations and infecting people in the surrounding areas. The results of these simulations may be utilized to provide recommendations to the hospital administration about the placement of inlets and outlets, the separation of areas, and the interior design of the spaces and corridors.
Collapse
|
16
|
Chen See J, Ly T, Shope A, Bess J, Wall A, Komanduri S, Goldman J, Anderson S, McLimans CJ, Brislawn CJ, Tokarev V, Wright JR, Lamendella R. A Metatranscriptomics Survey of Microbial Diversity on Surfaces Post-Intervention of cleanSURFACES® Technology in an Intensive Care Unit. Front Cell Infect Microbiol 2021; 11:705593. [PMID: 34354962 PMCID: PMC8330600 DOI: 10.3389/fcimb.2021.705593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Hospital-acquired infections (HAIs) pose a serious threat to patients, and hospitals spend billions of dollars each year to reduce and treat these infections. Many HAIs are due to contamination from workers’ hands and contact with high-touch surfaces. Therefore, we set out to test the efficacy of a new preventative technology, AIONX® Antimicrobial Technologies, Inc’s cleanSURFACES®, which is designed to complement daily chemical cleaning events by continuously preventing re-colonization of surfaces. To that end, we swabbed surfaces before (Baseline) and after (Post) application of the cleanSURFACES® at various time points (Day 1, Day 7, Day 14, and Day 28). To circumvent limitations associated with culture-based and 16S rRNA gene amplicon sequencing methodologies, these surface swabs were processed using metatranscriptomic (RNA) analysis to allow for comprehensive taxonomic resolution and the detection of active microorganisms. Overall, there was a significant (P < 0.05) global reduction of microbial diversity in Post-intervention samples. Additionally, Post sample microbial communities clustered together much more closely than Baseline samples based on pairwise distances calculated with the weighted Jaccard distance metric, suggesting a defined shift after product application. This shift was characterized by a general depletion of several microbes among Post samples, with multiple phyla also being reduced over the duration of the study. Notably, specific clinically relevant microbes, including Staphylococcus aureus, Clostridioides difficile and Streptococcus spp., were depleted Post-intervention. Taken together, these findings suggest that chemical cleaning events used jointly with cleanSURFACES® have the potential to reduce colonization of surfaces by a wide variety of microbes, including many clinically relevant pathogens.
Collapse
Affiliation(s)
- Jeremy Chen See
- Contamination Source Identification, Huntingdon, PA, United States
| | - Truc Ly
- Contamination Source Identification, Huntingdon, PA, United States
| | - Alexander Shope
- Contamination Source Identification, Huntingdon, PA, United States.,AIONX, Hershey, PA, United States
| | | | - Art Wall
- Nextflex, San Jose, CA, United States
| | | | | | - Samantha Anderson
- Contamination Source Identification, Huntingdon, PA, United States.,Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Christopher J McLimans
- Contamination Source Identification, Huntingdon, PA, United States.,Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Colin J Brislawn
- Contamination Source Identification, Huntingdon, PA, United States
| | - Vasily Tokarev
- Contamination Source Identification, Huntingdon, PA, United States.,Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Justin R Wright
- Contamination Source Identification, Huntingdon, PA, United States
| | - Regina Lamendella
- Contamination Source Identification, Huntingdon, PA, United States.,Department of Biology, Juniata College, Huntingdon, PA, United States
| |
Collapse
|
17
|
Ye J, Qian H, Zhang J, Sun F, Zhuge Y, Zheng X. Combining culturing and 16S rDNA sequencing to reveal seasonal and room variations of household airborne bacteria and correlative environmental factors in nanjing, southeast china. INDOOR AIR 2021; 31:1095-1108. [PMID: 33655612 DOI: 10.1111/ina.12807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Exposure to bioaerosols poses important health effects on occupants. To elucidate seasonal and room variations of household airborne bacteria, this study investigated 30 residential homes during summer and winter throughout Nanjing, Southeast China, with a humid subtropical climate. Culturing and 16S rDNA sequencing methods were combined in this study. Results showed that the community structure and composition in the same season but different homes show similarity, however, they in the same home but in different seasons show a huge difference, with Sphingomonas (25.3%), Clostridium (14.8%), and Pseudomonas (7.6%) being the dominant bacteria in summer, and Pseudomonas (57.1%) was dominant bacteria in winter. Culturable concentrations of bacteria were also significantly higher in summer (854 ± 425 CFU/m3 ) than in winter (231 ± 175 CFU/m3 ), but difference by home or room was relatively minor. More than 80% of culturable bacteria (<4.7 μm) could penetrate into lower respiratory tract. The seasonal variations of bacterial community and concentrations were closely associated with seasonal variations of temperature, humidity, and PM2.5 . Higher concentrations and larger sizes were observed in the bathroom and kitchen, typically with higher humidity than other rooms.
