1
|
Dixit B, Murugkar HV, Nagarajan S, Tosh C, Kumar M, Pathak A, Panickan S, Shrivastav N, Mishra AK, Dixit M. Prevalence and risk factor for H9N2 avian influenza virus in poultry retail shops of Madhya Pradesh. Virusdisease 2024; 35:321-328. [PMID: 39071868 PMCID: PMC11269534 DOI: 10.1007/s13337-024-00865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/22/2024] [Indexed: 07/30/2024] Open
Abstract
H9N2 avian Influenza virus subtype is highly neglected but have the potential to emerge as a next pandemic influenza virus, by either itself evolution or through the donation of genes to other subtype. So to understand the extent of H9N2 virus prevalence and associated risk factors in poultry of retail shops and their surrounding environment a cross sectional study was carried out. A total of 500 poultry tissue and 700 environmental samples were collected from 20 district of Madhya Pradesh. Virus isolation was carried out in egg inoculation and harvested allantoic fluid was tested for HA and further molecular confirmation of subtypes by RT-PCR using H9 specific primers. Prevalence was calculated and positive samples were statistically associated with observed risk factors using univariate and multivariate logistic regression analysis. A total of 9.4% and 9.7% prevalence in tissue samples and environmental samples has been reported respectively and out of 20 districts 10 (50%) were found positive for the virus. Out of 21 studied risk factors only two risk factors named as "keeping total number birds slaughtered per day" and "procuring birds from wholesaler" were found significantly associated with the H9N2 positivity in multivariate logistic regression analysis. This high level of H9N2 positivity in birds with no clinical manifestations providing a great opportunity for avian influenza virus for amplification, co-infection in other animals like dogs, cats, pigs and in human through genetic re-assortment that may lead to emergence of a novel influenza virus with high zoonotic potential. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00865-y.
Collapse
Affiliation(s)
- Baleshwari Dixit
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science & A. H., Kuthulia, Rewa, M.P. 486001 India
| | - H. V. Murugkar
- National High Security Animal Disease Laboratory, Bhopal, M.P. India
| | - S. Nagarajan
- National High Security Animal Disease Laboratory, Bhopal, M.P. India
| | - C. Tosh
- National High Security Animal Disease Laboratory, Bhopal, M.P. India
| | - Manoj Kumar
- National High Security Animal Disease Laboratory, Bhopal, M.P. India
| | - Anubha Pathak
- ICAR-National Research Centre on Equines, Hisar, India
| | | | - Neeraj Shrivastav
- Department of Veterinary Microbiology, College of Veterinary Science & A. H., Rewa, M.P. India
| | - Anjani K. Mishra
- Department of Livestock Production and Management, College of Veterinary Science & A. H., Rewa, M.P. India
| | - Manu Dixit
- Department Animal Husbandry and Dairying Department, Rewa, M.P. India
| |
Collapse
|
2
|
Salaheldin AH, Abd El-Hamid HS, Ellakany HF, Mohamed MA, Elbestawy AR. Isolation, Molecular, and Histopathological Patterns of a Novel Variant of Infectious Bursal Disease Virus in Chicken Flocks in Egypt. Vet Sci 2024; 11:98. [PMID: 38393116 PMCID: PMC10893078 DOI: 10.3390/vetsci11020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
After an extended period of detecting classical virulent, attenuated, and very virulent IBDV, a novel variant (nVarIBDV) was confirmed in Egypt in this study in 18, IBD vaccinated, chicken flocks aged 19-49 days. Partial sequence of viral protein 2 (VP2) [219 aa, 147-366, resembling 657 bp] of two obtained isolates (nos. 3 and 4) revealed nVarIBDV (genotype A2d) and OR682618 and OR682619 GenBank accession numbers were obtained. Phylogenetic analysis revealed that both nVarIBDV isolates were closely related to nVarIBDV strains (A2d) circulating in China, exhibiting 100% identity to SD-2020 and 99.5-98.1% similarity to ZD-2018-1, QZ, GX and SG19 strains, respectively. Similarity to USA variant strains, belonging to genotypes A2b (9109), A2c (GLS) and A2a (variant E), respectively, was 95.5-92.6%. Also, the VP2 hypervariable region in those two, A2d, isolates revealed greater similarities to Faragher 52/70 (Vaxxitek®) at 90.4% and to an Indian strain (Ventri-Plus®) and V217 (Xtreme®) at 89.7% and 86-88.9% in other vaccines. Histopathological examination of both the bursa of Fabricius and spleen collected from diseased chickens in flock no. 18 revealed severe atrophy. In conclusion, further studies are required to investigate the epidemiological situation of this novel genotype across the country, and to assess various vaccine protections against nVarIBDV. Additionally, vaccination of breeders with inactivated IBD vaccines including this nVarIBDV is essential to obtain specific maternal antibodies in their broilers.
