1
|
Yong W, Jian Y, Wang Q, Fei K, Li P. AC092100.1 promotes angiogenesis in pre-eclampsia through YTHDC2/VEGFA signaling. Funct Integr Genomics 2024; 24:157. [PMID: 39237822 DOI: 10.1007/s10142-024-01428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Aberrant long non-coding RNA (lncRNA) expression has been shown to be involved in the pathological process of pre-eclampsia (PE), yet only a small portion of lncRNAs has been characterized concerning the function and molecular mechanisms involved in PE. This study aimed to investigate the regulatory mechanism of the lncRNA AC092100.1 (AC092100.1) in angiogenesis in PE. In our study, bioinformatics analysis was performed to screen for differentially expressed lncRNAs between normal subjects and PE patients. The levels of AC092100.1 in placental tissues of patients with or without PE were validated using qRT-PCR. The effect of AC092100.1 overexpression on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) was investigated. The binding of AC092100.1 and YT521-B homology domain-containing 2 (YTHDC2) was predicted and verified. The effect of AC092100.1/YTHDC2 on the expression of vascular endothelial growth factor-A (VEGFA) in HUVECs was determined. Finally, a PE mice model was conducted. Fetal mouse growth, the abundance of mesenchymal morphology markers, including hypoxia-inducible factor 1-alpha (HIF-1α), soluble fms-like tyrosine kinase-1 (sFlt-1), soluble endoglin (sEng), Slug, and Vimentin, and endothelial markers, including placental growth factor (PLGF), CD31, and vascular endothelial (VE)-cadherin, in placental tissues were assessed. Here, we found that AC092100.1 was abnormally downregulated in placental tissues from PE patients. We established that AC092100.1 overexpression promoted HUVEC proliferation, migration, and tube formation in vitro. Mechanistically, AC092100.1 induced the accumulation of YTHDC2 and VEGFA through binding to YTHDC2 in HUVECs. Inhibition of YTHDC2 or VEGFA reversed AC092100.1-promoted tube formation. AC092100.1 overexpression contributed to alleviating fetal growth disorder, decreased levels of sEng, HIF-1α, sFlt-1, Slug, and Vimentin, and increased levels of VEGFA, PLGF, CD31, and VE-cadherin in PE mice. Our findings provided evidence supporting the role of the AC092100.1/YTHDC2/VEGFA axis in regulating angiogenesis, which demonstrated a therapeutic pathway for PE targeting angiogenesis.
Collapse
Affiliation(s)
- Wenjing Yong
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
| | - Yu Jian
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
| | - Qi Wang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
| | - Kuilin Fei
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, Hunan, China.
| |
Collapse
|
2
|
Gál L, Fóthi Á, Orosz G, Nagy S, Than NG, Orbán TI. Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia. Front Immunol 2024; 15:1321191. [PMID: 38455065 PMCID: PMC10917917 DOI: 10.3389/fimmu.2024.1321191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Preeclampsia (PE) is a severe obstetrical syndrome characterized by new-onset hypertension and proteinuria and it is often associated with fetal intrauterine growth restriction (IUGR). PE leads to long-term health complications, so early diagnosis would be crucial for timely prevention. There are multiple etiologies and subtypes of PE, and this heterogeneity has hindered accurate identification in the presymptomatic phase. Recent investigations have pointed to the potential role of small regulatory RNAs in PE, and these species, which travel in extracellular vesicles (EVs) in the circulation, have raised the possibility of non-invasive diagnostics. The aim of this study was to investigate the behavior of exosomal regulatory small RNAs in the most severe subtype of PE with IUGR. Methods We isolated exosomal EVs from first-trimester peripheral blood plasma samples of women who later developed preterm PE with IUGR (n=6) and gestational age-matched healthy controls (n=14). The small RNA content of EVs and their differential expression were determined by next-generation sequencing and further validated by quantitative real-time PCR. We also applied the rigorous exceRpt bioinformatics pipeline for small RNA identification, followed by target verification and Gene Ontology analysis. Results Overall, >2700 small RNAs were identified in all samples and, of interest, the majority belonged to the RNA interference (RNAi) pathways. Among the RNAi species, 16 differentially expressed microRNAs were up-regulated in PE, whereas up-regulated and down-regulated members were equally found among the six identified Piwi-associated RNAs. Gene ontology analysis of the predicted small RNA targets showed enrichment of genes in pathways related to immune processes involved in decidualization, placentation and embryonic development, indicating that dysregulation of the induced small RNAs is connected to the impairment of immune pathways in preeclampsia development. Finally, the subsequent validation experiments revealed that the hsa_piR_016658 piRNA is a promising biomarker candidate for preterm PE associated with IUGR. Discussion Our rigorously designed study in a homogeneous group of patients unraveled small RNAs in circulating maternal exosomes that act on physiological pathways dysregulated in preterm PE with IUGR. Therefore, our small RNA hits are not only suitable biomarker candidates, but the revealed biological pathways may further inform us about the complex pathology of this severe PE subtype.
Collapse
Affiliation(s)
- Luca Gál
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ábel Fóthi
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Gergő Orosz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Nagy
- Department of Obstetrics and Gynecology, Petz Aladár University Teaching Hospital, Győr, Hungary
- Faculty of Health and Sport Sciences, Széchenyi István University, Győr, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
| | - Tamás I. Orbán
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
3
|
Thadhani R, Cerdeira AS, Karumanchi SA. Translation of mechanistic advances in preeclampsia to the clinic: Long and winding road. FASEB J 2024; 38:e23441. [PMID: 38300220 DOI: 10.1096/fj.202301808r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
As one of the leading causes of premature birth and maternal and infant mortality worldwide, preeclampsia remains a major unmet public health challenge. Preeclampsia and related hypertensive disorders of pregnancy are estimated to cause >75 000 maternal and 500 000 infant deaths globally each year. Because of rising rates of risk factors such as obesity, in vitro fertilization and advanced maternal age, the incidence of preeclampsia is going up with rates ranging from 5% to 10% of all pregnancies worldwide. A major discovery in the field was the realization that the clinical phenotypes related to preeclampsia, such as hypertension, proteinuria, and other adverse maternal/fetal events, are due to excess circulating soluble fms-like tyrosine kinase-1 (sFlt-1, also referred to as sVEGFR-1). sFlt-1 is an endogenous anti-angiogenic protein that is made by the placenta and acts by neutralizing the pro-angiogenic proteins vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). During the last decade, this work has spawned a new era of molecular diagnostics for early detection of this condition. Antagonizing sFlt-1 either by reducing production or blocking its actions has shown salutary effects in animal models. Further, in early-stage human studies, the therapeutic removal of sFlt-1 from maternal circulation has shown promise in delaying disease progression and improving outcomes. Recently, the FDA approved the first molecular test for preterm preeclampsia (sFlt-1/PlGF ratio) for clinical use in the United States. Measuring serum sFlt-1/PlGF ratio in the acute hospital setting may aid short-term management, particularly regarding step-up or step-down of care, decision to transfer to settings better equipped to manage both the mother and the preterm neonate, appropriate timing of administration of steroids and magnesium sulfate, and in expectant management decisions. The test itself has the potential to save lives. Furthermore, the availability of a molecular test that correlates with adverse outcomes has set the stage for interventional clinical trials testing treatments for this disorder. In this review, we will discuss the role of circulating sFlt-1 and related factors in the pathogenesis of preeclampsia and specifically how this discovery is leading to concrete advances in the care of women with preeclampsia.