Collapse
Affiliation(s)
- Jin Ye
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Jianshun Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Fan Sun
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Yang Zhuge
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Dalton KR, Ruble K, Redding LE, Morris DO, Mueller NT, Thorpe RJ, Agnew J, Carroll KC, Planet PJ, Rubenstein RC, Chen AR, Grice EA, Davis MF. Microbial Sharing between Pediatric Patients and Therapy Dogs during Hospital Animal-Assisted Intervention Programs. Microorganisms 2021; 9:1054. [PMID: 34068292 PMCID: PMC8153335 DOI: 10.3390/microorganisms9051054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial sharing between humans and animals has been demonstrated in a variety of settings. However, the extent of microbial sharing that occurs within the healthcare setting during animal-assisted intervention programs is unknown. Understanding microbial transmission between patients and therapy dogs can provide important insights into potential health benefits for patients, in addition to addressing concerns regarding potential pathogen transmission that limits program utilization. This study evaluated for potential microbial sharing between pediatric patients and therapy dogs and tested whether patient-dog contact level and a dog decolonization protocol modified this sharing. Patients, therapy dogs, and the hospital environment were sampled before and after every group therapy session and samples underwent 16S rRNA sequencing to characterize microbial communities. Both patients and dogs experienced changes in the relative abundance and overall diversity of their nasal microbiome, suggesting that the exchange of microorganisms had occurred. Increased contact was associated with greater sharing between patients and therapy dogs, as well as between patients. A topical chlorhexidine-based dog decolonization was associated with decreased microbial sharing between therapy dogs and patients but did not significantly affect sharing between patients. These data suggest that the therapy dog is both a potential source of and a vehicle for the transfer of microorganisms to patients but not necessarily the only source. The relative contribution of other potential sources (e.g., other patients, the hospital environment) should be further explored to determine their relative importance.
Collapse
Affiliation(s)
- Kathryn R. Dalton
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.A.); (M.F.D.)
| | - Kathy Ruble
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.R.); (A.R.C.)
| | - Laurel E. Redding
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA 19348, USA;
| | - Daniel O. Morris
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA;
| | - Noel T. Mueller
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Roland J. Thorpe
- Department of Health, Behavior and Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Jacqueline Agnew
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.A.); (M.F.D.)
| | - Karen C. Carroll
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Paul J. Planet
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Ronald C. Rubenstein
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
| | - Allen R. Chen
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.R.); (A.R.C.)
| | - Elizabeth A. Grice
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Meghan F. Davis
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.A.); (M.F.D.)
- Johns Hopkins Medicine, Department of Molecular and Comparative Pathobiology, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Abstract
Evaluating and optimising human comfort within the built environment is challenging due to the large number of physiological, psychological and environmental variables that affect occupant comfort preference. Human perception could be helpful to capture these disparate phenomena and interpreting their impact; the challenge is collecting spatially and temporally diverse subjective feedback in a scalable way. This paper presents a methodology to collect intensive longitudinal subjective feedback of comfort-based preference using micro ecological momentary assessments on a smartwatch platform. An experiment with 30 occupants over two weeks produced 4378 field-based surveys for thermal, noise, and acoustic preference. The occupants and the spaces in which they left feedback were then clustered according to these preference tendencies. These groups were used to create different feature sets with combinations of environmental and physiological variables, for use in a multi-class classification task. These classification models were trained on a feature set that was developed from time-series attributes, environmental and near-body sensors, heart rate, and the historical preferences of both the individual and the comfort group assigned. The most accurate model had multi-class classification F1 micro scores of 64%, 80% and 86% for thermal, light, and noise preference, respectively. The discussion outlines how these models can enhance comfort preference prediction when supplementing data from installed sensors. The approach presented prompts reflection on how the building analysis community evaluates, controls, and designs indoor environments through balancing the measurement of variables with occupant preferences in an intensive longitudinal way.
Collapse
|
20
|
Ben Maamar S, Hu J, Hartmann EM. Implications of indoor microbial ecology and evolution on antibiotic resistance. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:1-15. [PMID: 31591493 PMCID: PMC8075925 DOI: 10.1038/s41370-019-0171-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 05/19/2023]
Abstract
The indoor environment is an important source of microbial exposures for its human occupants. While we naturally want to favor positive health outcomes, built environment design and operation may counter-intuitively favor negative health outcomes, particularly with regard to antibiotic resistance. Indoor environments contain microbes from both human and non-human origins, providing a unique venue for microbial interactions, including horizontal gene transfer. Furthermore, stressors present in the built environment could favor the exchange of genetic material in general and the retention of antibiotic resistance genes in particular. Intrinsic and acquired antibiotic resistance both pose a potential threat to human health; these phenomena need to be considered and controlled separately. The presence of both environmental and human-associated microbes, along with their associated antibiotic resistance genes, in the face of stressors, including antimicrobial chemicals, creates a unique opportunity for the undesirable spread of antibiotic resistance. In this review, we summarize studies and findings related to various interactions between human-associated bacteria, environmental bacteria, and built environment conditions, and particularly their relation to antibiotic resistance, aiming to guide "healthy" building design.
Collapse
Affiliation(s)
- Sarah Ben Maamar
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Jinglin Hu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
21
|
Li YC, Tseng WC, Hsieh NH, Chen SC. Assessing the seasonality of occupancy number-associated CO 2 level in a Taiwan hospital. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16422-16432. [PMID: 30980378 DOI: 10.1007/s11356-019-05084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
This study enabled the assessment of indoor CO2 levels and evaluated the relationship between occupancy numbers with CO2 levels in a Taiwan hospital. The measurements were conducted over four seasons for five working days (Monday to Friday), with sampling conducted simultaneously from 09:00 am to 5:00 pm and across six locations (for spatial variability): hall (H), registration and cashier (RC), waiting area (WA), occupational therapy room (OT), physical therapy room (PT), and outdoors (O). Based on the analysis, three of the five indoor sampling sites showed significant differences in seasonal CO2 concentrations (p < 0.0001). Based on our result, the physical therapy room had the highest level of CO2 concentration that exceeded the IAQ standard in Taiwan Environmental Protection Agency (EPA) in all seasons, in that the number of occupants contributing to nearly 40% of the variation in CO2 measured. Our results also showed that the indoor/outdoor (I/O) ratios of CO2 concentration for all locations and seasons exceeded 1 in ~ 100% of those locations. The median I/O ratio at sites WA and OT was 2.37 and 2.08 during four seasons, respectively. The highest median I/O ratio was found at site PT, with a calculated range of 2.69 in spring to 3.90 in fall. The highest correlation of occupancy number and CO2 concentration also occurred in PT which correlation coefficients were estimated at 0.47, 0.65, 0.63, and 0.40 in spring, summer, fall, and winter. The findings of the present study can be used to understand occupancy number and its effect on CO2 levels in a hospital environment, as well as the effect of time of day (Monday to Friday) on the number of patients admitted.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan, Republic of China
- Department of Infection Control Center, Yuan Rung Hospital, Changhua, 51045, Taiwan, Republic of China
| | - Wen-Chang Tseng
- Department of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan, Republic of China
| | - Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan, Republic of China.