Collapse
Affiliation(s)
- Ahmed H. Salaheldin
- Department Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| | - Hatem S. Abd El-Hamid
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.S.A.E.-H.); (H.F.E.)
| | - Hany F. Ellakany
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (H.S.A.E.-H.); (H.F.E.)
| | - Mostafa A. Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom 32511, Egypt;
| | - Ahmed R. Elbestawy
- Department of Bird and Rabbit Diseases, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom 32511, Egypt
| |
Collapse
|
3
|
Risk Factors Associated with Avian Influenza Subtype H9 Outbreaks in Poultry Farms of Central Lowland Nepal. Infect Dis Rep 2022; 14:525-536. [PMID: 35893475 PMCID: PMC9326661 DOI: 10.3390/idr14040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Low pathogenic avian influenza (LPAI) of subtype H9 outbreaks have been frequently occurring in major commercial hubs of Nepal including Chitwan, a central lowland area, causing substantial economic losses to the farmers. However, the risk factors associated with these outbreaks have been poorly understood, and hence, this case-control study was conducted in Chitwan, Nawalpur, and Makawanpur districts of Nepal from October 2019 to March 2020. A total of 102 farms were selected in which 51 were case farms, and 51 were controls. Case farms were avian influenza (AI)-subtype-H9-confirmed farms through polymerase chain reaction (PCR) assays on poultry samples. Control farms included farms that were AI-negative in the antigen test brought to the National Avian Disease Investigation Laboratory, Chitwan, for diagnosis during the study period. Each farm was visited to collect information using a semi-structured questionnaire. A total of 25 variables representing farm characteristics and biosecurity measures were considered as potential risk factors. The final multivariable model showed that distance of less than 0.5 km from the main road (OR = 4.04, 95% CI = 1.20–13.56, p = 0.023), distance of less than 1 km from a nearest infected farm (OR = 76.42, 95% CI = 7.17–814.06, p = 0.0003), and wild birds coming around the farm (OR = 6.12, 95% CI = 1.99–18.79, p = 0.0015) were risk factors for avian influenza type H9, whereas using apron or separate cloth inside the shed (OR = 0.109, 95% CI = 0.020–0.577, p = 0.0092) was shown to reduce the risk of farms being positive for AI subtype H9. These findings suggest that due consideration should be given to site selection while establishing the farms and the importance of implementing appropriate biosecurity measures, such as using separate cloth inside the shed and preventing the entry of wild birds inside the farm to reduce the potential risk of introduction of avian influenza type H9 to their poultry farms.
Collapse
|
4
|
Abstract
Avian influenza is a viral pandemic disease of humans and birds, including commercial and house poultry. Avian influenza is a major concern around the world, which causes serious economic losses in the poultry industry, mainly in home backyard poultry. The backyard poultry is the potential source of income for rural people and indirectly contributes to decreasing the poverty of household women. Besides, in many developing countries, villagers full fill a part of their food demand by the backyard poultry; however, this sector is directly affected by biosecurity risks, including high and low pathogenic avian influenza infections like avian influenza H9N2 subtype. Avian influenza H9N2 subtype has low pathogenic zoonotic importance but still causes serious threats to the poultry industry. The backyard poultry industry is directly affected by this infection due to direct contact with wild migratory birds locating in different regions of the world. Antigenic drift and shift are one of the major conflicts of this infection resulting from a few days to a few months up to many years and also the main reason for the uncontrollable mutation in this infection. All over the world, there is no serious action taken to prevent the H9N2 subtype infection in backyard poultry. This situation has become severe because of the widespread of highly pathogenic avian influenza viruses in the past few years.