Collapse
Affiliation(s)
- Ravi Thadhani
- Woodruff Health Sciences Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ana Sofia Cerdeira
- Nuffield Department of Women's Health and Reproductive Research, University of Oxford, Oxford, UK
- Fetal Maternal Medicine Unit, Queen Charlotte's and Chelsea Hospital, London, UK
| | - S Ananth Karumanchi
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Bachnas MA, Dekker GA, Mudigdo A, Purwanto B, Sulistyowati S, Dachlan EG, Akbar MIA, Chouw A, Sartika CR, Widjiati W. Mesenchymal stem cell secretome ameliorates over-expression of soluble fms-like tyrosine kinase-1 (sFlt-1) and fetal growth restriction (FGR) in animal SLE model. J Matern Fetal Neonatal Med 2023; 36:2279931. [PMID: 37953255 DOI: 10.1080/14767058.2023.2279931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the near future, stem cell research may lead to several major therapeutic innovations in medical practice. Secretome, a "by-product" of stem cell line cultures, has many advantages. Its easiness of storage, usage, and fast direct effect are some of those to consider. Fetal growth restriction (FGR) remains one of the significant challenges in maternal-fetal and neonatal medicine. Placentation failure is one of the most profound causal and is often related to increasing sFlt-1 in early pregnancy. This study aimed to investigate hUC-MSC secretome in ameliorating sFlt-1 and how to improve outcomes in preventing FGR in an animal model. MATERIALS AND METHODS Pristane-induced systemic lupus erythematosus (SLE) in a mouse model was used to represent placentation failure and its consequences. Twenty-one mice were randomized into three groups: (I) normal pregnancy, (II) SLE, and (III) SLE with secretome treatment. Pristane was administered in all Groups four weeks prior mating period. Secretome was derived from human umbilical cord mesenchymal stem cells (hUC-MSC) conditioned medium on the 3rd and 4th passage, around day-21 until day-28 from the start of culturing process. Mesenchymal stem cell was characterized using flow cytometry for CD105+, CD90+, and CD73+ surface antigen markers. Immunohistochemistry anlysis by using Remmele's Immunoreactive Score (IRS) was used to quantify the placental sFlt-1 expression in each group. Birth weight and length were analyzed as the secondary outcome. The number of fetuses obtained was also calculated for pregnancy loss comparison between Groups. RESULTS The administration of secretome of hUC-MSC was found to lower the expression of the placental sFlt-1 significantly in the pristane SLE animal model (10.30 ± 1.40 vs. 4.98 ± 2.57; p < 0.001) to a level seen in normal mouse pregnancies in Group I (3.88 ± 0.49; p = 0.159). Secretome also had a significant effect on preventing fetal growth restriction in the pristane SLE mouse model (birth weight: 354.29 ± 80.76 mg vs. 550 ± 64.03 mg; p < 0.001 and birth length: 14.43 ± 1.27 mm vs. 19.00 ± 1.41 mm), comparable to the birth weight and length of the normal pregnancy in Group I (540.29 ± 75.47 mg and 18.14 ± 1.34 mm, p = 0.808 and = 0.719). Secretome administration also showed a potential action to prevent high number of pregnancy loss as the number of fetuses obtained could be similar to those of mice in the normal pregnant Group (7.71 ± 1.11 vs. 7.86 ± 1.06; p = 0.794). CONCLUSIONS Administration of secretome lowers sFlt-1 expression in placenta, improves fetal growth, and prevents pregnancy loss in a mouse SLE model.
Collapse
Affiliation(s)
- Muhammad Adrianes Bachnas
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Faculty of Medicine, Universitas Sebelas Maret/Dr. Moewardi Hospital, Solo, Indonesia
| | - Gustaaf Albert Dekker
- Obstetrics and Gynaecology Department, Lyell-McEwin Hospital, The University of Adelaide, Adelaide, Australia
| | - Ambar Mudigdo
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Sebelas Maret/Dr. Moewardi Hospital, Solo, Indonesia
| | - Bambang Purwanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Sebelas Maret/Dr. Moewardi Hospital, Solo, Indonesia
| | - Sri Sulistyowati
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Faculty of Medicine, Universitas Sebelas Maret/Dr. Moewardi Hospital, Solo, Indonesia
| | - Erry Gumilar Dachlan
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Muhammad Ilham Aldika Akbar
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Faculty of Medicine, Universitas Airlangga/Airlangga University Hospital, Surabaya, Indonesia
| | - Angliana Chouw
- ProSTEM, Prodia StemCell Indonesia Laboratory, Jakarta, Indonesia
| | | | - Widjiati Widjiati
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Mészáros B, Kukor Z, Valent S. Recent Advances in the Prevention and Screening of Preeclampsia. J Clin Med 2023; 12:6020. [PMID: 37762960 PMCID: PMC10532380 DOI: 10.3390/jcm12186020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Throughout the history of medicine, preeclampsia has remained an enigmatic field of obstetrics. In 2023, despite its prevalence and impact, preeclampsia's exact cause and effective treatment remain elusive; the current options are limited to delivery. The purpose of this review is to summarize the knowledge of the possible novel prophylactic therapies and screening methods for preeclampsia, thereby providing valuable insights for healthcare professionals and researchers. Aspirin and LMWH have already been widely used; meanwhile, calcium, vitamin D, and pravastatin show promise, and endothelin receptor antagonists are being explored. Stress reduction, dietary changes, and lifestyle modifications are also being investigated. Another interesting and fast-growing area is AI- and software-based screening methods. It is also key to find novel biomarkers, which, in some cases, are not only able to predict the development of the disease, but some of them hold promise to be a potential therapeutic target. We conclude that, while a definitive cure for preeclampsia may not be eligible in the near future, it is likely that the assessment and enhancement of preventive methods will lead to the prevention of many cases. However, it is also important to highlight that more additional research is needed in the future to clarify the exact pathophysiology of preeclampsia and to thus identify potential therapeutic targets for more improved treatment methods.
Collapse
Affiliation(s)
- Balázs Mészáros
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1082 Budapest, Hungary
| | - Sándor Valent
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary
| |
Collapse
|
6
|
Reliability of Rodent and Rabbit Models in Preeclampsia Research. Int J Mol Sci 2022; 23:ijms232214344. [PMID: 36430816 PMCID: PMC9696504 DOI: 10.3390/ijms232214344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
In vivo studies on the pathology of gestation, including preeclampsia, often use small mammals such as rabbits or rodents, i.e., mice, rats, hamsters, and guinea pigs. The key advantage of these animals is their short reproductive cycle; in addition, similar to humans, they also develop a haemochorial placenta and present a similar transformation of maternal spiral arteries. Interestingly, pregnant dams also demonstrate a similar reaction to inflammatory factors and placentally derived antiangiogenic factors, i.e., soluble fms-like tyrosine kinase 1 (sFlt-1) or soluble endoglin-1 (sEng), as preeclamptic women: all animals present an increase in blood pressure and usually proteinuria. These constitute the classical duet that allows for the recognition of preeclampsia. However, the time of initiation of maternal vessel remodelling and the depth of trophoblast invasion differs between rabbits, rodents, and humans. Unfortunately, at present, no known animal replicates a human pregnancy exactly, and hence, the use of rabbit and rodent models is restricted to the investigation of individual aspects of human gestation only. This article compares the process of placentation in rodents, rabbits, and humans, which should be considered when planning experiments on preeclampsia; these aspects might determine the success, or failure, of the study. The report also reviews the rodent and rabbit models used to investigate certain aspects of the pathomechanism of human preeclampsia, especially those related to incorrect trophoblast invasion, placental hypoxia, inflammation, or maternal endothelial dysfunction.
Collapse
|
7
|
Abstract
Cardiovascular complications of pregnancy have risen substantially over the past decades, and now account for the majority of pregnancy-induced maternal deaths, as well as having substantial long-term consequences on maternal cardiovascular health. The causes and pathophysiology of these complications remain poorly understood, and therapeutic options are limited. Preclinical models represent a crucial tool for understanding human disease. We review here advances made in preclinical models of cardiovascular complications of pregnancy, including preeclampsia and peripartum cardiomyopathy, with a focus on pathological mechanisms elicited by the models and on relevance to human disease.
Collapse
Affiliation(s)
- Zolt Arany
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (Z.A.)
| | - Denise Hilfiker-Kleiner
- Institute of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Philipps University Marburg, Germany (D.H.-K.)