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan, Republic of China.
| |
Collapse
|
22
|
Shajahan A, Culp CH, Williamson B. Effects of indoor environmental parameters related to building heating, ventilation, and air conditioning systems on patients' medical outcomes: A review of scientific research on hospital buildings. INDOOR AIR 2019; 29:161-176. [PMID: 30588679 PMCID: PMC7165615 DOI: 10.1111/ina.12531] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 05/04/2023]
Abstract
The indoor environment of a mechanically ventilated hospital building controls infection rates as well as influences patients' healing processes and overall medical outcomes. This review covers the scientific research that has assessed patients' medical outcomes concerning at least one indoor environmental parameter related to building heating, ventilation, and air conditioning (HVAC) systems, such as indoor air temperature, relative humidity, and indoor air ventilation parameters. Research related to the naturally ventilated hospital buildings was outside the scope of this review article. After 1998, a total of 899 papers were identified that fit the inclusion criteria of this study. Of these, 176 papers have been included in this review to understand the relationship between the health outcomes of a patient and the indoor environment of a mechanically ventilated hospital building. The purpose of this literature review was to summarize how indoor environmental parameters related to mechanical ventilation systems of a hospital building are impacting patients. This review suggests that there is a need for future interdisciplinary collaborative research to quantify the optimum range for HVAC parameters considering airborne exposures and patients' positive medical outcomes.
Collapse
Affiliation(s)
- Amreen Shajahan
- Energy Systems LaboratoryTexas A&M UniversityCollege StationTexas
- Department of ArchitectureTexas A&M UniversityCollege StationTexas
| | - Charles H. Culp
- Energy Systems LaboratoryTexas A&M UniversityCollege StationTexas
- Department of ArchitectureTexas A&M UniversityCollege StationTexas
| | | |
Collapse
|
23
|
Gao XL, Shao MF, Wang Q, Wang LT, Fang WY, Ouyang F, Li J. Airborne microbial communities in the atmospheric environment of urban hospitals in China. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:10-17. [PMID: 29414740 DOI: 10.1016/j.jhazmat.2018.01.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 05/11/2023]
Abstract
Clinically relevant antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in bioaerosols have become a greater threat to public health. However, few reports have shown that ARB and ARGs were found in the atmosphere. High-throughput sequencing applied to environmental sciences has enhanced the exploration of microbial populations in atmospheric samples. Thus, five nosocomial bioaerosols were collected, and the dominant microbial and pathogenic microorganisms were identified by high-throughput sequencing in this study. The results suggested that the dominant microorganisms at the genus level were Massilia, Sphingomonas, Methylobacterium, Methylophilus, Micrococcineae, and Corynebacterineae. The most abundant pathogenic microorganisms were Staphylococcus saprophyticus, Corynebacterium minutissimum, Streptococcus pneumoniae, Escherichia coli, Arcobacter butzleri, Aeromonas veronii, Pseudomonas aeruginosa, and Bacillus cereus. The relationship between microbial communities and environmental factors was evaluated with canonical correspondence analysis (CCA). Meanwhile, differences in the pathogenic bacteria between bioaerosols and dust in a typical hospital was investigated. Furthermore, cultivable Staphylococcus isolates with multi-drug resistance phenotype (>3 antibiotics) in the inpatient departments were much higher than those in the transfusion area and out-patient departments, possibly attributed to the dense usage of antibiotics in inpatient departments. The results of this study might be helpful for scientifically air quality control in hospitals.
Collapse
Affiliation(s)
- Xin-Lei Gao
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| | - Ming-Fei Shao
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China.
| | - Li-Tao Wang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, PR China
| | - Wen-Yan Fang
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| | - Feng Ouyang
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| | - Ji Li
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China.
| |
Collapse
|
24
|
An Effective Surrogate Tracer Technique for S. aureus Bioaerosols in a Mechanically Ventilated Hospital Room Replica Using Dilute Aqueous Lithium Chloride. ATMOSPHERE 2017. [DOI: 10.3390/atmos8120238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Finding a non-pathogenic surrogate aerosol that represents the deposition of typical bioaerosols in healthcare settings is beneficial from the perspective of hospital facility testing, general infection control and outbreak analysis. This study considers aerosolization of dilute aqueous lithium chloride (LiCl) and sodium chloride (NaCl) solutions as surrogate tracers capable of representing Staphylococcus aureus bioaerosol deposition on surfaces in mechanically ventilated rooms. Tests were conducted in a biological test chamber set up as a replica hospital single patient room. Petri dishes on surfaces were used to collect the Li, Na and S. aureus aerosols separately after release. Biological samples were analyzed using cultivation techniques on solid media, and flame atomic absorption spectroscopy was used to measure Li and Na atom concentrations. Spatial deposition distribution of Li tracer correlated well with S. aureus aerosols (96% of pairs within a 95% confidence interval). In the patient hospital room replica, results show that the most contaminated areas were on surfaces 2 m away from the source. This indicates that the room’s airflow patterns play a significant role in bioaerosol transport. NaCl proved not to be sensitive to spatial deposition patterns. LiCl as a surrogate tracer for bioaerosol deposition was most reliable as it was robust to outliers, sensitive to spatial heterogeneity and found to require less replicates than the S. aureus counterpart to be in good spatial agreement with biological results.