Collapse
|
5
|
Hasni MS, Chaudhary M, Mushtaq MH, Durrani AZ, Rashid HB, Ali M, Ahmed M, Sattar H, Aqib AI, Zhang H. Active Surveillance and Risk Assessment of Avian Influenza Virus Subtype H9 from Non-Vaccinated Commercial Broilers of Pakistan. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- MS Hasni
- University of Veterinary and Animal Sciences, Pakistan
| | - M Chaudhary
- University of Veterinary and Animal Sciences, Pakistan
| | - MH Mushtaq
- University of Veterinary and Animal Sciences, Pakistan
| | - AZ Durrani
- University of Veterinary and Animal Sciences, Pakistan
| | - HB Rashid
- University of Veterinary and Animal Sciences, Pakistan
| | - M Ali
- Livestock and Dairy Development Department, Pakistan
| | - M Ahmed
- Livestock and Dairy Development Department, Pakistan
| | - H Sattar
- University of Veterinary and Animal Sciences, Pakistan
| | - AI Aqib
- Cholistan University of Veterinary and Animal Sciences, Pakistan
| | - H Zhang
- Agriculture University, China
| |
Collapse
|
6
|
Gompo TR, Shah BR, Karki S, Koirala P, Maharjan M, Bhatt DD. Risk factors associated with Avian Influenza subtype H9 outbreaks in poultry farms in Kathmandu valley, Nepal. PLoS One 2020; 15:e0223550. [PMID: 32240166 PMCID: PMC7117692 DOI: 10.1371/journal.pone.0223550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/16/2020] [Indexed: 11/18/2022] Open
Abstract
The poultry sector contributes four percent to the national GDP of Nepal. However, this sector is under threat with periodic outbreaks of Avian Influenza (AI) subtypes H5 and H9 since 2009. This has been both a public health threat and an economic issue. Since the past few years, outbreaks of AI subtype H9 have caused huge economic losses in major poultry producing areas of Nepal. However, the risk factors associated with these outbreaks have not been assessed. A retrospective case-control study was conducted from April 2018 to May 2019 to understand the risk factors associated with AI subtype H9 outbreaks in Kathmandu valley. Out of 100 farms selected, 50 were “case” farms, confirmed positive to H9 at Central Veterinary Laboratory, Kathmandu, and another 50 farms were “control” farms, matched for farm size and locality within a radius of three km from the case farm. Each farm was visited to collect information using a semi-structured questionnaire. Twelve potential risk factors were included in the questionnaire under the broad categories: birds and farm characteristics, and management and biosecurity status of the farms. Univariable and multivariable logistic regression analysis was conducted and corresponding odds ratios were calculated. Risk factors, associated with AI subtype H9 outbreaks in Kathmandu valley, identified in the final multivariable model were: “farms that have flock size greater than median flock size of study farms (>1500)” (OR = 4.41, 95% CI: 1.53–12.71, p = 0.006), “farms that did not apply rules to wear boots for visitors inside the farms” (OR = 4.32, 95% CI: 1.52–12.29, p = 0.006) and “other commercial farms located within one km periphery” (OR = 10, 95% CI: 1.8–50, p = 0.007). This study showed that outbreaks of AI subtype H9 in Kathmandu valley were associated with a higher population of birds in the farm, poor management practices, and weak biosecurity measures in poultry farms. We suggest improving management practices and increase biosecurity in the farms to reduce incidences of AI subtype H9 outbreaks in Kathmandu valley.