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| |
Collapse
|
8
|
Oravecz O, Balogh A, Romero R, Xu Y, Juhasz K, Gelencser Z, Xu Z, Bhatti G, Pique-Regi R, Peterfia B, Hupuczi P, Kovalszky I, Murthi P, Tarca AL, Papp Z, Matko J, Than NG. Proteoglycans: Systems-Level Insight into Their Expression in Healthy and Diseased Placentas. Int J Mol Sci 2022; 23:5798. [PMID: 35628608 PMCID: PMC9147780 DOI: 10.3390/ijms23105798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans' expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zhonghui Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Balint Peterfia
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | | | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia;
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
| | - Zoltan Papp
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Janos Matko
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| |
Collapse
|
9
|
Aberdeen GW, Babischkin JS, Lindner JR, Pepe GJ, Albrecht ED. Placental sFlt-1 Gene Delivery in Early Primate Pregnancy Suppresses Uterine Spiral Artery Remodeling. Endocrinology 2022; 163:bqac012. [PMID: 35134145 PMCID: PMC8896163 DOI: 10.1210/endocr/bqac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Uterine spiral artery remodeling (SAR) is essential for promoting placental perfusion and fetal development. A defect in SAR results in placental ischemia and increase in placental expression and serum levels of the soluble fms-like tyrosine kinase-1 (sFlt-1) receptor that binds to and suppresses vascular endothelial growth factor (VEGF) bioavailability, thereby leading to maternal vascular dysfunction. We have established a nonhuman primate model of impaired SAR and maternal vascular dysfunction by prematurely elevating estradiol levels in early baboon pregnancy. However, it is unknown whether this primate model of defective SAR involves an increase in placental expression of sFlt-1, which may suppress VEGF bioavailability and thus SAR in the first trimester. Therefore, to establish the role of sFlt-1 in early pregnancy, SAR was quantified in baboons treated on days 25 through 59 of gestation (term = 184 days) with estradiol or with the sFlt-1 gene targeted selectively to the placental basal plate by ultrasound-mediated/microbubble-facilitated gene delivery technology. Placental basal plate sFlt-1 protein expression was 2-fold higher (P < 0.038) and the level of SAR for vessels > 25 µm in diameter was 72% and 63% lower (P < 0.01), respectively, in estradiol-treated and sFlt-1 gene-treated baboons than in untreated animals. In summary, prematurely elevating estradiol levels or sFlt-1 gene delivery increased placental basal plate sFlt-1 protein expression and suppressed SAR in early baboon pregnancy. This study makes the novel discovery that in elevated levels sFlt-1 has a role both in suppressing SAR in early primate pregnancy and maternal vascular endothelial function in late gestation.
Collapse
Affiliation(s)
- Graham W Aberdeen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffery S Babischkin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Rowson S, Reddy M, De Guingand D, Langston-Cox A, Marshall S, da Silva Costa F, Palmer K. Comparison of circulating total sFLT-1 to placental-specific sFLT-1 e15a in women with suspected preeclampsia. Placenta 2022; 120:73-78. [DOI: 10.1016/j.placenta.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 10/19/2022]
|
11
|
Gan B, Wu X, Lu L, Li X, Li J. The Value of Prenatal First Systolic Blood Pressure Can Predict Severe Preeclampsia and Birth Weight in Patients With Preeclampsia. Front Med (Lausanne) 2022; 8:771738. [PMID: 35186968 PMCID: PMC8850716 DOI: 10.3389/fmed.2021.771738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background Preeclampsia is a serious complication of pregnancy that threatens the safety of the fetus and mother. We assessed the relationship between systolic blood pressure (SBP) in the early pregnancy stage (12 weeks) in patients with preeclampsia and the development of severe eclampsia and birth weight. Methods Patients were categorized based on the quartiles of the prenatal first SBP level. Logistic regression analysis was performed to assess whether prenatal first SBP was a risk factor for low birth weight and severe preeclampsia. The area under the receiver-operating characteristic curve (AUC) of sensitivity and specificity were used to predict the risk of low birth weight and severe preeclampsia. Results A total of 333 patients with preeclampsia were enrolled. There were 162 (48.6%) patients with severe preeclampsia and 270 (81.08%) cesareans. Group I patients with a prenatal first SBP ≤ 119 mmHg prenatal had a higher birth weight. Multiple logistic regression analysis showed that serum creatinine (p = 0.025), prenatal first SBP (p = 0.029), S-preeclampsia (p = 0.003), gestational age (p < 0.001), total cholesterol (TC) (p < 0.001), and low-density lipoprotein (LDL) (p < 0.001) were independent risk factors for low birth weight. Multiple logistic regression analysis showed that prenatal first SBP (p = 0.003), TC (p = 0.002), and B-type natriuretic peptide (BNP) (p < 0.001) were independent risk factors for severe preeclampsia. Compared with Group I (SBP ≤ 119 mmHg), the incidence of low birth weight for patients in groups III (131 ≤ SBP ≤ 138 mmHg) and IV (SBP ≥ 139 mmHg) was significantly higher. Even after correcting for age, gestational age, and biochemical indices, the difference remained statistically significant. The risk of diagnosed severe preeclampsia for patients in Groups IV (SBP ≥ 139 mmHg), III (131 ≤ SBP ≤ 138 mmHg), and II (120 ≤ SBP ≤ 130 mmHg) was significantly higher than that in Group I (SBP ≤ 119 mmHg). The AUC of the prenatal first SBP for predicting low birth weight and severe preeclampsia was 0.676 (95% CI 0.618–0.733, p < 0.001) and 0.727 (95% CI 0.673–0.781, p < 0.001), respectively, in patients with preeclampsia. Conclusions Prenatal first SBP was associated with birth weight and severe preeclampsia. Higher prenatal first SBP in patients with preeclampsia can predict low birth weight and severe preeclampsia.
Collapse
|
12
|
Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol 2022; 226:S1019-S1034. [PMID: 33096092 PMCID: PMC8884164 DOI: 10.1016/j.ajog.2020.10.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022]
Abstract
Preeclampsia is a devastating medical complication of pregnancy that can lead to significant maternal and fetal morbidity and mortality. It is currently believed that there is abnormal placentation in as early as the first trimester in women destined to develop preeclampsia. Although the etiology of the abnormal placentation is being debated, numerous epidemiologic and experimental studies suggest that imbalances in circulating angiogenic factors released from the placenta are responsible for the maternal signs and symptoms of preeclampsia. In particular, circulating levels of soluble fms-like tyrosine kinase 1, an antiangiogenic factor, are markedly increased in women with preeclampsia, whereas free levels of its ligand, placental, growth factor are markedly diminished. Alterations in these angiogenic factors precede the onset of clinical signs of preeclampsia and correlate with disease severity. Recently, the availability of automated assays for the measurement of angiogenic biomarkers in the plasma, serum, and urine has helped investigators worldwide to demonstrate a key role for these factors in the clinical diagnosis and prediction of preeclampsia. Numerous studies have reported that circulating angiogenic biomarkers have a very high negative predictive value to rule out clinical disease among women with suspected preeclampsia. These blood-based biomarkers have provided a valuable tool to clinicians to accelerate the time to clinical diagnosis and minimize maternal adverse outcomes in women with preeclampsia. Angiogenic biomarkers have also been useful to elucidate the pathogenesis of related disorders of abnormal placentation such as intrauterine growth restriction, intrauterine fetal death, twin-to-twin transfusion syndrome, and fetal hydrops. In summary, the discovery and characterization of angiogenic proteins of placental origin have provided clinicians a noninvasive blood-based tool to monitor placental function and health and for early detection of disorders of placentation. Uncovering the mechanisms of altered angiogenic factors in preeclampsia and related disorders of placentation may provide insights into novel preventive and therapeutic options.
Collapse
|
13
|
Bakrania BA, George EM, Granger JP. Animal models of preeclampsia: investigating pathophysiology and therapeutic targets. Am J Obstet Gynecol 2022; 226:S973-S987. [PMID: 33722383 PMCID: PMC8141071 DOI: 10.1016/j.ajog.2020.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023]
Abstract
Animal models have been critical in investigating the pathogenesis, mediators, and even therapeutic options for a number of diseases, including preeclampsia. Preeclampsia is the leading cause of maternal and fetal morbidity and mortality worldwide. The placenta is thought to play a central role in the pathogenesis of this disease because it releases antiangiogenic and proinflammatory factors into the maternal circulation, resulting in the maternal syndrome. Despite the deleterious effects preeclampsia has been shown to have on the mother and baby during pregnancy and postpartum, there is still no effective treatment for this disease. Although clinical studies in patients are crucial to identify the involvement of pathogenic factors in preeclampsia, there are obvious limitations that prevent detailed investigation of the quantitative importance of time-dependent mechanisms involved in this syndrome. Animal models allow investigators to perform proof-of-concept studies and examine whether certain factors found in women with preeclampsia mediate hypertension and other manifestations of this disease. In this brief review, we summarize some of the more widely studied models used to investigate pathophysiological mechanisms that are thought to be involved in preeclampsia. These include models of placental ischemia, angiogenic imbalance, and maternal immune activation. Infusion of preeclampsia-related factors into animals has been widely studied to understand the specific mediators of this disease. These models have been included, in addition to a number of genetic models involved in overexpression of the renin-angiotensin system, complement activation, and trophoblast differentiation. Together, these models cover multiple mechanisms of preeclampsia from trophoblast dysfunction and impaired placental vascularization to the excess circulating placental factors and clinical manifestation of this disease. Most animal studies have been performed in rats and mice; however, we have also incorporated nonhuman primate models in this review. Preclinical animal models not only have been instrumental in understanding the pathophysiology of preeclampsia but also continue to be important tools in the search for novel therapeutic options for the treatment of this disease.