Collapse
|
25
|
Lax S, Sangwan N, Smith D, Larsen P, Handley KM, Richardson M, Guyton K, Krezalek M, Shogan BD, Defazio J, Flemming I, Shakhsheer B, Weber S, Landon E, Garcia-Houchins S, Siegel J, Alverdy J, Knight R, Stephens B, Gilbert JA. Bacterial colonization and succession in a newly opened hospital. Sci Transl Med 2017; 9:eaah6500. [PMID: 28539477 PMCID: PMC5706123 DOI: 10.1126/scitranslmed.aah6500] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/27/2017] [Indexed: 11/02/2022]
Abstract
The microorganisms that inhabit hospitals may influence patient recovery and outcome, although the complexity and diversity of these bacterial communities can confound our ability to focus on potential pathogens in isolation. To develop a community-level understanding of how microorganisms colonize and move through the hospital environment, we characterized the bacterial dynamics among hospital surfaces, patients, and staff over the course of 1 year as a new hospital became operational. The bacteria in patient rooms, particularly on bedrails, consistently resembled the skin microbiota of the patient occupying the room. Bacterial communities on patients and room surfaces became increasingly similar over the course of a patient's stay. Temporal correlations in community structure demonstrated that patients initially acquired room-associated taxa that predated their stay but that their own microbial signatures began to influence the room community structure over time. The α- and β-diversity of patient skin samples were only weakly or nonsignificantly associated with clinical factors such as chemotherapy, antibiotic usage, and surgical recovery, and no factor except for ambulatory status affected microbial similarity between the microbiotas of a patient and their room. Metagenomic analyses revealed that genes conferring antimicrobial resistance were consistently more abundant on room surfaces than on the skin of the patients inhabiting those rooms. In addition, persistent unique genotypes of Staphylococcus and Propionibacterium were identified. Dynamic Bayesian network analysis suggested that hospital staff were more likely to be a source of bacteria on the skin of patients than the reverse but that there were no universal patterns of transmission across patient rooms.
Collapse
Affiliation(s)
- Simon Lax
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
- Division of Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Naseer Sangwan
- Division of Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
- Microbiome Center, Department of Surgery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA
| | - Daniel Smith
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Larsen
- Division of Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Kim M Handley
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | - Miles Richardson
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | - Kristina Guyton
- Microbiome Center, Department of Surgery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA
| | - Monika Krezalek
- Microbiome Center, Department of Surgery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA
| | - Benjamin D Shogan
- Microbiome Center, Department of Surgery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA
| | - Jennifer Defazio
- Microbiome Center, Department of Surgery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA
| | - Irma Flemming
- Microbiome Center, Department of Surgery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA
| | - Baddr Shakhsheer
- Microbiome Center, Department of Surgery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA
| | - Stephen Weber
- Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Emily Landon
- Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Sylvia Garcia-Houchins
- Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Jeffrey Siegel
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
- Dalla Lana School of Public Health, University of Toronto, 223 College Street, Toronto, Ontario M5T 1R4, Canada
| | - John Alverdy
- Microbiome Center, Department of Surgery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92037, USA
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92037, USA
| | - Brent Stephens
- Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, 3201 South Dearborn Street, Chicago, IL 60616, USA
| | - Jack A Gilbert
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA.
- Division of Biosciences, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
- Microbiome Center, Department of Surgery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Geadas Farias P, Gama F, Reis D, Alarico S, Empadinhas N, Martins JC, de Almeida AF, Morais PV. Hospital microbial surface colonization revealed during monitoring of Klebsiella spp., Pseudomonas aeruginosa, and non-tuberculous mycobacteria. Antonie van Leeuwenhoek 2017; 110:863-876. [PMID: 28337568 DOI: 10.1007/s10482-017-0857-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
Abstract
Hospital environmental conditions, human occupancy, and the characteristics of the equipment influence the survival of microbial communities and raise a concern with regard to nosocomial infections. The objective of the present work was to use the monitoring of Pseudomonas aeruginosa, Klebsiella spp. and non-tuberculous mycobacteria as a strategy to improve knowledge on microbial colonization of non-critical equipment and surfaces, in a tertiary hospital from Central Portugal. A 3-month microbiological survey was performed in a district teaching hospital. A total of 173 samples were obtained from the wards Hematology, Urology, Medicine, and Renal Transplants, and 102 presumptive strains recovered. Per sampling, Pseudomonas Isolation agar showed 42.8 to 73.3% of presumptive P. aeruginosa colonies and MacConkey agar recovered mostly Staphylococcus. Most of the colonies recovered in Middlebrook 7H10-PANTA belonged to the genus Methylobacterium. Taps and WC shower curtains carry high bacterial species diversity. The Redundancy Analysis grouped the samples in those mostly handled by patients, and those mostly handled by healthcare staff or of mixed use. This study shows that the preferential users of the space and equipment seem to be important contributors to the microbial community. The most recovered genus was Methylobacterium, known as colonizer of the water distribution system therefore, it is possible that the water points and biofilms in taps also contribute as dispersion hotspots.