Collapse
Affiliation(s)
- Tulsi Ram Gompo
- Department of Livestock Services, Central Veterinary Laboratory, Kathmandu, Nepal
- * E-mail:
| | - Bikas Raj Shah
- Institute of Agriculture and Animal Science, Tribhuvan University, Kathmandu, Nepal
| | - Surendra Karki
- Himalayan College of Agricultural Sciences and Technology, Kathmandu, Nepal
| | - Pragya Koirala
- Department of Livestock Services, Central Veterinary Laboratory, Kathmandu, Nepal
| | - Manju Maharjan
- Department of Livestock Services, Central Veterinary Laboratory, Kathmandu, Nepal
| | - Diker Dev Bhatt
- Department of Livestock Services, Central Veterinary Laboratory, Kathmandu, Nepal
| |
Collapse
|
7
|
Chaudhry M, Webby R, Swayne D, Rashid HB, DeBeauchamp J, Killmaster L, Criado MF, Lee DH, Webb A, Yousaf S, Asif M, Ain QU, Khan M, Ilyas Khan M, Hasan S, Yousaf A, Mushtaque A, Bokhari SF, Hasni MS. Avian influenza at animal-human interface: One-health challenge in live poultry retail stalls of Chakwal, Pakistan. Influenza Other Respir Viruses 2020; 14:257-265. [PMID: 32032469 PMCID: PMC7182597 DOI: 10.1111/irv.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Live poultry retail stalls (LPRSs) are believed to be the source of human infection with avian influenza viruses (AIVs); however, little is known about epidemiology of these viruses in LPRSs of Pakistan. Objectives The current study was conducted to estimate the virological and serological prevalence of AIVs in humans and poultry and associated risk factors among seropositive butchers. Methods A field survey of LPRSs of Chakwal District was conducted between December 2015 and March 2016. In total, 322 samples (sera = 161 and throat swab = 161) from butchers and 130 pooled oropharyngeal swabs and 100 sera from birds were collected. Baseline sera (n = 100) from general population were also tested. Data were collected by structured questionnaires. Sera were tested by hemagglutination inhibition (HI) test further confirmed by micro‐neutralization test (MN). Swabs were processed by real‐time RT‐PCR. Logistic regression analyses were conducted to identify risk factors. Results In butchers, 15.5% sera were positive for antibodies against H9 virus using a cutoff of ≥40 in HI titer; 6% sera from general population were positive for H9. Seroprevalence in poultry was 89%, and only 2.30% swabs were positive for H9. Presence of another LPRS nearby and the number of cages in the stall were risk factors (OR > 1) for H9 seroprevalence in butchers. Conclusions This study provides evidence of co‐circulation of H9 virus in poultry and exposure of butchers in the LPRSs, which poses a continued threat to public health. We suggest regular surveillance of AIVs in occupationally exposed butchers and birds in LPRSs.
Collapse
Affiliation(s)
- Mamoona Chaudhry
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Richard Webby
- Department of Infectious Diseases, World Health Organization Collaborating Center for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - Hamad Bin Rashid
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, World Health Organization Collaborating Center for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - Miria Ferreira Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture, Agricultural Research Service, Athens, GA, USA.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, USA
| | - Ashley Webb
- Department of Infectious Diseases, World Health Organization Collaborating Center for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shumaila Yousaf
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Asif
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qurat Ul Ain
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mirwaise Khan
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ilyas Khan
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saima Hasan
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arfat Yousaf
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abida Mushtaque
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Syeda Fakhra Bokhari
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Sajid Hasni
- Disease Surveillance Laboratory, Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Spackman E, Stephens CB, Pantin-Jackwood MJ. The Effect of Infectious Bursal Disease Virus-Induced Immunosuppression on Vaccination Against Highly Pathogenic Avian Influenza Virus. Avian Dis 2019; 62:36-44. [PMID: 29620467 DOI: 10.1637/11769-110717-reg.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Poor efficacy of avian influenza virus (AIV) vaccines in chickens has been documented in the field in spite of good results in experimental settings. Although the causes are multifactorial and complex, one contributing factor may be prior infection with immunosuppressive viruses. In an effort to evaluate the role of immunosuppressive agents on AIV pathogenesis and vaccine efficacy, the effect of prior infection with infectious bursal disease virus (IBDV), a ubiquitous immunosuppressive virus of chickens, was evaluated. Specific-pathogen-free white Plymouth Rock chickens were exposed to variant E IBDV at 1 day of age and were subsequently vaccinated with an inactivated H7 AIV vaccine 2 wk later. Vaccinated chickens exposed to IBDV had a geometric mean antibody titer to AIV of 1:1.7 by hemagglutination inhibition assay compared to a geometric mean titer of 1:47.5 from chickens that were vaccinated but not exposed to IBDV. Three weeks postvaccination, the chickens were challenged with one of six different doses of highly pathogenic (HP) AIV homologous to the vaccine. Within challenge virus dose groups, vaccinated chickens exposed to IBDV had similar mortality rates to nonvaccinated chickens that were not exposed to IBDV. In contrast, vaccinated chickens that were not exposed to IBDV were protected from mortality. Exposure to IBDV also decreased the mean death time (2.3-3.7 days depending on dose) compared with vaccinated birds not exposed to IBDV (4-7 days depending on dose). Neither vaccination nor IBDV infection had an effect on mean bird infection dose with HPAIV, but the 50% bird lethal dose was reduced from >106 50% egg infective dose (EID50) in the vaccinated, IBDV-nonexposed group to 103.3 EID50 in the vaccinated group exposed to IBDV. These results are consistent with IBDV exposure contributing to poor vaccine efficacy in the field.