Collapse
Affiliation(s)
- Bhavisha A Bakrania
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Eric M George
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Joey P Granger
- Cardiovascular-Renal Research Center, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS.
| |
Collapse
|
14
|
Waker CA, Kaufman MR, Brown TL. Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization. Front Physiol 2021; 12:681632. [PMID: 34276401 PMCID: PMC8284253 DOI: 10.3389/fphys.2021.681632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
15
|
Ruano CSM, Apicella C, Jacques S, Gascoin G, Gaspar C, Miralles F, Méhats C, Vaiman D. Alternative splicing in normal and pathological human placentas is correlated to genetic variants. Hum Genet 2021; 140:827-848. [PMID: 33433680 PMCID: PMC8052246 DOI: 10.1007/s00439-020-02248-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Two major obstetric diseases, preeclampsia (PE), a pregnancy-induced endothelial dysfunction leading to hypertension and proteinuria, and intra-uterine growth-restriction (IUGR), a failure of the fetus to acquire its normal growth, are generally triggered by placental dysfunction. Many studies have evaluated gene expression deregulations in these diseases, but none has tackled systematically the role of alternative splicing. In the present study, we show that alternative splicing is an essential feature of placental diseases, affecting 1060 and 1409 genes in PE vs controls and IUGR vs controls, respectively, many of those involved in placental function. While in IUGR placentas, alternative splicing affects genes specifically related to pregnancy, in preeclamptic placentas, it impacts a mix of genes related to pregnancy and brain diseases. Also, alternative splicing variations can be detected at the individual level as sharp splicing differences between different placentas. We correlate these variations with genetic variants to define splicing Quantitative Trait Loci (sQTL) in the subset of the 48 genes the most strongly alternatively spliced in placental diseases. We show that alternative splicing is at least partly piloted by genetic variants located either in cis (52 QTL identified) or in trans (52 QTL identified). In particular, we found four chromosomal regions that impact the splicing of genes in the placenta. The present work provides a new vision of placental gene expression regulation that warrants further studies.
Collapse
Affiliation(s)
- Camino S M Ruano
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Clara Apicella
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Sébastien Jacques
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Géraldine Gascoin
- Unité Mixte de Recherche MITOVASC, Équipe Mitolab, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
- Réanimation et Médecine Néonatales, Centre Hospitalier Universitaire, Angers, France
| | - Cassandra Gaspar
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013, Paris, France
| | - Francisco Miralles
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Céline Méhats
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Daniel Vaiman
- Université de Paris, Institut Cochin, Inserm U1016, CNRS, 24 rue du Faubourg St Jacques, 75014, Paris, France.
| |
Collapse
|
16
|
Pankiewicz K, Fijałkowska A, Issat T, Maciejewski TM. Insight into the Key Points of Preeclampsia Pathophysiology: Uterine Artery Remodeling and the Role of MicroRNAs. Int J Mol Sci 2021; 22:3132. [PMID: 33808559 PMCID: PMC8003365 DOI: 10.3390/ijms22063132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia affects about 3-8% of all pregnancies. It represents a complex and multifaceted syndrome with at least several potential pathways leading to the development of disease. The main dogma in preeclampsia is the two-stage model of disease. Stage 1 (placental stage) takes place in early pregnancy and is thought to be impaired placentation due to inadequate trophoblastic invasion of the maternal spiral arteries that leads to reduced placental perfusion and release of numerous biological factors causing endothelial damage and development of acute maternal syndrome with systemic multiorgan failure (stage 2-the onset of maternal clinical symptoms, maternal stage). Recently, in the light of the vast body of evidence, two-stage model of preeclampsia has been updated with a few novel pathways leading to clinical manifestation in the second part of pregnancy. This paper reviews current state of knowledge about pathophysiology of preeclampsia and places particular focus on the recent advances in understanding of uterine artery remodeling alterations, as well as the role of microRNAs in preeclampsia.
Collapse
Affiliation(s)
- Katarzyna Pankiewicz
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| | - Anna Fijałkowska
- Department of Cardiology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland;
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| | - Tomasz M. Maciejewski
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (T.I.); (T.M.M.)
| |
Collapse
|
17
|
Albrecht ED, Pepe GJ. Regulation of Uterine Spiral Artery Remodeling: a Review. Reprod Sci 2020; 27:1932-1942. [PMID: 32548805 PMCID: PMC7452941 DOI: 10.1007/s43032-020-00212-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
Extravillous trophoblast remodeling of the uterine spiral arteries is essential for promoting blood flow to the placenta and fetal development, but little is known about the regulation of this process. A defect in spiral artery remodeling underpins adverse conditions of human pregnancy, notably early-onset preeclampsia and fetal growth restriction, which result in maternal and fetal morbidity and mortality. Many in vitro studies have been conducted to determine the ability of growth and other factors to stimulate trophoblast cells to migrate across a synthetic membrane. Clinical studies have investigated whether the maternal levels of various factors are altered during abnormal human pregnancy. Animal models have been established to assess the ability of various factors to recapitulate the pathophysiological symptoms of preeclampsia. This review analyzes the results of the in vitro, clinical, and animal studies and describes a nonhuman primate experimental paradigm of defective uterine artery remodeling to study the regulation of vessel remodeling.
Collapse
Affiliation(s)
- Eugene D Albrecht
- Bressler Research Laboratories, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
18
|
Role of Arginine Methylation in Alternative Polyadenylation of VEGFR-1 (Flt-1) pre-mRNA. Int J Mol Sci 2020; 21:ijms21186460. [PMID: 32899690 PMCID: PMC7554721 DOI: 10.3390/ijms21186460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Mature mRNA is generated by the 3ʹ end cleavage and polyadenylation of its precursor pre-mRNA. Eukaryotic genes frequently have multiple polyadenylation sites, resulting in mRNA isoforms with different 3ʹ-UTR lengths that often encode different C-terminal amino acid sequences. It is well-known that this form of post-transcriptional modification, termed alternative polyadenylation, can affect mRNA stability, localization, translation, and nuclear export. We focus on the alternative polyadenylation of pre-mRNA for vascular endothelial growth factor receptor-1 (VEGFR-1), the receptor for VEGF. VEGFR-1 is a transmembrane protein with a tyrosine kinase in the intracellular region. Secreted forms of VEGFR-1 (sVEGFR-1) are also produced from the same gene by alternative polyadenylation, and sVEGFR-1 has a function opposite to that of VEGFR-1 because it acts as a decoy receptor for VEGF. However, the mechanism that regulates the production of sVEGFR-1 by alternative polyadenylation remains poorly understood. In this review, we introduce and discuss the mechanism of alternative polyadenylation of VEGFR-1 mediated by protein arginine methylation.
Collapse
|
19
|
Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020; 75:1363-1381. [PMID: 32248704 DOI: 10.1161/hypertensionaha.119.14598] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a common pregnancy complication, affecting 2% to 8% of pregnancies worldwide, and is an important cause of both maternal and fetal morbidity and mortality. Importantly, although aspirin and calcium are able to prevent preeclampsia in some women, there is no cure apart from delivery of the placenta and fetus, often necessitating iatrogenic preterm birth. Preclinical models of preeclampsia are widely used to investigate the causes and consequences of preeclampsia and to evaluate safety and efficacy of potential preventative and therapeutic interventions. In this review, we provide a summary of the published preclinical models of preeclampsia that meet human diagnostic criteria, including the development of maternal hypertension, together with new-onset proteinuria, maternal organ dysfunction, and uteroplacental dysfunction. We then discuss evidence from preclinical models for multiple causal factors of preeclampsia, including those implicated in early-onset and late-onset preeclampsia. Next, we discuss the impact of exposure to a preeclampsia-like environment for later maternal and progeny health. The presence of long-term impairment, particularly cardiovascular outcomes, in mothers and progeny after an experimentally induced preeclampsia-like pregnancy, implies that later onset or reduced severity of preeclampsia will improve later maternal and progeny health. Finally, we summarize published intervention studies in preclinical models and identify gaps in knowledge that we consider should be targets for future research.