Collapse
Affiliation(s)
- Pedro Geadas Farias
- Instituto Piaget, Silves, Portugal.,CEMUC-Department of Mechanical Engineering, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Fernando Gama
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Diogo Reis
- CNC-Centro de Neurociências e Biologia Celular, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Susana Alarico
- CNC-Centro de Neurociências e Biologia Celular, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Centro de Neurociências e Biologia Celular, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - José Carlos Martins
- Escola Superior de Enfermagem de Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana Figueiredo de Almeida
- Instituto Piaget, Silves, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paula Vasconcelos Morais
- CEMUC-Department of Mechanical Engineering, University of Coimbra, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal. .,Life Sciences Department, FCT University of Coimbra, Apartado 3126, 3001-401, Coimbra, Portugal.
| |
Collapse
|
27
|
Oriel BS, Chen Q, Wong K, Itani KMF. Effect of Hand Antisepsis Agent Selection and Population Characteristics on Surgical Site Infection Pathogens. Surg Infect (Larchmt) 2016; 18:413-418. [PMID: 27661850 DOI: 10.1089/sur.2016.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Selection of a pre-operative hand antisepsis agent has not been studied in relation to surgical site infection (SSI) culture data. In our hospital, we introduced an alcohol-based hand rub (ABR) in 2012 as an alternative to traditional aqueous surgical scrubs (TSS). It was the goal of this study to review any effect of this implementation on SSI pathogen characteristics. In addition, we sought to compare our SSI culture data with available National Healthcare Safety Network (NHSN) data. We hypothesized that SSI pathogens and resistant isolates are affected by surgical hand antisepsis technique. METHODS Data collected prospectively between 2007 and 2014 were retrospectively analyzed for two time periods at the Veterans Affairs Boston Healthcare System (VABHS): Before ABR implementation (TSS group) and after (ABR group). Pathogen distribution and pathogenic isolate resistance profiles were compared for TSS and ABR, and similar comparisons, along with procedure-associated SSI comparisons, were made between VABHS and NHSN. All VABHS data were interpreted and categorized according to NHSN definitions. RESULTS Compared with TSS (n = 4,051), ABR (n = 2,293) had a greater rate of Staphylococcus aureus (42.6% vs. 38.0%), Escherichia coli (12.8% vs. 9.9%), Pseudomonas aeruginosa (8.5% vs. 2.8%), and Enterobacter spp. (10.6% vs. 2.8%), and a lower rate of Klebsiella pneumoniae/K. oxytoca (4.3% vs. 8.5%) cultured from superficial and deep SSIs (p < 0.05). Of the S. aureus isolates, 35.0% and 44.4% were resistant to oxacillin/methicillin (MRSA) in ABR and TSS, respectively (p = 0.06). Looking at all SSIs, coagulase-negative staphylococci and K. pneumoniae/K. oxytoca at VABHS (4.0% and 10.4%, respectively) accounted for the biggest difference from NHSN (11.7% and 4.0%, respectively). Aside from MRSA, where there was no difference between VABHS and NHSN (42.9% vs. 43.7%, respectively; p = 0.87), statistically significant (p < 0.05) differences were observed among multi-drug-resistant K. pneumoniae/K. oxytoca (0% vs. 6.8%, respectively) and Escherichia coli (10.0% vs. 1.6%, respectively), as well as among extended-spectrum cephalosporin-resistant K. pneumoniae/K. oxytoca (4.8% vs. 13.2%, respectively) and Enterobacter (58.3% vs. 27.7%, respectively). VABHS had a greater proportion of SSIs in abdominal and vascular cases than did NHSN (48.6% vs. 22.5% and 13.2% vs. 1.5%, respectively). Overall, these differences were significant (p < 0.05). CONCLUSIONS The TSS and ABR groups differed in the distribution of pathogens recovered. Those differences, along with SSI pathogen distribution, pathogenic isolate resistance profiles, and procedure-associated SSIs between VABHS and NHSN, warrant further investigation.
Collapse
Affiliation(s)
- Brad S Oriel
- 1 Department of Surgery, Veterans Affairs Boston Healthcare System , West Roxbury, Massachusetts.,2 Department of Surgery, Tufts University School of Medicine , Boston, Massachusetts
| | - Qi Chen
- 3 Center for Healthcare Organization and Implementation Research (CHOIR) , VA Boston Healthcare System, Boston, Massachusetts
| | - Kevin Wong
- 1 Department of Surgery, Veterans Affairs Boston Healthcare System , West Roxbury, Massachusetts.,4 Department of Surgery, Boston University School of Medicine , Boston, Massachusetts
| | - Kamal M F Itani
- 1 Department of Surgery, Veterans Affairs Boston Healthcare System , West Roxbury, Massachusetts.,2 Department of Surgery, Tufts University School of Medicine , Boston, Massachusetts.,4 Department of Surgery, Boston University School of Medicine , Boston, Massachusetts.,5 Department of Surgery, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
28
|
Abstract
The advent and application of high-throughput molecular techniques for analyzing microbial communities in the indoor environment have led to illuminating findings and are beginning to change the way we think about human health in relation to the built environment. Here I review recent studies on the microbiology of the built environment, organize their findings into 12 major thematic categories, and comment on how these studies have or have not advanced knowledge in each area beyond what we already knew from over 100 years of applying culture-based methods to building samples. The advent and application of high-throughput molecular techniques for analyzing microbial communities in the indoor environment have led to illuminating findings and are beginning to change the way we think about human health in relation to the built environment. Here I review recent studies on the microbiology of the built environment, organize their findings into 12 major thematic categories, and comment on how these studies have or have not advanced knowledge in each area beyond what we already knew from over 100 years of applying culture-based methods to building samples. I propose that while we have added tremendous complexity to the rich existing knowledge base, the practical implications of this added complexity remain somewhat elusive. It remains to be seen how this new knowledge base will change how we design, build, and operate buildings. Much more research is needed to better understand the complexity with which indoor microbiomes may affect human health in both positive and negative ways.