Collapse
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Rd., Athens, GA 30605
| | - Christopher B Stephens
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Rd., Athens, GA 30605
| | - Mary J Pantin-Jackwood
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Rd., Athens, GA 30605
| |
Collapse
|
9
|
Jonas M, Sahesti A, Murwijati T, Lestariningsih CL, Irine I, Ayesda CS, Prihartini W, Mahardika GN. Identification of avian influenza virus subtype H9N2 in chicken farms in Indonesia. Prev Vet Med 2018; 159:99-105. [PMID: 30314797 DOI: 10.1016/j.prevetmed.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/11/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
Avian influenza virus subtype H9N2 (AIV-H9N2) has become established in domestic poultry in Asia and Africa. AIV-H9N2 has not been reported previously in Indonesia. Here we describe the presence of AIV-H9N2 in chicken farms in Indonesia. Ninety-nine cases were observed in various provinces in Indonesia. Clinical signs, pathologic lesions and egg production were recorded. Confirmation was made using virus isolation, reverse transcriptase PCR (RT-PCR), and sequencing. To construct hemaglutinin (HA) phylogeny, the secondary data of Eurasian lineages were downloaded from GenBank. For neuraminidase, five sequences with the highest similarities with every sequence found in this study were downloaded. Phylogeny was inferred using Neighbor-Joining method in MEGA6 package. Forty-nine AIV-H9N2-positive cases were observed, of which 35 were tested positive for AIV-H9N2 only. The age of the infected chickens was 43.17 ± 16.56 weeks, and their egg production was 35.85 ± 17.80% lower than before outbreak. BLAST search revealed that the nucleotide sequence of the HA-encoding gene identified in this study shared 98% sequence identity with that of A/Muscovy duck/Vietnam/LBM719/2014(H9N2), while its neuraminidase-encoding gene sequences shared 94%, 98%, and 100% identities with three different influenza viruses. The phylogeny shows that the HA of AIV-H9N2 found in this study forms distinct cluster with some Vietnam and China's sequence data. The NA sequence data form three distinct clusters. We conclude that AIV-H9N2 is widespread in many provinces in Indonesia. To lessen economic losses to the poultry industry, flock biosecurity and vaccination against this virus subtype should be implemented rapidly. Thorough and rigid AIV surveillance is paramount to prevent further veterinary and public health consequences of the circulation of this virus in Indonesia.
Collapse
Affiliation(s)
- Melina Jonas
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | - Aprilla Sahesti
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | | | | | - Ine Irine
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | | | - Wahyu Prihartini
- PT Medion Farma Jaya, Jl. Babakan Ciparay #282, Bandung, Indonesia
| | - Gusti Ngurah Mahardika
- Faculty of Veterinary Medicine Udayana University, Jl. PB Sudirman, 80225, Denpasar, Bali, Indonesia.
| |
Collapse
|
10
|
Hasnain S. "Everyone just ate good food": 'Good food' in Islamabad, Pakistan. Appetite 2018; 127:1-9. [PMID: 29673910 DOI: 10.1016/j.appet.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/18/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
In recent years, consumption of alternatively produced foods has increased in popularity in response to the deleterious effects of rapidly globalising and industrialised food systems. Concerns over food safety in relation to these changes may result from elevated levels of risk and changing perceptions associated with food production practices. This paper explores how the middle class residents of Islamabad, Pakistan, use the concept of 'good food' to reconnect themselves with nature, changing food systems, and traditional values. The paper also demonstrates how these ideas relate to those of organic, local, and traditional food consumption as currently used in more economically developed states in the Global North. Through research based on participant observation and semi-structured interviews, this paper illustrates that besides price and convenience, purity, freshness, association with specific places, and 'Pakistani-ness' were considered as the basis for making decisions about 'good food'. The results show that while individuals are aware of and have some access to imported organic and local food, they prefer using holistic and culturally informed concepts of 'good food' instead that reconnect them with food systems. I argue that through conceptualisations of 'good food', the urban middle class in Islamabad is reducing their disconnection and dis-embeddedness from nature, the food systems, and their social identities. The paper contributes to literature on food anxieties, reconnections in food geography, and 'good food' perceptions, with a focus on Pakistan.