Collapse
Affiliation(s)
- Kathryn L Gatford
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Prabha H Andraweera
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Claire T Roberts
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Alison S Care
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To review the rationale and biological plausibility and discuss the current research on novel interventions for the prevention of preeclampsia. RECENT FINDINGS Preeclampsia affects up to 8% of pregnancies worldwide and remains a major cause of maternal and neonatal morbidity and mortality. Multiple medications have been investigated or repurposed as potential effective interventions for preeclampsia prevention. Aspirin is currently the only drug for which there is some evidence of benefit for preeclampsia prevention, and its use is recommended by professional societies for pregnancies at risk. Statins have shown promise for prevention of preeclampsia in animal models and human pilot studies, without any trend or concerns for safety signals or teratogenicity. The use of metformin has also gained popularity in experimental studies, but observations from randomized clinical trials were not consistent on its utility as a possible intervention for preeclampsia prevention. While initial studies evaluating esomeprazole were promising, randomized trials failed to show benefit. Contemporary research shows exciting new opportunities for prophylactic treatment for preeclampsia, to prevent this debilitating and life-threatening disease.
Collapse
Affiliation(s)
- Marwan Ma'ayeh
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W 12th Avenue, Columbus, OH, 43210, USA. Marwan.Ma'
| | - Kara M Rood
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W 12th Avenue, Columbus, OH, 43210, USA
| | - Douglas Kniss
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W 12th Avenue, Columbus, OH, 43210, USA
| | - Maged M Costantine
- Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W 12th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
21
|
Sutton EF, Gemmel M, Powers RW. Nitric oxide signaling in pregnancy and preeclampsia. Nitric Oxide 2020; 95:55-62. [DOI: 10.1016/j.niox.2019.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/10/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
|
22
|
Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol 2019; 15:275-289. [PMID: 30792480 PMCID: PMC6472952 DOI: 10.1038/s41581-019-0119-6] [Citation(s) in RCA: 576] [Impact Index Per Article: 115.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pre-eclampsia is a complication of pregnancy that is associated with substantial maternal and fetal morbidity and mortality. The disease presents with new-onset hypertension and often proteinuria in the mother, which can progress to multi-organ dysfunction, including hepatic, renal and cerebral disease, if the fetus and placenta are not delivered. Maternal endothelial dysfunction due to circulating factors of fetal origin from the placenta is a hallmark of pre-eclampsia. Risk factors for the disease include maternal comorbidities, such as chronic kidney disease, hypertension and obesity; a family history of pre-eclampsia, nulliparity or multiple pregnancies; and previous pre-eclampsia or intrauterine fetal growth restriction. In the past decade, the discovery and characterization of novel antiangiogenic pathways have been particularly impactful both in increasing understanding of the disease pathophysiology and in directing predictive and therapeutic efforts. In this Review, we discuss the pathogenic role of antiangiogenic proteins released by the placenta in the development of pre-eclampsia and review novel therapeutic strategies directed at restoring the angiogenic imbalance observed during pre-eclampsia. We also highlight other notable advances in the field, including the identification of long-term maternal and fetal risks conferred by pre-eclampsia.
Collapse
Affiliation(s)
- Elizabeth A Phipps
- Nephrology Division, Brigham and Women's Hospital, Boston, MA, USA
- Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Ravi Thadhani
- Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - S Ananth Karumanchi
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Nephrology Division, Departments of Medicine, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
23
|
Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, Juhasz K, Bhatti G, Leavitt RJ, Gelencser Z, Palhalmi J, Chung TH, Gyorffy BA, Orosz L, Demeter A, Szecsi A, Hunyadi-Gulyas E, Darula Z, Simor A, Eder K, Szabo S, Topping V, El-Azzamy H, LaJeunesse C, Balogh A, Szalai G, Land S, Torok O, Dong Z, Kovalszky I, Falus A, Meiri H, Draghici S, Hassan SS, Chaiworapongsa T, Krispin M, Knöfler M, Erez O, Burton GJ, Kim CJ, Juhasz G, Papp Z. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front Immunol 2018; 9:1661. [PMID: 30135684 PMCID: PMC6092567 DOI: 10.3389/fimmu.2018.01661] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia is a disease of the mother, fetus, and placenta, and the gaps in our understanding of the complex interactions among their respective disease pathways preclude successful treatment and prevention. The placenta has a key role in the pathogenesis of the terminal pathway characterized by exaggerated maternal systemic inflammation, generalized endothelial damage, hypertension, and proteinuria. This sine qua non of preeclampsia may be triggered by distinct underlying mechanisms that occur at early stages of pregnancy and induce different phenotypes. To gain insights into these molecular pathways, we employed a systems biology approach and integrated different "omics," clinical, placental, and functional data from patients with distinct phenotypes of preeclampsia. First trimester maternal blood proteomics uncovered an altered abundance of proteins of the renin-angiotensin and immune systems, complement, and coagulation cascades in patients with term or preterm preeclampsia. Moreover, first trimester maternal blood from preterm preeclamptic patients in vitro dysregulated trophoblastic gene expression. Placental transcriptomics of women with preterm preeclampsia identified distinct gene modules associated with maternal or fetal disease. Placental "virtual" liquid biopsy showed that the dysregulation of these disease gene modules originates during the first trimester. In vitro experiments on hub transcription factors of these gene modules demonstrated that DNA hypermethylation in the regulatory region of ZNF554 leads to gene down-regulation and impaired trophoblast invasion, while BCL6 and ARNT2 up-regulation sensitizes the trophoblast to ischemia, hallmarks of preterm preeclampsia. In summary, our data suggest that there are distinct maternal and placental disease pathways, and their interaction influences the clinical presentation of preeclampsia. The activation of maternal disease pathways can be detected in all phenotypes of preeclampsia earlier and upstream of placental dysfunction, not only downstream as described before, and distinct placental disease pathways are superimposed on these maternal pathways. This is a paradigm shift, which, in agreement with epidemiological studies, warrants for the central pathologic role of preexisting maternal diseases or perturbed maternal-fetal-placental immune interactions in preeclampsia. The description of these novel pathways in the "molecular phase" of preeclampsia and the identification of their hub molecules may enable timely molecular characterization of patients with distinct preeclampsia phenotypes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, United States
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gaurav Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | | | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Balazs Andras Gyorffy
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Laszlo Orosz
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anett Szecsi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Hunyadi-Gulyas
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Darula
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Katalin Eder
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
| | - Vanessa Topping
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Haidy El-Azzamy
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Christopher LaJeunesse
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Susan Land
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Olga Torok
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andras Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Sorin Draghici
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Department of Clinical and Translational Science, Wayne State University, Detroit, MI, United States
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Martin Knöfler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Soroka University Medical Center School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Pathology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Gabor Juhasz
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Marshall SA, Hannan NJ, Jelinic M, Nguyen TP, Girling JE, Parry LJ. Animal models of preeclampsia: translational failings and why. Am J Physiol Regul Integr Comp Physiol 2018; 314:R499-R508. [DOI: 10.1152/ajpregu.00355.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preeclampsia affects up to 8% of pregnancies worldwide and is a leading cause of both maternal and fetal morbidity and mortality. Our current understanding of the cause(s) of preeclampsia is far from complete, and the lack of a single reliable animal model that recapitulates all aspects of the disease further confounds our understanding. This is partially due to the heterogeneous nature of the disease, coupled with our evolving understanding of its etiology. Nevertheless, animal models are still highly relevant and useful tools that help us better understand the pathophysiology of specific aspects of preeclampsia. This review summarizes the various types and characteristics of animal models used to study preeclampsia, highlighting particular features of these models relevant to clinical translation. This review points out the strengths and limitations of these models to illustrate the importance of using the appropriate model depending on the research question.