Collapse
|
29
|
Stephens B. What Have We Learned about the Microbiomes of Indoor Environments? mSystems 2016. [PMID: 27822547 DOI: 10.1128/msystems.00083-16.editor] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The advent and application of high-throughput molecular techniques for analyzing microbial communities in the indoor environment have led to illuminating findings and are beginning to change the way we think about human health in relation to the built environment. Here I review recent studies on the microbiology of the built environment, organize their findings into 12 major thematic categories, and comment on how these studies have or have not advanced knowledge in each area beyond what we already knew from over 100 years of applying culture-based methods to building samples. I propose that while we have added tremendous complexity to the rich existing knowledge base, the practical implications of this added complexity remain somewhat elusive. It remains to be seen how this new knowledge base will change how we design, build, and operate buildings. Much more research is needed to better understand the complexity with which indoor microbiomes may affect human health in both positive and negative ways.
Collapse
Affiliation(s)
- Brent Stephens
- Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| |
Collapse
|
30
|
Leung MHY, Lee PKH. The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. MICROBIOME 2016; 4:21. [PMID: 27216717 PMCID: PMC4877933 DOI: 10.1186/s40168-016-0165-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/11/2016] [Indexed: 05/10/2023]
Abstract
Recent high-throughput sequencing technology has led to an expansion of knowledge regarding the microbial communities (microbiome) across various built environments (BEs). The microbiome of the BE is dependent upon building factors and conditions that govern how outdoor microbes enter and persist in the BE. Additionally, occupants are crucial in shaping the microbiome of the BE by releasing human-associated microorganisms and resuspending microbes on floors and surfaces. Therefore, both the outdoors and occupants act as major sources of microorganisms found in the BE. However, most characterizations of the microbiome of the BE have been conducted in the Western world. Notably, outdoor locations and population groups present geographical variations in outdoor and human microbiomes, respectively. Given the influences of the outdoor and human microbiomes on BE microbiology, and the geographical variations in outdoor and human microbiomes, it is likely that the microbiomes of BEs also vary by location. The summation of microbiomes between BEs contribute to a potential BE pan-microbiome, which will both consist of microbes that are ubiquitous in indoor environments around the world, and microbes that appear to be endemic to particular geographical locations. Importantly, the BE pan-microbiome can potentially question the global application of our current views on indoor microbiology. In this review, we first provide an assessment on the roles of building and occupant properties on shaping the microbiome of the BE. This is then followed by a description of geographical variations in the microbiomes of the outdoors and humans, the two main sources of microbes in BEs. We present evidence of differences in microbiomes of BEs around the world, demonstrating the existence of a global pan-microbiome of the BE that is larger than the microbiome of any single indoor environment. Finally, we discuss the significance of understanding the BE pan-microbiome and identifying universal and location-specific relationships between building and occupant characteristics and indoor microbiology. This review highlights the much needed efforts towards determining the pan-microbiome of the BE, thereby identifying general and location-specific links between the microbial communities of the outdoors, human, and BE ecosystems, ultimately improving the health, comfort, and productivity of occupants around the world.
Collapse
Affiliation(s)
- Marcus H. Y. Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, B5423-AC1 Hong Kong
| | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, B5423-AC1 Hong Kong
| |
Collapse
|
31
|
Licina D, Bhangar S, Brooks B, Baker R, Firek B, Tang X, Morowitz MJ, Banfield JF, Nazaroff WW. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit. PLoS One 2016; 11:e0154991. [PMID: 27175913 PMCID: PMC4866781 DOI: 10.1371/journal.pone.0154991] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/23/2016] [Indexed: 11/19/2022] Open
Abstract
Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m(3), approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m(3)). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor-generated particles for infant's exposure to airborne particulate matter in the NICU.
Collapse
Affiliation(s)
- Dusan Licina
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, United States of America
| | - Seema Bhangar
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, United States of America
| | - Brandon Brooks
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
| | - Robyn Baker
- Division of Newborn Medicine, Magee-Womens Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Brian Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Xiaochen Tang
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, United States of America
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Division of Pediatric Surgery, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jillian F. Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
| | - William W. Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, United States of America
| |
Collapse
|
32
|
Bokulich NA, Lewis ZT, Boundy-Mills K, Mills DA. A new perspective on microbial landscapes within food production. Curr Opin Biotechnol 2016; 37:182-189. [PMID: 26773388 PMCID: PMC4913695 DOI: 10.1016/j.copbio.2015.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023]
Abstract
High-throughput, 'next-generation' sequencing tools offer many exciting new possibilities for food research. From investigating microbial dynamics within food fermentations to the ecosystem of the food-processing built environment, amplicon sequencing, metagenomics, and transcriptomics present novel applications for exploring microbial communities in, on, and around our foods. This review discusses the many uses of these tools for food-related and food facility-related research and highlights where they may yield nuanced insight into the microbial world of food production systems.