Collapse
Affiliation(s)
- Saher Hasnain
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, United Kingdom.
| |
Collapse
|
11
|
Meadows AJ, Mundt CC, Keeling MJ, Tildesley MJ. Disentangling the influence of livestock vs. farm density on livestock disease epidemics. Ecosphere 2018. [DOI: 10.1002/ecs2.2294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Amanda J. Meadows
- Department of Botany and Plant Pathology; Oregon State University; Cordley Hall, 2701 SW Campus Way Corvallis Oregon 97331 USA
| | - Christopher C. Mundt
- Department of Botany and Plant Pathology; Oregon State University; Cordley Hall, 2701 SW Campus Way Corvallis Oregon 97331 USA
| | - Matt J. Keeling
- Department of Biological Sciences; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| | - Michael J. Tildesley
- Department of Biological Sciences; University of Warwick; Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
12
|
Kim WH, An JU, Kim J, Moon OK, Bae SH, Bender JB, Cho S. Risk factors associated with highly pathogenic avian influenza subtype H5N8 outbreaks on broiler duck farms in South Korea. Transbound Emerg Dis 2018; 65:1329-1338. [PMID: 29673109 DOI: 10.1111/tbed.12882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Indexed: 11/29/2022]
Abstract
Highly Pathogenic Avian Influenza (HPAI) subtype H5N8 outbreaks occurred in poultry farms in South Korea in 2014 resulting in significant damage to the poultry industry. Between 2014 and 2016, the pandemic disease caused significant economic loss and social disruption. To evaluate the risk factors for HPAI infection in broiler duck farms, we conducted a retrospective case-control study on broiler duck farms. Forty-three farms with confirmed laboratories on premises were selected as the case group, and 43 HPAI-negative farms were designated as the control group. Control farms were matched based on farm location and were within a 3-km radius from the case premises. Spatial and environmental factors were characterized by site visit and plotted through a geographic information system (GIS). Univariable and multivariable logistic regression models were developed to assess possible risk factors associated with HPAI broiler duck farm infection. Four final variables were identified as risk factors in a final multivariable logistic model: "Farms with ≥7 flocks" (odds ratio [OR] = 6.99, 95% confidence interval [CI] 1.34-37.04), "Farm owner with ≥15 years of raising poultry career" (OR = 7.91, 95% CI 1.69-37.14), "Presence of any poultry farms located within 500 m of the farm" (OR = 6.30, 95% CI 1.08-36.93) and "Not using a faecal removal service" (OR = 27.78, 95% CI 3.89-198.80). This highlights that the HPAI H5N8 outbreaks in South Korea were associated with farm owner education, number of flocks and facilities and farm biosecurity. Awareness of these factors may help to reduce the spread of HPAI H5N8 across broiler duck farms in Korea during epidemics. Greater understanding of the risk factors for H5N8 may improve farm vulnerability to HPAI and other subtypes and help to establish policies to prevent re-occurrence. These findings are relevant to global prevention recommendations and intervention protocols.
Collapse
Affiliation(s)
- W-H Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - J-U An
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - J Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - O-K Moon
- Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - S H Bae
- Department of Geography Education, Kangwon National University, Chuncheon, Korea
| | - J B Bender
- Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - S Cho
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
Risk Factors for Avian Influenza H9 Infection of Chickens in Live Bird Retail Stalls of Lahore District, Pakistan 2009-2010. Sci Rep 2018; 8:5634. [PMID: 29618780 PMCID: PMC5884806 DOI: 10.1038/s41598-018-23895-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 03/20/2018] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to identify risk factors associated with AIV infections in live bird retail stalls (LBRS) in Lahore District, Pakistan. A cross-sectional survey of LBRS was conducted from December 2009-February 2010 using two-stage cluster sampling based on probability proportional to size. A total of 280 oropharyngeal swab sample pools were collected from 1400 birds in 8 clusters and tested by qRT-PCR for the matrix (M) gene of type A influenza virus and HA gene subtypes H9, H5 and H7. Thirty-four (34) samples were positive for the M gene, of which 28 were also positive for H9. No sample was found positive for H5 or H7. Data for 36 potential risk factors, collected by questionnaire, were analyzed by survey-weighted logistic regression and prevalence odds ratios (OR) for associated risk factors were calculated. A final multivariable model identified three risk factors for H9 infection in LRBS, namely obtaining birds from mixed sources (OR 2.28, CI95%: 1.4–3.7), keeping birds outside cages (OR 3.10, CI95%: 1.4–7.0) and keeping chicken breeds other than broilers (OR 6.27, CI95%: 1.7–23.2). Sourcing birds from dealers/wholesalers, keeping birds inside cages and avoiding mixing different breeds in cages could reduce the risk of H9 infections in LRBS.