Collapse
Affiliation(s)
- Sarah A. Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Natalie J. Hannan
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Maria Jelinic
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Thy P.H. Nguyen
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E. Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women’s Hospital, Parkville, Victoria, Australia
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, Mohammed M, Handberg EM, Richards EM, Pepine CJ, Raizada MK. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond) 2018; 132:701-718. [PMID: 29507058 PMCID: PMC5955695 DOI: 10.1042/cs20180087] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/21/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R2 = 0.5301, P<0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R2 = 0.4608, P<0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN.
Collapse
Affiliation(s)
- Seungbum Kim
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Ruby Goel
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Ashok Kumar
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Yanfei Qi
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Gil Lobaton
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, FL, U.S.A
| | - Mohammed Mohammed
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Eileen M Handberg
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Elaine M Richards
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, U.S.A.
| | - Mohan K Raizada
- Department of Physiology and Functional, University of Florida, Gainesville, FL, U.S.A.
| |
Collapse
|
26
|
Palmer KR, Tong S, Kaitu'u-Lino TJ. Placental-specific sFLT-1: role in pre-eclamptic pathophysiology and its translational possibilities for clinical prediction and diagnosis. Mol Hum Reprod 2018; 23:69-78. [PMID: 27986932 DOI: 10.1093/molehr/gaw077] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/09/2016] [Indexed: 11/12/2022] Open
Abstract
Pre-eclampsia is a common obstetric complication globally responsible for a significant burden of maternal and perinatal morbidity and mortality. Central to its pathophysiology is the anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT-1). sFLT-1 is released from a range of tissues into the circulation, where it antagonizes the activity of vascular endothelial growth factor and placental growth factor leading to endothelial dysfunction. It is this widespread endothelial dysfunction that produces the clinical features of pre-eclampsia including hypertension and proteinuria. There are multiple splice variants of sFLT-1. One, known as sFLT-1 e15a, evolved quite recently and is only present in humans and higher order primates. This sFLT-1 variant is also the main sFLT-1 secreted from the placenta. Recent work has shown that sFLT-1 e15a is significantly elevated in the placenta and circulation of women with pre-eclampsia. It is also biologically active, capable of causing endothelial dysfunction and the end-organ dysfunction seen in pre-eclampsia. Indeed, the over-expression of sFLT-1 e15a in mice recapitulates the pre-eclamptic phenotype in pregnancy. Therefore, here we propose that sFLT-1 e15a may be the sFLT-1 variant primarily responsible for pre-eclampsia, a uniquely human disease. Furthermore, this placental-specific sFLT-1 variant provides promise for use as an accurate biomarker in the prediction or diagnosis of pre-eclampsia.
Collapse
Affiliation(s)
- K R Palmer
- Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Rd, Clayton, 3168 Victoria, Australia.,Translational Obstetric Group, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, 3084 Victoria, Australia
| | - S Tong
- Translational Obstetric Group, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, 3084 Victoria, Australia
| | - T J Kaitu'u-Lino
- Translational Obstetric Group, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, 3084 Victoria, Australia
| |
Collapse
|
27
|
Gray KJ, Saxena R, Karumanchi SA. Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. Am J Obstet Gynecol 2018; 218:211-218. [PMID: 29138037 DOI: 10.1016/j.ajog.2017.11.562] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Preeclampsia risk is influenced by both the mother's genetic background and the genetics of her fetus; however, the specific genes responsible for conferring preeclampsia risk have largely remained elusive. Evidence that preeclampsia has a genetic predisposition was first detailed in the early 1960s, and overall preeclampsia heritability is estimated at ∼55%. Many traditional gene discovery approaches have been used to investigate the specific genes that contribute to preeclampsia risk, but these have largely not been successful or reproducible. Over the past decade, genome-wide association studies have allowed for significant advances in the understanding of the genetic basis of many common diseases. Genome-wide association studies are predicated on the idea that the genetic basis of many common diseases are complex and polygenic with many variants, each with modest effects that contribute to disease risk. Using this approach in preeclampsia, a large genome-wide association study recently identified and replicated the first robust fetal genomic region associated with excess risk. A screen of >7 million genetic variants in 2658 offspring from preeclamptic women and 308,292 population controls identified a single association signal close to the Fms-like tyrosine kinase 1 gene, on chromosome 13. Fms-like tyrosine kinase 1 encodes soluble Fms-like tyrosine kinase 1, a splice variant of the vascular endothelial growth factor receptor that exerts antiangiogenic activity by inhibiting signaling of proangiogenic factors. The Fms-like tyrosine kinase 1 pathway is central in preeclampsia pathogenesis because excess circulating soluble Fms-like tyrosine kinase 1 in the maternal plasma leads to the hallmark clinical features of preeclampsia, including hypertension and proteinuria. The success of this landmark fetal preeclampsia genome-wide association study suggests that well-powered, larger maternal and fetal genome-wide association study will be fruitful in identifying additional common variants that implicate causal preeclampsia genes and pathways. Such efforts will rely on the continued development of large preeclampsia consortia focused on preeclampsia genetics to obtain adequate sample sizes, detailed clinical phenotyping, and matched maternal-fetal samples. In summary, the fetal preeclampsia genome-wide association study represents an exciting advance in preeclampsia biology, suggesting that dysregulation at the Fms-like tyrosine kinase 1 locus in the fetal genome (likely in the placenta) is a fundamental molecular defect in preeclampsia.
Collapse
|
28
|
Ashar-Patel A, Kaymaz Y, Rajakumar A, Bailey JA, Karumanchi SA, Moore MJ. FLT1 and transcriptome-wide polyadenylation site (PAS) analysis in preeclampsia. Sci Rep 2017; 7:12139. [PMID: 28939845 PMCID: PMC5610261 DOI: 10.1038/s41598-017-11639-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/25/2017] [Indexed: 12/18/2022] Open
Abstract
Maternal symptoms of preeclampsia (PE) are primarily driven by excess anti-angiogenic factors originating from the placenta. Chief among these are soluble Flt1 proteins (sFlt1s) produced from alternatively polyadenylated mRNA isoforms. Here we used polyadenylation site sequencing (PAS-Seq) of RNA from normal and PE human placentae to interrogate transcriptome-wide gene expression and alternative polyadenylation signatures associated with early-onset PE (EO-PE; symptom onset < 34 weeks) and late-onset PE (LO-PE; symptom onset > 34 weeks) cohorts. While we observed no general shift in alternative polyadenylation associated with PE, the EO-PE and LO-PE cohorts do exhibit gene expression profiles distinct from both each other and from normal placentae. The only two genes upregulated across all transcriptome-wide PE analyses to date (microarray, RNA-Seq and PAS-Seq) are NRIP1 (RIP140), a transcriptional co-regulator linked to metabolic syndromes associated with obesity, and Flt1. Consistent with sFlt1 overproduction being a significant driver of clinical symptoms, placental Flt1 mRNA levels strongly correlate with maternal blood pressure. For Flt1, just three mRNA isoforms account for > 94% of all transcripts, with increased transcription of the entire locus driving Flt1 upregulation in both EO-PE and LO-PE. These three isoforms thus represent potential targets for therapeutic RNA interference (RNAi) in both early and late presentations.