Collapse
Affiliation(s)
- Nicholas A Bokulich
- Department of Viticulture and Enology, University of California, Davis, CA 95616,United States; Department of Food Science and Technology, University of California, Davis, CA 95616,United States; Foods for Health Institute, University of California, Davis, CA 95616, United States
| | - Zachery T Lewis
- Department of Food Science and Technology, University of California, Davis, CA 95616,United States; Foods for Health Institute, University of California, Davis, CA 95616, United States
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, University of California, Davis, CA 95616,United States
| | - David A Mills
- Department of Viticulture and Enology, University of California, Davis, CA 95616,United States; Department of Food Science and Technology, University of California, Davis, CA 95616,United States; Foods for Health Institute, University of California, Davis, CA 95616, United States.
| |
Collapse
|
33
|
Hoisington AJ, Brenner LA, Kinney KA, Postolache TT, Lowry CA. The microbiome of the built environment and mental health. MICROBIOME 2015; 3:60. [PMID: 26674771 PMCID: PMC4682225 DOI: 10.1186/s40168-015-0127-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/29/2015] [Indexed: 05/20/2023]
Abstract
The microbiome of the built environment (MoBE) is a relatively new area of study. While some knowledge has been gained regarding impacts of the MoBE on the human microbiome and disease vulnerability, there is little knowledge of the impacts of the MoBE on mental health. Depending on the specific microbial species involved, the transfer of microorganisms from the built environment to occupant's cutaneous or mucosal membranes has the potential to increase or disrupt immunoregulation and/or exaggerate or suppress inflammation. Preclinical evidence highlighting the influence of the microbiota on systemic inflammation supports the assertion that microorganisms, including those originating from the built environment, have the potential to either increase or decrease the risk of inflammation-induced psychiatric conditions and their symptom severity. With advanced understanding of both the ecology of the built environment, and its influence on the human microbiome, it may be possible to develop bioinformed strategies for management of the built environment to promote mental health. Here we present a brief summary of microbiome research in both areas and highlight two interdependencies including the following: (1) effects of the MoBE on the human microbiome and (2) potential opportunities for manipulation of the MoBE in order to improve mental health. In addition, we propose future research directions including strategies for assessment of changes in the microbiome of common areas of built environments shared by multiple human occupants, and associated cohort-level changes in the mental health of those who spend time in the buildings. Overall, our understanding of the fields of both the MoBE and influence of host-associated microorganisms on mental health are advancing at a rapid pace and, if linked, could offer considerable benefit to health and wellness.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Department of Civil and Environmental Engineering, US Air Force Academy, 2354 Fairchild Dr. Suite 6H-161, Colorado Springs, CO, 80840, USA.
| | - Lisa A Brenner
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), University of Colorado Anschutz Medical Campus, 1055 Clermont Street, Denver, CO, 80220, USA.
| | - Kerry A Kinney
- Civil, Architectural and Environmental Engineering, University of Texas Austin, 402 E. Dean Keeton Street, Austin, TX, 78712-1085, USA.
| | - Teodor T Postolache
- University of Maryland School of Medicine, Baltimore MD, Rocky Mountain MIRECC and VISN 5 MIRECC, 685 W. Baltimore Street, Baltimore, MD, 21201, USA.
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, Boulder, CO, 80309-0354, USA.
| |
Collapse
|
34
|
Song W, Cao Y, Wang D, Hou G, Shen Z, Zhang S. An Investigation on Formaldehyde Emission Characteristics of Wood Building Materials in Chinese Standard Tests: Product Emission Levels, Measurement Uncertainties, and Data Correlations between Various Tests. PLoS One 2015; 10:e0144374. [PMID: 26656316 PMCID: PMC4675528 DOI: 10.1371/journal.pone.0144374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
As a large producer and consumer of wood building materials, China suffers product formaldehyde emissions (PFE) but lacks systematic investigations and basic data on Chinese standard emission tests (CST), so this paper presented a first effort on this issue. The PFE of fiberboards, particleboards, blockboards, floorings, and parquets manufactured in Beijing region were characterized by the perforator extraction method (PE), 9–11 L and 40 L desiccator methods (D9, D40), and environmental chamber method (EC) of the Chinese national standard GB 18580; based on statistics of PFE data, measurement uncertainties in CST were evaluated by the Monte Carlo method; moreover, PFE data correlations between tests were established. Results showed: (1) Different tests may give slightly different evaluations on product quality. In PE and D9 tests, blockboards and parquets reached E1 grade for PFE, which can be directly used in indoor environment; but in D40 and EC tests, floorings and parquets achieved E1. (2) In multiple tests, PFE data characterized by PE, D9, and D40 complied with Gaussian distributions, while those characterized by EC followed log-normal distributions. Uncertainties in CST were overall low, with uncertainties for 20 material-method combinations all below 7.5%, and the average uncertainty for each method under 3.5%, thus being acceptable in engineering application. A more complicated material structure and a larger test scale caused higher uncertainties. (3) Conventional linear models applied to correlating PFE values between PE, D9, and EC, with R2 all over 0.840, while novel logarithmic (exponential) models can work better for correlations involving D40, with R2 all beyond 0.901. This research preliminarily demonstrated the effectiveness of CST, where results for D40 presented greater similarities to EC—the currently most reliable test for PFE, thus highlighting the potential of Chinese D40 as a more practical approach in production control and risk assessment.