Collapse
|
14
|
Voigt EA, Grill DE, Zimmermann MT, Simon WL, Ovsyannikova IG, Kennedy RB, Poland GA. Transcriptomic signatures of cellular and humoral immune responses in older adults after seasonal influenza vaccination identified by data-driven clustering. Sci Rep 2018; 8:739. [PMID: 29335477 PMCID: PMC5768803 DOI: 10.1038/s41598-017-17735-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
PBMC transcriptomes after influenza vaccination contain valuable information about factors affecting vaccine responses. However, distilling meaningful knowledge out of these complex datasets is often difficult and requires advanced data mining algorithms. We investigated the use of the data-driven Weighted Gene Correlation Network Analysis (WGCNA) gene clustering method to identify vaccine response-related genes in PBMC transcriptomic datasets collected from 138 healthy older adults (ages 50-74) before and after 2010-2011 seasonal trivalent influenza vaccination. WGCNA separated the 14,197 gene dataset into 15 gene clusters based on observed gene expression patterns across subjects. Eight clusters were strongly enriched for genes involved in specific immune cell types and processes, including B cells, T cells, monocytes, platelets, NK cells, cytotoxic T cells, and antiviral signaling. Examination of gene cluster membership identified signatures of cellular and humoral responses to seasonal influenza vaccination, as well as pre-existing cellular immunity. The results of this study illustrate the utility of this publically available analysis methodology and highlight genes previously associated with influenza vaccine responses (e.g., CAMK4, CD19), genes with functions not previously identified in vaccine responses (e.g., SPON2, MATK, CST7), and previously uncharacterized genes (e.g. CORO1C, C8orf83) likely related to influenza vaccine-induced immunity due to their expression patterns.
Collapse
Affiliation(s)
- Emily A Voigt
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Diane E Grill
- Division of Biomedical Statistics and Informatics Mayo Clinic, Rochester, MN 55905, USA
| | - Michael T Zimmermann
- Division of Biomedical Statistics and Informatics Mayo Clinic, Rochester, MN 55905, USA
| | - Whitney L Simon
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
15
|
Khan A, Mushtaq MH, Ahmad MUD, Nazir J, Fatima Z, Khan A, Farooqi SH. Investigating the epidemiology of EI epidemic spread in the Province of Khyber Pakhtunkhwa, Pakistan in 2015-16. Prev Vet Med 2018; 149:132-139. [PMID: 29290294 DOI: 10.1016/j.prevetmed.2017.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 11/05/2017] [Accepted: 12/03/2017] [Indexed: 11/18/2022]
Abstract
EI in non-vaccinated population causes disruption and economic losses. To identify the risk factors associated with the EI epidemics in equids in Pakistan, a 1:1 matched case control study was conducted during 2015-2016. Including a total of 197 laboratory confirmed cases and negative controls, matched on the basis of geography, time of sampling, specie and age. A piloted questionnaire was used to collect data regarding risk factors associated with the occurrence of EI in face to face interviews. Conditional logistic regression was performed to analyze the data. A total of 16 out of 23 variables were found associated as risk factors in Univariable conditional logistic regression analysis. Multivariable conditional logistic-regression analysis was also performed. Monthly removal of manure doubles the risk of EI (EI) compared to its daily removal. Due to lack of vaccination; the spread of disease was favored by high equine density. Investigating the index-case it was recorded that infected cases were imported from Afghanistan. Most of these risk factors related to biosecurity and management were due to low awareness level regarding EI amongst the respondents. These findings are in line with the results of many other studies identifying similar risk factors for EI infection in various countries. Adopting protective practices, vaccination and controlling the risk factors identified in the present study could reduce the spread and future outbreaks of EI in Pakistan.