Collapse
Affiliation(s)
- Ami Ashar-Patel
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yasin Kaymaz
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Boston, MA, USA
| | - Augustine Rajakumar
- Departments of Gynecology and Obstetrics, Emory University, Atlanta, USA.,Departments of Medicine, Obstetrics and Gynecology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Boston, MA, USA.,Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - S Ananth Karumanchi
- Departments of Medicine, Obstetrics and Gynecology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
29
|
Meiri H, Osol G, Cetin I, Gizurarson S, Huppertz B. Personalized Therapy Against Preeclampsia by Replenishing Placental Protein 13 (PP13) Targeted to Patients With Impaired PP13 Molecule or Function. Comput Struct Biotechnol J 2017; 15:433-446. [PMID: 29034064 PMCID: PMC5633742 DOI: 10.1016/j.csbj.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/27/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
Hypertensive disorders affect about one third of all people aged 20 and above, and are treated with anti-hypertensive drugs. Preeclampsia (PE) is one form of such disorders that only develops during pregnancy. It affects ten million pregnant women globally and additionally causes fetal loss and major newborn disabilities. The syndrome's origin is multifactorial, and anti-hypertensive drugs are ineffective in treating it. Biomarkers are helpful for predict its development. Generic drugs, such as low dose aspirin, were proven effective in preventing preterm PE. However, it does not cure the majority of cases and many studies are underway for fighting PE with extended use of additional generic drugs, or through new drug development programs. This review focuses on placental protein 13 (PP13). This protein is only expressed in the placenta. Impaired PP13 DNA structure and/or its reduced mRNA expression leads to lower blood PP13 level that predict a higher risk of developing PE. Two polymorphic PP13 variants have been identified: (1) The promoter PP13 variant with an "A/A" genotype in the -98 position (versus "A/C" or "C/C"). Having the "A/A" genotype is coupled to lower PP13 expression, mainly during placental syncytiotrophoblast differentiation and, if associated with obesity and history of previous preeclampsia, it accurately predicts higher risk for developing the disorder. (2) A thymidine deletion at position 221 causes a frame shift in the open reading frame, and the formation of an early stop codon resulting in the formation of DelT221, a truncated variant of PP13. In pregnant rodents, both short- and long- term replenishment of PP13 causes reversible hypotension and vasodilation of uterine vessels. Long-term exposure is also accompanied by the development of larger placentas and newborns. Also, only w/t PP13 is capable of inducing leukocyte apoptosis, providing maternal immune tolerance to pregnancy. Based on published data, we propose a targeted PP13 therapy to fight PE, and consider the design and conduct of animal studies to explore this hypothesis. Accordingly, a new targeted therapy can be implemented in humans combining prediction and prevention.
Collapse
Affiliation(s)
- Hamutal Meiri
- Hy Laboratories, Rehovot, and TeleMarpe, Tel Aviv, Israel
| | - George Osol
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT, USA
| | - Irene Cetin
- Department of Obstetrics and Gynecology, University of Milano, Italy
- Department of Mother and Child, Hospital Luigi Sacco, and Center for Fetal Research “Giorgio Pardi”, Milano, Italy
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, Reykjavik, Iceland
| | - Berthold Huppertz
- Institute of Cell Biology, Histology and Embryology & Biobank Graz, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Romero R, Erez O, Hüttemann M, Maymon E, Panaitescu B, Conde-Agudelo A, Pacora P, Yoon BH, Grossman LI. Metformin, the aspirin of the 21st century: its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity. Am J Obstet Gynecol 2017; 217:282-302. [PMID: 28619690 DOI: 10.1016/j.ajog.2017.06.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
Metformin is everywhere. Originally introduced in clinical practice as an antidiabetic agent, its role as a therapeutic agent is expanding to include treatment of prediabetes mellitus, gestational diabetes mellitus, and polycystic ovarian disease; more recently, experimental studies and observations in randomized clinical trials suggest that metformin could have a place in the treatment or prevention of preeclampsia. This article provides a brief overview of the history of metformin in the treatment of diabetes mellitus and reviews the results of metaanalyses of metformin in gestational diabetes mellitus as well as the treatment of obese, non-diabetic, pregnant women to prevent macrosomia. We highlight the results of a randomized clinical trial in which metformin administration in early pregnancy did not reduce the frequency of large-for-gestational-age infants (the primary endpoint) but did decrease the frequency of preeclampsia (a secondary endpoint). The mechanisms by which metformin may prevent preeclampsia include a reduction in the production of antiangiogenic factors (soluble vascular endothelial growth factor receptor-1 and soluble endoglin) and the improvement of endothelial dysfunction, probably through an effect on the mitochondria. Another potential mechanism whereby metformin may play a role in the prevention of preeclampsia is its ability to modify cellular homeostasis and energy disposition, mediated by rapamycin, a mechanistic target. Metformin has a molecular weight of 129 Daltons and therefore readily crosses the placenta. There is considerable evidence to suggest that this agent is safe during pregnancy. New literature on the role of metformin as a chemotherapeutic adjuvant in the prevention of cancer and in prolonging life and protecting against aging is reviewed briefly. Herein, we discuss the mechanisms of action and potential benefits of metformin.
Collapse
|
31
|
Abou-Fayçal C, Hatat AS, Gazzeri S, Eymin B. Splice Variants of the RTK Family: Their Role in Tumour Progression and Response to Targeted Therapy. Int J Mol Sci 2017; 18:ijms18020383. [PMID: 28208660 PMCID: PMC5343918 DOI: 10.3390/ijms18020383] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) belong to a family of transmembrane receptors that display tyrosine kinase activity and trigger the activation of downstream signalling pathways mainly involved in cell proliferation and survival. RTK amplification or somatic mutations leading to their constitutive activation and oncogenic properties have been reported in various tumour types. Numerous RTK-targeted therapies have been developed to counteract this hyperactivation. Alternative splicing of pre-mRNA has recently emerged as an important contributor to cancer development and tumour maintenance. Interestingly, RTKs are alternatively spliced. However, the biological functions of RTK splice variants, as well as the upstream signals that control their expression in tumours, remain to be understood. More importantly, it remains to be determined whether, and how, these splicing events may affect the response of tumour cells to RTK-targeted therapies, and inversely, whether these therapies may impact these splicing events. In this review, we will discuss the role of alternative splicing of RTKs in tumour progression and response to therapies, with a special focus on two major RTKs that control proliferation, survival, and angiogenesis, namely, epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-1 (VEGFR1).
Collapse
Affiliation(s)
- Cherine Abou-Fayçal
- Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble 38702, France.
| | - Anne-Sophie Hatat
- Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble 38702, France.
| | - Sylvie Gazzeri
- Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble 38702, France.
| | - Beatrice Eymin
- Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble 38702, France.
| |
Collapse
|
32
|
Nadkarni NA, Rajakumar A, Mokhashi N, Burke SD, Rana S, Salahuddin S, Dang Q, Thadhani R, Krishnan R, Stossel TP, Karumanchi SA. Gelsolin is an endogenous inhibitor of syncytiotrophoblast extracellular vesicle shedding in pregnancy. Pregnancy Hypertens 2016; 6:333-339. [PMID: 27939478 DOI: 10.1016/j.preghy.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Preeclampsia, a pregnancy-specific inflammatory disorder, is characterized by high levels of anti-angiogenic protein, soluble fms-like tyrosine kinase 1 (sFlt1), in the maternal circulation. sFlt1 producing molecular machinery is present in syncytiotrophoblast extracellular vesicles that are released by the placenta into maternal plasma during normal pregnancy, a process greatly accelerated in preeclampsia. We hypothesized that syncytiotrophoblast extracellular vesicles exposes cytoplasmic actin to plasma resulting in depletion of plasma gelsolin (pGSN), an abundant plasma protein that scavenges circulating actin and other pro-inflammatory mediators. OBJECTIVE To test whether pGSN levels would be lower in preeclampsia and to assess whether recombinant human plasma gelsolin (rhpGSN) may promote placental health by decreasing shedding of syncytiotrophoblast extracellular vesicles. METHODS We tested pGSN levels in third trimester plasma samples from women with preeclampsia and non-hypertensive pregnancies. We then assessed whether rhpGSN may act as a negative regulator of syncytial shedding in placental explant culture and dynamic mechanical stretch studies. RESULTS pGSN levels fall in late pregnancy and decline further in preeclampsia patients. Recombinant human pGSN (rhpGSN) at 100μg/ml limits spontaneous syncytiotrophoblast vesicle release and sFlt1 protein dissemination by normal placental explants. Higher rhpGSN doses (500μg/ml) also limit syncytiotrophoblast vesicle and sFlt1 dissemination from preeclamptic placental explants. rhpGSN also mitigates syncytiotrophoblast vesicle during dynamic mechanical stretch. CONCLUSIONS 1) pGSN, an anti-inflammatory factor of maternal origin is reduced in preeclampsia and may contribute to disease progression and 2) exogenous rhpGSN supplementation can limit the dissemination of toxic syncytiotrophoblast vesicle that characterizes the disease state.