Collapse
Affiliation(s)
- Wei Song
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, China
| | - Yang Cao
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
| | - Dandan Wang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
| | - Guojun Hou
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
| | - Zaihua Shen
- R & D Center for Natural Fiber Composites and Environmentally Friendly Adhesives, Zhejiang Chengzhu Advanced Material Technology Co., Ltd., Shaoxing, China
| | - Shuangbao Zhang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, China
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
35
|
Shin H, Pei Z, Martinez KA, Rivera-Vinas JI, Mendez K, Cavallin H, Dominguez-Bello MG. The first microbial environment of infants born by C-section: the operating room microbes. MICROBIOME 2015; 3:59. [PMID: 26620712 PMCID: PMC4665759 DOI: 10.1186/s40168-015-0126-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/29/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Newborns delivered by C-section acquire human skin microbes just after birth, but the sources remain unknown. We hypothesized that the operating room (OR) environment contains human skin bacteria that could be seeding C-section born infants. RESULTS To test this hypothesis, we sampled 11 sites in four operating rooms from three hospitals in two cities. Following a C-section procedure, we swabbed OR floors, walls, ventilation grids, armrests, and lamps. We sequenced the V4 region of the 16S rRNA gene of 44 samples using Illumina MiSeq platform. Sequences were analyzed using the QIIME pipeline. Only 68 % of the samples (30/44, >1000 sequences per site) yielded sufficient DNA reads to be analyzed. The bacterial content of OR dust corresponded to human skin bacteria, with dominance of Staphylococcus and Corynebacterium. Diversity of bacteria was the highest in the ventilation grids and walls but was also present on top of the surgery lamps. Beta diversity analyses showed OR dust bacterial content clustering first by city and then by hospital (t test using unweighted UniFrac distances, p < 0.05). CONCLUSIONS We conclude that the dust from ORs, collected right after a C-section procedure, contains deposits of human skin bacteria. The OR microbiota is the first environment for C-section newborns, and OR microbes might be seeding the microbiome in these babies. Further studies are required to identify how this OR microbiome exposure contributes to the seeding of the neonatal microbiome. The results might be relevant to infant health, if the current increase in risk of immune and metabolic diseases in industrialized societies is related to lack of natural exposure to the vaginal microbiome during labor and birth.
Collapse
Affiliation(s)
- Hakdong Shin
- Division of Translational Medicine, New York University School of Medicine, 550 1st Avenue, BCD 690, New York, NY, 10016, USA
| | - Zhiheng Pei
- Division of Translational Medicine, New York University School of Medicine, 550 1st Avenue, BCD 690, New York, NY, 10016, USA
- Department of Veterans Affairs New York Harbor Healthcare System, New York, NY, USA
| | - Keith A Martinez
- Division of Translational Medicine, New York University School of Medicine, 550 1st Avenue, BCD 690, New York, NY, 10016, USA
| | - Juana I Rivera-Vinas
- Hospital Universitario, Medical Science Campus, University of Puerto Rico, Puerto Rico, USA
| | - Keimari Mendez
- Hospital Universitario, Medical Science Campus, University of Puerto Rico, Puerto Rico, USA
| | | | - Maria G Dominguez-Bello
- Division of Translational Medicine, New York University School of Medicine, 550 1st Avenue, BCD 690, New York, NY, 10016, USA.
| |
Collapse
|
36
|
Adams RI, Bateman AC, Bik HM, Meadow JF. Microbiota of the indoor environment: a meta-analysis. MICROBIOME 2015; 3:49. [PMID: 26459172 PMCID: PMC4604073 DOI: 10.1186/s40168-015-0108-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/07/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND As modern humans, we spend the majority of our time in indoor environments. Consequently, environmental exposure to microorganisms has important implications for human health, and a better understanding of the ecological drivers and processes that impact indoor microbial assemblages will be key for expanding our knowledge of the built environment. In the present investigation, we combined recent studies examining the microbiota of the built environment in order to identify unifying community patterns and the relative importance of indoor environmental factors. Ultimately, the present meta-analysis focused on studies of bacteria and archaea due to the limited number of high-throughput fungal studies from the indoor environment. We combined 16S ribosomal RNA (rRNA) gene datasets from 16 surveys of indoor environments conducted worldwide, additionally including 7 other studies representing putative environmental sources of microbial taxa (outdoor air, soil, and the human body). RESULTS Combined analysis of subsets of studies that shared specific experimental protocols or indoor habitats revealed community patterns indicative of consistent source environments and environmental filtering. Additionally, we were able to identify several consistent sources for indoor microorganisms, particularly outdoor air and skin, mirroring what has been shown in individual studies. Technical variation across studies had a strong effect on comparisons of microbial community assemblages, with differences in experimental protocols limiting our ability to extensively explore the importance of, for example, sampling locality, building function and use, or environmental substrate in structuring indoor microbial communities. CONCLUSIONS We present a snapshot of an important scientific field in its early stages, where studies have tended to focus on heavy sampling in a few geographic areas. From the practical perspective, this endeavor reinforces the importance of negative "kit" controls in microbiome studies. From the perspective of understanding mechanistic processes in the built environment, this meta-analysis confirms that broad factors, such as geography and building type, structure indoor microbes. However, this exercise suggests that individual studies with common sampling techniques may be more appropriate to explore the relative importance of subtle indoor environmental factors on the indoor microbiome.
Collapse
Affiliation(s)
- Rachel I Adams
- Plant & Microbial Biology, University of California Berkeley, Berkeley, 94720, CA, USA.
| | - Ashley C Bateman
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, 97403, OR, USA.
| | - Holly M Bik
- UC Davis Genome Center, University of California, Davis, Davis, 95616, CA, USA.
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - James F Meadow
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, 97403, OR, USA.
| |
Collapse
|
37
|
Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages. Appl Environ Microbiol 2015; 81:7088-97. [PMID: 26231646 DOI: 10.1128/aem.02228-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023] Open
Abstract
Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces.
Collapse
|
38
|
Hospital-associated microbiota and implications for nosocomial infections. Trends Mol Med 2015; 21:427-32. [PMID: 25907678 DOI: 10.1016/j.molmed.2015.03.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/23/2022]
Abstract
The rise of high-throughput sequencing technologies and culture-independent microbial surveys has the potential to revolutionize our understanding of how microbes colonize, move about, and evolve in hospital environments. Genome analysis of individual organisms, characterization of population dynamics, and microbial community ecology are facilitating the identification of novel pathogens, the tracking of disease outbreaks, and the study of the evolution of antibiotic resistance. Here we review the recent applications of these methods to microbial ecology studies in hospitals and discuss their potential to influence hospital management policy and practice and to reduce nosocomial infections and the spread of antibiotic resistance.
Collapse
|