Collapse
Affiliation(s)
- Amjad Khan
- Department of Veterinary Sciences, The Maxwell H. Gluck Equine Research Centre, OIE Reference Lab for EI, University of Kentucky, Lexington, 40502, USA/Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Muhammad Hassan Mushtaq
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Mansur Ud Din Ahmad
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Jawad Nazir
- Department of Clinical Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Zahida Fatima
- Pakistan Agricultural Research Council, Islamabad, 33000, Pakistan
| | - Asghar Khan
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Shahid Hussain Farooqi
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
16
|
Dulwich KL, Giotis ES, Gray A, Nair V, Skinner MA, Broadbent AJ. Differential gene expression in chicken primary B cells infected ex vivo with attenuated and very virulent strains of infectious bursal disease virus (IBDV). J Gen Virol 2017; 98:2918-2930. [PMID: 29154745 DOI: 10.1099/jgv.0.000979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae and is economically important to the poultry industry worldwide. IBDV infects B cells in the bursa of Fabricius (BF), causing immunosuppression and morbidity in young chickens. In addition to strains that cause classical Gumboro disease, the so-called 'very virulent' (vv) strain, also in circulation, causes more severe disease and increased mortality. IBDV has traditionally been controlled through the use of live attenuated vaccines, with attenuation resulting from serial passage in non-lymphoid cells. However, the factors that contribute to the vv or attenuated phenotypes are poorly understood. In order to address this, we aimed to investigate host cell-IBDV interactions using a recently described chicken primary B-cell model, where chicken B cells are harvested from the BF and cultured ex vivo in the presence of chicken CD40L. We demonstrated that these cells could support the replication of IBDV when infected ex vivo in the laboratory. Furthermore, we evaluated the gene expression profiles of B cells infected with an attenuated strain (D78) and a very virulent strain (UK661) by microarray. We found that key genes involved in B-cell activation and signalling (TNFSF13B, CD72 and GRAP) were down-regulated following infection relative to mock, which we speculate could contribute to IBDV-mediated immunosuppression. Moreover, cells responded to infection by expressing antiviral type I IFNs and IFN-stimulated genes, but the induction was far less pronounced upon infection with UK661, which we speculate could contribute to its virulence.
Collapse
Affiliation(s)
- Katherine L Dulwich
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Efstathios S Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Alice Gray
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | | | - Michael A Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
17
|
Prospective study of avian influenza H9 infection in commercial poultry farms of Punjab Province and Islamabad Capital Territory, Pakistan. Trop Anim Health Prod 2016; 49:213-220. [PMID: 27761776 PMCID: PMC7088531 DOI: 10.1007/s11250-016-1159-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022]
Abstract
A prospective study was conducted from November 2013 to February 2014 to estimate the spatial clustering; cumulative incidence and risk factors associated with avian influenza (AI) subtype H9 infection on commercial poultry farms of Pakistan. A total of 400 farms were enrolled and followed during the study period. Among these, 109 farms submitted samples suspected for AI to the laboratory, and only 47 farms were confirmed positive by hemagglutinin inhibition (HI) test. Data was collected from these 109 farms about their demography, management, and biosecurity practices. The cumulative incidence of H9N2 was 11.75 % (95 % confidence interval (CI) 8.76–15.23). The highest number of cases (40.42 %) was reported in January. One most likely cluster (p = 0.009, radius = 4.61 km) occurred in the Kasur district. Multivariable logistic regression analyses showed that the presence of wild birds on the farms (odds ratio (OR) = 16.18; 95 % CI 3.94–66.45) was independently associated with H9N2 infection. Cleaning of cages before delivery on farm (OR = 0.16; 95 % CI = 0.06–0.47), presence of a footbath at the entrance of farm (OR = 0.24; 95 % CI 0.08–0.79), and changing of gloves (OR = 0.33; 95 % CI 0.11–0.99) were protective factors against H9N2 infection. Reducing the exposure to risk factors and adapting biosecurity measures may reduce the risk of AI H9N2 infection on commercial poultry farms in Pakistan.
Collapse
|