Collapse
Affiliation(s)
- Neil A Nadkarni
- Department of Neurology, McGaw Northwestern Memorial Hospital, Chicago, IL, United States; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Augustine Rajakumar
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nikita Mokhashi
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Suzanne D Burke
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sarosh Rana
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology University of Chicago, Chicago, IL, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Saira Salahuddin
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Quynh Dang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Emergency Medicine, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ravi Thadhani
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Emergency Medicine, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Thomas P Stossel
- Hematology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - S Ananth Karumanchi
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
33
|
Immunology of hepatic diseases during pregnancy. Semin Immunopathol 2016; 38:669-685. [PMID: 27324237 DOI: 10.1007/s00281-016-0573-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
The mother's immune system has to adapt to pregnancy accepting the semi-allograft fetus and preventing harmful effects to the developing child. Aberrations in feto-maternal immune adaptation may result in disease of the mother, such as liver injury. Five pregnancy-associated liver disorders have been described so far, however, little is known concerning immune alterations promoting the respective disease. These liver disorders are pre-eclampsia, hemolysis, elevated liver enzymes, low platelet count (HELLP), acute fatty liver, hyperemesis gravidarum, and intrahepatic cholestasis of pregnancy. On the other hand, pre-existing autoimmune liver injury of the mother can be affected by pregnancy. This review intends to summarize current knowledge linking feto-maternal immunology and liver inflammation with a special emphasis on novel potential biomarkers.
Collapse
|
34
|
Szalai G, Xu Y, Romero R, Chaiworapongsa T, Xu Z, Chiang PJ, Ahn H, Sundell B, Plazyo O, Jiang Y, Olive M, Wang B, Jacques SM, Qureshi F, Tarca AL, Erez O, Dong Z, Papp Z, Hassan SS, Hernandez-Andrade E, Than NG. In vivo experiments reveal the good, the bad and the ugly faces of sFlt-1 in pregnancy. PLoS One 2014; 9:e110867. [PMID: 25393290 PMCID: PMC4230935 DOI: 10.1371/journal.pone.0110867] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/23/2014] [Indexed: 01/06/2023] Open
Abstract
Objective Soluble fms-like tyrosine kinase (sFlt)-1-e15a, a primate-specific sFlt-1-isoform most abundant in the human placenta in preeclampsia, can induce preeclampsia in mice. This study compared the effects of full-length human (h)sFlt-1-e15a with those of truncated mouse (m)sFlt-1(1-3) used in previous preeclampsia studies on pregnancy outcome and clinical symptoms in preeclampsia. Methods Mice were injected with adenoviruses or fiber-mutant adenoviruses overexpressing hsFlt-1-e15a, msFlt-1(1-3) or control GFP under the CMV or CYP19A1 promoters on gestational day 8 (GD8) and GD11. Placentas and pups were delivered by cesarean section, and dams were monitored postpartum. Blood pressure was telemetrically recorded. Urine samples were collected with cystocentesis and examined for albumin/creatinine ratios. Tissue specimens were evaluated for transgene as well as endogenous mFlt-1 and msFlt-1-i13 expression. H&E-, Jones- and PAS-stained kidney sections were histopathologically examined. Placental GFP expression and aortic ring assays were investigated with confocal microscopy. Results Mean arterial blood pressure (MAP) was elevated before delivery in hsFlt-1-e15a-treated mice compared to controls (GD18: ΔMAP = 7.8 mmHg, p = 0.009), while ΔMAP was 12.8 mmHg (GD18, p = 0.005) in msFlt-1(1-3)-treated mice. Urine albumin/creatinine ratio was higher in hsFlt-1-e15a-treated mice than in controls (GD18, p = 0.04; PPD8, p = 0.03), and msFlt-1(1-3)-treated mice had marked proteinuria postpartum (PPD8, p = 4×10−5). Focal glomerular changes were detected in hsFlt-1-e15a and msFlt-1(1-3)-treated mice. Aortic ring microvessel outgrowth was decreased in hsFlt-1-e15a (p = 0.007) and msFlt-1(1-3)-treated (p = 0.02) mice. Full-length msFlt-1-i13 expression was unique for the placenta. In hsFlt-1-e15a-treated mice, the number of pups (p = 0.046), total weight of living pups (p = 0.04) and maternal weights (p = 0.04) were higher than in controls. These differences were not observed in truncated msFlt-1(1-3)-treated mice. Conclusions Truncated msFlt-1(1-3) simulated the preeclampsia-promoting effects of full-length hsFlt-1. MsFlt-1(1-3) had strong effect on maternal endothelium but not on placentas and embryos. In contrast, hsFlt-1-e15a induced preeclampsia-like symptoms; however, it also increased litter size. In accord with the predominant placental expression of hsFlt-1-e15a and msFlt-1-i13, full-length sFlt-1 may have a role in the regulation of embryonic development. These observations point to the difference in the biological effects of full-length and truncated sFlt-1 and the changes in the effect of full-length sFlt-1 during pregnancy, and may have important implications in the management of preeclampsia.
Collapse
Affiliation(s)
- Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- * E-mail: (RR); (NGT)
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Po Jen Chiang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Hyunyoung Ahn
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Birgitta Sundell
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Olesya Plazyo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Yang Jiang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Mary Olive
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Bing Wang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Suzanne M. Jacques
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Faisal Qureshi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Computer Science, Wayne State University, Detroit, MI, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States of America
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (RR); (NGT)
| |
Collapse
|
35
|
Than NG, Romero R, Xu Y, Erez O, Xu Z, Bhatti G, Leavitt R, Chung TH, El-Azzamy H, LaJeunesse C, Wang B, Balogh A, Szalai G, Land S, Dong Z, Hassan SS, Chaiworapongsa T, Krispin M, Kim CJ, Tarca AL, Papp Z, Bohn H. Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta 2014; 35:855-65. [PMID: 25266889 PMCID: PMC4203431 DOI: 10.1016/j.placenta.2014.07.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/04/2014] [Accepted: 07/28/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The dysregulation of maternal-fetal immune tolerance is one of the proposed mechanisms leading to preeclampsia. Galectins are key regulator proteins of the immune response in vertebrates and maternal-fetal immune tolerance in eutherian mammals. Previously we found that three genes in a Chr19 cluster encoding for human placental galectin-13 (PP13), galectin-14 and galectin-16 emerged during primate evolution and may confer immune tolerance to the semi-allogeneic fetus. MATERIALS AND METHODS This study involved various methodologies for gene and protein expression profiling, genomic DNA methylation analyses, functional assays on differentiating trophoblasts including gene silencing, luciferase reporter and methylation assays. These methods were applied on placental specimens, umbilical cord blood cells, primary trophoblasts and BeWo cells. Genomic DNA sequences were analyzed for transposable elements, transcription factor binding sites and evolutionary conservation. RESULTS AND DISCUSSION The villous trophoblastic expression of Chr19 cluster galectin genes is developmentally regulated by DNA methylation and induced by key transcription factors of villous placental development during trophoblast fusion and differentiation. This latter mechanism arose via the co-option of binding sites for these transcription factors through promoter evolution and the insertion of an anthropoid-specific L1PREC2 transposable element into the 5' untranslated region of an ancestral gene followed by gene duplication events. Among placental Chr19 cluster galectin genes, the expression of LGALS13 and LGALS14 is down-regulated in preterm severe preeclampsia associated with SGA. We reveal that this phenomenon is partly originated from the dysregulated expression of key transcription factors controlling trophoblastic functions and galectin gene expression. In addition, the differential DNA methylation of these genes was also observed in preterm preeclampsia irrespective of SGA. CONCLUSIONS These findings reveal the evolutionary origins of the placental expression of Chr19 cluster galectins. The complex dysregulation of these genes in preeclampsia may alter immune tolerance mechanisms at the maternal-fetal interface.
Collapse
Affiliation(s)
- N G Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary; Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | - R Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.
| | - Y Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - O Erez
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Z Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - G Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - R Leavitt
- Zymo Research Corporation, Irvine, CA, USA
| | - T H Chung
- Zymo Research Corporation, Irvine, CA, USA
| | - H El-Azzamy
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - C LaJeunesse
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - B Wang
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - A Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - G Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - S Land
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Z Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
| | - S S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - T Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - M Krispin
- Zymo Research Corporation, Irvine, CA, USA
| | - C J Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - A L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Z Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - H Bohn
- Behringwerke AG, Marburg/Lahn, Germany
| |
Collapse
|